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Using the constructive the01y ol the Linear Complementarity Problem, conditions are given for 
uniqueness of solutions of' the hybrid c~vnamics in linear relay ~ystems. 

Abstract 

Conditions are given for uniqueness of solutions of linear time-invariant systems under relay feedback. From a hybrid dynamical 
point of view this entails the deterministic specification of the discrete transition rules. The results are based on the formulation of 
relay systems as complementarity systems, and use the constructive theory of the Linear Complementarity Problem.\{) 1999 Elsevier 
Science Ltd. All rights reserved. 

Keyword: Hybrid systems; Relays; Well-posedness; Complementarity problems; Coulomb friction 

1. Introduction 

In this paper we consider a special type of hybrid 
dynamics as occurring in linear dynamical systems con
taining ideal relay elements. The behavior of an ideal 
relay (see Fig. 1) is given by three modes of operation 

(i) I~ 0, e = c1, 

(ii) Is 0, e = - c2 , 

(iii) I= 0, -c2 s e s c 1• 

Such relay characteristics appear in various areas of 
engineering. They serve as an idealized model of Coulomb 
friction (with f being the velocity and e being the 
Coulomb force). Within a control context various (phys
ical) relay elements have been discussed in the literature, 
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see especially (Tsypkin, 1984). Furthermore, switchiny 
control schemes such as 

{
-1 

ll = 1 
if y > 0, 

if y < 0, 

(with y the output and u the input of a control system) 
lead to a relay characteristic (with/= y and e = - u), by 
using Filippov's solution concept (Filippov, 1988) of 
equivalent control or convex definition for y = 0. (We 
will briefly return to Filippov's solution concept later on.) 

From the point of view of dynamics, a fundamental 
problem of systems containing ideal relay elements is 
that existence and uniqueness of solutions is not guaran
teed. An example of a system exhibiting non-uniqueness 
of solutions is the following: 

.X:z(t) = - x 1(t) - u(t) 

with, 

u(t) = - 1 if y(t) > 0, 

u(t) = 1 if y(t) < 0, 

- 1 s u(t) s 1 if y(t) = 0. 

(1) 
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Fig. I. Characteristic of an ideal relay. 

(This could be interpreted as a mass-spring system sub
ject to a "reversed" - and thus non-physical -
Coulomb friction.) In this example, from any initial state 
x(O) = (x 1 (0),x 2(0) = (c, 0), with lei < 1, there are three 
possible (smooth) initial solutions fort E [O, i:[, B > 0, that 
are allowed by the equations and inequalities above: 

(i) u(t) = 1, x 1 (t) = (x1 (0) + 1) cos(t) - 1, 

x 2 (t) = y(t) = - (1 + xi(O)) sin(t) < 0, 

(ii) u(t) = - 1, xi(t) = (xi(O) - 1) cos(t) + 1, 

x 2 (t) = y(t) = (1 - xi(O)) sin(t) > 0, 

(iii) u(t) = -x1(0)E[-1, 1], xi(t) = xi(O), 

X2(t) = y(t) = 0. 

So the above system (1) is not well-posed as a dynamical 
system. If the sign in front of u in the first equation of ( 1) is 
reversed however (and thus physically the Coulomb fric
tion has the correct sign!), there is only one smooth 
solution from every initial state x 0 , as will follow from the 
main theorem of the present paper. 

By associating three discrete states ("locations" or 
"modes") to the three linear parts of the relay character
istic, one can view (I) as a hybrid dynamical system. The 
three possible smooth solutions (i)-(iii) in the above 
example exactly correspond to these three discrete states. 
Seen from this point of view the hybrid dynamical system 
(1) serves as a clear example where the discrete state may 
not be uniquely determined by the continuous state. (See 
for a different type of example Barton and Pantelides, 
1994.) While for general hybrid dynamical systems such 
a subordination of the discrete state to the continuous 
state is not necessary at all (even to the contrary!), for 
relay systems such as (1) this is a very desirable property. 
Indeed, since only the three locations (discrete states) 
together with their invariants are given, while the speci
fication of the transition rules from one location to an
other is completely left open, the system equations are 
only well posed if they admit only one "acceptable" fill/ 
specification of the hybrid dynamics. (In general, it seems 
not reasonable to assign a non-deterministic behavior to 
relay systems - think for example of a mechanical 

system with Coulomb friction. Nevertheless, the classical 
Painleve example, as described e.g. in Brogliato (1996) 
and Lotstedt (1981 ), does exhibit non-uniqueness of 
solutions.) 

Of course, the above example containing a single relay 
element is easy to interpret by noting that for uniqueness 
of solutions one needs the "correct", that is, negative, 
feedback sign. A discussion of this phenomenon can be 
found e.g. in Filippov (1988) and Utkin (1992). Neverthe
less, for systems containing multiple relay-elements, pro
viding conditions for uniqueness of solutions is not at all 
trivial, and the present paper seems to be the first in 
doing this. Furthermore, even if one knows (or trusts) the 
system has unique solutions then the actual computation 
of this solution may be far from easy, especially in the 
multiple relay case. The main problem is precisely in 
computing the "discrete part" of the hybrid dynamics 
(the transitions from one location to another), since they 
are not a priori specified by the system equations of the 
relay system. Certainly for simulation purposes this is an 
important topic (see Mattsson, 1996; Cellier et al., 1993 
for a discussion of the problems which already arise in 
siny/e relay systems). In the context of simulation of 
mechanical systems with multiple Coulomb friction ele
ments, this computational issue has been studied inten
sively, see e.g. Lotstedt (1981) and Glocker and Pfeiffer 
(1993). 

We emphasize at this point that we only consider ideal 
relay elements. That means that we do not treat hysteresis 
effects as usually occur in physical relay elements, al
though it seems worthwhile to interpret our results for 
the limiting behavior when the hysteresis gap tends to 
zero (see e.g. Seidman, 1995, for studies in this area). 
Furthermore, we do not treat Coulomb friction with 
higher break-off friction than the slip friction, as is some
times considered in the modeling of dry friction (see e.g. 
Cellier et al., 1993; Mattsson, 1996). 

In the present paper we will derive sufficient conditions 
for uniqueness of solutions of linear time-invariant dy
namical systems containing multiple (ideal) relay ele
ments. The main tool is the theory of the Linear Comp
lementarity Problem (LCP) from optimization theory, see 
Cottle et al. ( 1992). The work can be regarded as a 
continuation of the work on complementarity hybrid 
systems (Van der Schaft and Schumacher, 1996, 1998; 
Heemels et al., 1997), where the LCP was used for ana
lyzing the dynamics of (possibly nonlinear) systems con
taining "ideal diode characteristics" e ;::::: OJ ;::::: 0, ef = 0. 
In fact, in Van der Schaft and Schumacher (1998) it was 
already shown how systems with relay elements can be 
represented as complementarity systems. The theory of 
existence and uniqueness for complementarity systems as 
developed in Van der Schaft and Schumacher ( 1996, 1998) 
and Heemels et al. (1997) does not apply, however, to the 
class of complementarity systems arising from relay sys
tems. We will show that for these relay systems, contrary 
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to the "ideal diode" case considered in Van der Schaft and 
Schumacher ( 1996, 1998) and Heemels et al. ( 1997), the 
continuous-state part of the unique solution is continuous 
as a function of time. This means that the switching from 
one location (mode) to the other does not entail a re
initialization of the continuous-state part of the system. 
Because of this the technical difficulties of the generalized 
(distributional) solution concept for complementarity sys
tems as described in Heemels et al. (1997) and Van der 
Schaft and Schumacher (1996) can be completely avoided. 

A major advantage in the use of the LCP is that, apart 
from giving elegant sufficient conditions for uniqueness 
of solutions, it also provides a strong framework for 
actually computing the unique solution. In fact. we believe 
that efficient simulation routines can be based on our 
approach. The usefulness of the LCP in computing solu
tions of mechanical systems with Coulomb friction has 
been realized before, at least starting with the work of 
Lotstedt (1981) and continued by various authors, see e.g. 
Glocker and Pfeiffer (1993) and the references quoted in 
Brogliato ( 1996). The LCP-formulation of systems with 
Coulomb friction employed in these papers is however 
different from the formulation in present paper, and does 
not seem to lead to simple uniqueness criteria. (Note also 
that in these papers the maximal friction force is not 
taken to be constant, but is a function of the normal 
constraint force. The systems under consideration are 
therefore more complex than in the present paper; more
over they are nonlinear.) 

2. Linear relay systems as complementarity systems 

Consider an arbitrary (explicit) linear dynamics con
taining m relay elements (and no external inputs). By first 
extracting the m relay elements, and assigning to every 
"'port" created in this manner an input and an output 
variable ii;, resp. _i:\, it is readily seen that such a system 
can be represented as in Fig. 2. 

Here, the input-state-output system P is given by 

.x(t) = Ax(t) + Bii(t), x(t) E IR", ii(t) E IR"', 
(2) 

.f(t) = Cx(t) + Dii(t), ji(t) E IR"'. 

-1 

Fig. 2. Feedback system with m ideal relays. 

0 

i = 1,2,. .. ,m 

Fig. 3. The characteristics of the m ideal relays. 

The matrices A, B, C and D are given matrices of sizes 
11 x 11, 11 x m, m x 11 and rn x m, respectively. 

The block "m relays" denotes m ideal relays with char
acteristics as given in Fig. 3. The numbers (di)i and (d2);, 

i = 1, ... , m, in this figure are the components of the 
constant vectors d 1 and d2 E IR"' satisfying 

d I 2: 0, d 2 2: 0, d ! + d 2 > 0. 

Define as in Van der Schaft and Schumacher (1998) 

u(t) = (u"(t))' 
ub(t) 

as 

uh(t) = d2 - ii(t), 

and define y(t) by 

1·(t) = (y"(t)) = ((ji(t)) +) 
. .\'h(I) (y(t))- ' 

(3) 

(4) 

(5) 

where (.\'(t)t is the non-negative part of vector ji(t), and 
( y(t))- is the non-positive part of this vector. 

The relay system in Fig. 2 can then be described by 
Eqs. (2)-(5), together with the complementarity con-
straints 

•(t) = C'"(t)) > 0 
J yb(t) - ' 

(t) = ( Ua(t)) > O 
u () - ' ub t 

(6) 

i?°(t) y(t) = 0. 

Such systems have been called "complementarity sys
tems" in Van der Schan and Schumacher (1996, 1998). 

From Eq. (6) we see that for every i = 1, 2, ... ,2m 
either (u(t)); or (y(t)); is zero (or both). It is however not 
possible that (u.(t)); = (ub(t)); = 0, for it follows from 
Eqs. (4) and (3) that 

(u,,(t)); + (ub(t)); = (d 1 + d2)i > 0. 
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From this we conclude that for every i = I, 2, ... , m, we 
have 

(u"(t)); > 0 or (ub(t))i > 0. (7) 

Note that this implies, in accordance with Eq. (5), that 

(ya(t)); = 0 or (Yb(t)); = 0. 

The set ofEqs. (2)-(6) thus defines a hybrid system with in 
principle 22m different locations (modes) corresponding 
to the equalities 

u; = 0 or y; = 0, i = 1, 2, ... , 2m. 

However, because of Eq. (7), we see that the modes with 
(ua); = 0 and (uh)i = 0 for some i are void, thereby leaving 
us with 3"' modes, in accordance with the three-mode 
characteristic of the ideal relay element. 

Remark 1. For some applications it is useful to general
ize the relay characteristics of Fig. 3 to the more general 
characteristics as depicted in Fig. 4. 

Here a, d 1' d2 E1i:;r only need to satisfy the requirement 

(8) 

This still can be modeled within the complementarity 
framework as follows. If we apply the coordinate trans
formation 

·i=u+i(d, -dz), 

11e find 

.x(t) = Ax(t) + Bii(t) - ~ B(d, - d2), 

_y(t) = Cx(t) + Dii(t) - iD(d 1 - d2 ). 

Now, defining 

y(t) = (YaUl) = ((~(t) - ex):), 
Yb(t) (y(t) - ex) 

and 

( Ua(t)) (i(d1 + d1) + fi(t)) 
U(t) = = I - ' 

ub(t) 2(d1 + d2) - u(t) 

(9) 

( 10) 

(11) 

the characteristics are described by Eqs. (6), (8)-( 11 ). It is 
straightforward to extend the results derived in this paper 
to these generalized characteristics. 

-'iI; 

(d1);·············r----

0 a; 

i=l,2, ... ,m 

Fig. 4. More general relay characteristics. 

3. A frequency-domain approach 

Continuing upon the work in Van der Schaft and 
Schumacher (1998) and Heemels et al. (1997) we will 
study existence and uniqueness of the solutions of comp
lementarity system (2)-(6) by transforming the equations 
to the frequency domain. 

Let W (s) be a strictly proper rational function in the 
complex variables with real coefficients. To this function 
we can associate the coefficients wj of its power series 
expansion around infinity 

w0 w1 w2 

W(s)=-+,-+-+ ··· 
SI s- S3 

(12) 

The corresponding real-analytic time function w(t) ob
tained by inverse Laplace transformation is then given by 

0 I J '2 1 33 
w(t) = w + w t + - w-r + - w t + · · · . (13) 

2! 3! 

Both the conditions W (s) ;:::: 0 for sufficiently large s E IR 
and w(t) ~ 0 for t E [O, c:[, i; > 0 sufficiently small, are 
then equivalent to the condition that either all 
w; (i = O. 1, ... ) are zero or the first nonzero element of 
(w0 , w 1, w2, ••• ) is positive. 

The relay system described in the previous section can 
be rewritten to the frequency domain as follows. By 
taking the Laplace transform of Eq. (2), we get 

where x0 = x(O) is the initial state of the system. The 
Laplace transforms of Eqs. (4) and (5) are given by 

1 -
Ua(s) =-di+ U(s), 

s 

respectively, 

(s) = = Y ( Y11 (s)) ((Y(s))+) 
' Yb(s) (Y(s))- · 

(15) 

( 16) 

Condition (6) is in the frequency domain replaced with 

Y(s) > O} 
U - 0 for sufficiently large s E IR, 

(s);:::: 

U 1 (s)Y(s) = 0. 
( 17) 

Furthermore. with the notation 

[)ef 
T(s) = C(s/11 - A)· 1, 

Def 
G(s) = C(sln - A)"- 1 B +D. 
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The equalities (14)-(16) can be rewritten as 

[Ua(s)J = [- ~ =: (s) T(s)xo + t di] 
Ub(s) G (s)T(s)x 0 + s d2 

or 

U(s) = q(s) + M(s) Y(s), 

where q(s) and M(s) are given by 

[-c·· 1 (s)T(s)x0 +*d 1] 

q(S)= c-l()J'() Id' S S Xo + ·;; 2 

[ 
G" 1 (s) -G- 1 (s)J 

M(s)= -G-1(s) c-1(s). 

(18) 

( 19) 

(20) 

For constant s E IR sufficiently large, the set of Eqs. ( 18) 
together with complementarity conditions (17) is known 
as a Linear Complementarity Problem. For completeness 
we recall from Cottle et al. (1992) the formulation of the 
Linear Complementarity Problem (LCP). 

Linear Complementarity Problem (LCP(q, M)). Given 
a matrix MEIR"'" and a vector q E IR", find w, z E ~" such 
that 

w = q + Mz, 

w ~ 0, z ~ 0, 

z1 W = Q 

or show that no such vectors w, z exist. 

In this definition (and in the rest of this paper), the 
inequalities should be considered to hold compon
entwise. The inequality x ~ y, x, ye:: IH", means X; ~ y;, 
i = I, 2, ... , n, while x > y means X; > y;, i = 1, 2, ... , n. 
A vector z satisfying the inequalities z ~ 0 and 
q + Mz 2': 0 is said to be.feasible. The LCP(q,M) is said 
to be.feasible if a feasible vector exists. The LCP(q, M) is 
said to be solvable if it has a solution (Cottle et al., 1992). 

We introduce some further definitions and recall 
a basic result concerning the LCP (see e.g. Cottle et al., 
1992): 

Definition 2. Let ME !Rmxn be given. For index sets 
Js(l,2, ... ,m} and Js{l,2, ... ,n}, the submatrix 
M IJ of M is the matrix whose entries lie in the rows of 
M indexed by I and the columns indexed by J. If 
I= {1, 2, ... ,m}, we denote MIJ by M. 1 ; similarly, if 
J = ( 1, 2, ... ,n}, we denote MIJ by M1.· 

Definition 3. Given a matrix MEIR" x" and two 
nonempty subsets I and J of {1, 2, ... , n J of equal car
dinality, the (/, J)-minor of M is the determinant of the 

b . M Def ( Th square su matnx 11 = m;_;);er.jeJ· e principal mi-
nors are those with I = J. 

Definition 4. A matrix M E IR" x 11 is said to be a P-matrix if 
all its principal minors are positive. M is said to be 
a P0 -matrix if all its principal minors are non-negative. 

Theorem 5 (see e.g. Theorem 3.3.7 in Cottle et al., 
1992). A matrix MEIR" x 11 is a P-matrix if and only if' the 
LCP(q, M) has a unique solutionfbr all vectors qi::~"-

Remark 6. An attempt to interpret the notion of a P
matrix is the following. It can be readily seen that the 
equation w = q + Mz has for all index sets I c { 1, ... , n} 
a unique solution IV, z E IR" with IV; = 0, i E /, and zj = 0, 
NI, if and only if the principal minors of M are all 
non-zero. By enforcing this condition to positive principal 
minors one ensures the existence of a unique solution 
w, z E ~"satisfying additionally w 2 0, z 2 0, with I being 
determined by q. (One may also note, see e.g. Cottle et al. 
(1992, p. 147), that a symmetric matrix is a P-matrix if it is 
positive de.finite and one only needs to check positivity of 
the leading principal minors.) 

How do we solve the LCP(q(s), M(s)), with q(s) and M(s) 
as in (20), for s E IR sufficiently large? First, we note that 
we cannot use Theorem 3 directly since det M (s) = 0. Or 
the other hand, the special structure of M (s) allows us tc 
write 

M(s)=[_ 1"']c· 1(s)[Im -J,,i]. 
I,,, 

and to relate the properties of M (s) directly with those of 
G(s), as will follow from the next technical lemmas. 

Lemma 7. If HE ff?.k x k is a P-matrix, then H- 1 is a P
matrix. 

Proof. According to Theorem 3.3.4 in Cottle et al. ( 1992), 
the following two statements are equivalent: 

(i) M is a P-matrix, 
(ii) [z;(Mz);::::::; 0 for all i] = [z =OJ. 
Let H be a P-matrix. Let zE IR\ define y by y = H- 1z, 
then 

z;(H- 1 z); = (Hy);(H- 1 Hy);= y;(Hy);::::::; 0 for all i. 

Since H is a P-matrix, it follows that y = 0, hence z = 0, 
and thus H- 1 is a P-matrix. D 

Lemma 8. Let HE IRk x k he a P-matrix and 

M=[h -I{lrH[lk -!,,]. 

Then we have the followiny statements: 

(1) A principal minor (~/' M is either a principal minor of 
Hor zero. 



472 Y. J. lootsma et al. /Automatica 35 (1999) 467-478 

(2) M is a Pa-matrix. 
(3) For each index set a with det M •• = 0, the columns of 

M .• are linearly dependent. 

Proof. Let a £ { 1, 2, ... , 2k} be an index set. By decom
posing a into two index sets, we can write 

a=luJ, Js;{l,2, ... ,k}, Js;{k+ 1,k+2, ... ,2k}. 

Define ] ={iii+ kEJ}, a.= Ju], n1 =card/ and 
n1 = card J If a = I or a = J, it follows directly from the 
definition of M that 

det M"'"' = det H••· 
If I ¥= </J and J # </J, then it can be easily checked that 

M"'"' =[Mu Mu] 
Mn MJJ 

and, consequently, 

d M = {detHai if/(',]= </J, 
et "'"' 0 if /(l]#</J. 

It is now obvious that M is a Pa-matrix and if 
det M •• = 0, then the columns of M •• are linearly 
dependent. D 

Lemma 9. Let HE !Rk x k be a P-matrix and 

M = [h - hJT H[h - h]. 

It follows that 

z;(MTz); ~ 0 for all i = 1, 2, ... ,2k ~ 

z;(MT z); = 0 for all i = 1, 2, ... , 2k. 

Proof. Assume that z;(MTz); ~ 0 for all i = 1, 2, ... , 2k. 
Let 

z = (~). 
with U, VE ~k. 

-h] (u) = ( H~(u - v))· 
v -H (u - v) 

For 1 ~ i ~ k follows that 

Z;(MTz); = U;(MTz); = U;[HT(u - v)]; 

and for k + 1 ~ i ~ 2k 

z;(MTz); = V;-k(MTz); = V;-k[ -HT(u - v)]i-k· 

And so 

u;[HT(u - v)]; ~ 0 and -v;[ -HT(u - v)]; ~ 0 

for all i = 1, 2, ... k, 

or 

(u - v);[HT(u - v)]; ~ 0 for all i = 1, 2, ... ,k. 

Because His a P-ma trix, it follows from Theorem 3.3.4 of 
Cottle et al. (1992), that u - v = 0. So 

for all i = 1, 2, ... , 2k. D 

Lemma 10. Let Hand Mas in Lemma 9. The LCP(q, M) 
is solvable whenever it is feasible. 

Proof. (In the proof of this Lemma, we use the 
terminology and notation from Cottle et al., 1992.) From 
Lemma 9 it follows that Mis a row sufficient matrix and 
hence, according to Corollary 3.5.5 in Cottle et al. ( 1992), 
a Qa-matrix. By the definition of Q0-matrices, this means 
that LCP(q, M) is solvable whenever it is feasible. O 

Lemma 11. If for some real s > 0, G(s) is a P-matrix, then 
the LCP(q(s), M(s)}, with q(s) and M(s) as defined in Eq. 
(20), is solvable. 

Proof. Assume that for some real s > 0, G(s) is a 
P-matrix. Then also a- I (s) is a P-matrix (Lemma 7). 
According to Lemma 10, it is sufficient to show that a 
feasible vector pair Y(s), U(s) exists for this s. Let 
Y.(s) = (T(s)x0 )+ ~ 0 be the non-negative part of vector 
T(s)xa and let Yb(s) = (T(s)xa)- ~ 0 be the non-positive 
part of this vector. Substituting this vector 

(Ya(s)) = ((T(s)xa) +) 
Y b(s) (T(s)xa)-

in Eq. (18) we find 

and 
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So the LCP(q(s), M (s)) is feasible. D 

After these preliminary lemmas, we now obtain our 
first main result. 

Theorem 12. If for some real s > 0, G(s) is a P-matrix, 
then the LCP(lf(s), M(s)) has a unique solution 
U = (U,~, U/,)1 , Y = (Y,~, nf1. This solution is such that 
yJ,'yh = 0. 

Proof. Assume that there exists ans> 0 for which G(s) 
is a P-matrix, then we know from Lemma 11 that the 
LCP(q(s), M(s)) has a solution. We will now prove that 
this solution is unique. 

Assume that both 

are solutions to the LCP(q(s), M(s)). 
From Lemma 8 follows that M (s) satisfies condition (c) 

of Theorem 3.4.4 of Cottle et al. (1992). Therefore 
T TT . --r -r T ·- • (Ya,Yn) and(Ya,Yh) satisfy 

or 

G ·- 1 (s)(( Y11 - 'Y,,) -- ( Yj, -- Y1i)) = 0. 

The matrix G(s) was assumed to be a P-matrix, and so we 
have 

Ya ·- ?,., = Y1i -- Y',,. 

Now, define a vector A E 11~ 111 by 

A;= (Y11 ); - (Y11 ); = (Y1,); - (Y1,);, i = l, 2, ... ,m. 

This results in 

i = I, 2, ... ,m. (21) 

Because Ya= (Y)+, and Y1, = (Y) , we have r;;rh = 0 
and also Y,~ Yh = 0. Substituting this in Eq. (21), results in 

(Ya+ Yh);A; +Mc= 0, 

so 

A;= - (Ya+ Y1,); or L\; = 0. 

Both possibilities result in A; = 0 for i = 1, 2, ... , m, be
cause in the first case we get 

( Y;,l; = ( Y,,); - ( Y,, + Ybli = - ( Y',,);, 

( Yb); = ( Y,,J; - ( ?,, + Y1i); = - (Ya); 

a~d from the non-negativeness of (YaL (Yb);, (Ya); and 
( Yh)i follows /J.i = 0 for i = 1, 2, ... , m. We conclude that 
Ya = Y,, and Yn = Yb, and, consequently, 

= q(s) + M(s) [~:] = [~:l D 

After having provided in Theorem 12 sufficient condi
tions for unique solvability of the LCP(q(s), M(s)) for 
sufficiently large s E IR, we now turn to the existence and 
uniqueness of solutions to the original complementarity 
system (2)-(6). This is done via the Rational Comp
lementarity Problem (RCP), as introduced initially by 
Van der Schaf! and Schumacher (1998), and generalized 
in Heemels et al. (1997): 

Rational Complementarity Problem (RCP(q(s), M(s)). Let 
q(s)EIRk(s) and M(s)EIRkxk(s) be given. 

Find rational fimctions Y (s) and U (s) such that the 
equalities 

U(s) = lj(s) + M(s)Y(s) and UT(s)Y(s) =0 

hold fi!r alls, and that there exists an sE IR+ such that jbr 
u 11 real s ::::: .~ we have 

U (s) ::::: 0, Y(s);:.:: 0. 

For the RCP(q(s), M(s)), with q(s) and M(s) as in (20), 
we can prove the following main result 

Theorem 13. If G(s) is a P-matrix for all real s ;:.:: s0 for 
some s0 E IR +•then the RCP(q(s), M(s)) has a unique solu-
r ion 

U(s) = (U"(s))· 
U,,(s) 

willi U(s), Y(s), O(s) = ~(Ua(s) + Ub(s)) - (1/s)(d 1 - d2 ) 

und Y(s) = Ya(s) - Y,,(s) strictly proper rationalfimctions. 

Proof. The fact that the RCP(q(s), M (s)) has a unique 
solution U (s), Y (s) follows immediately from the ra
tionality of M (s) and q(s) and Heemels et al. ( 1998), where 
it is shown that the LCP(q(s), M(s)) for sufficiently large 
real s has a unique solution if and only if RCP(q(s), M (s)) 
has a unique solution. Note that O(s) and f(s) are 
rational functions of s because Ua(s), Uh(s), Ya(s) and Yb(s) 
arc rational functions. From Eq. (15) and the conditions 
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Ua(s) ~ 0, U b(s) ~ 0 for sufficiently large s, we see that 

1 - 1 ' 
--d1 s U(s) s-d1 for sufficiently large s. 

s s 

From this we conclude that 0 (s) is a strictly proper rational 
function. Consequently, also Ua(s) = (1/s)d1 + U(s) 
and Ub(s) = (l/s)d2 - U(s) are strictly proper rational 
functions. Now, consider Eq. (14). The matrix 
C(sln - A)- 1 B + D is a proper matrix, C(sin - A)- 1 is 
a strictly proper matrix and U(s) is strictly proper. We 
immediately conclude that Y(s) is strictly proper. 

Finally, Y;,(s) and Yn(s) satisfy Y(s) = Y11 (s) - Yn(s) and 
y~·(s) Yb(s) = 0. From the last equality follows that 

i = 1, 2 .... ,m 

and so 

( Y(s))i = ( Y11 (s)L or ( Y (s))i = - ( Yb(s));, i = 1, 2 ..... m. 

We conclude that Ya(s) and Yb(s) are strictly proper. D 

Finally, using the correspondence between strictly 
proper rational functions and real-analytic time func
tions as given in Eqs. (12) and (13), it follows (see also 
Heemels et al., 1998) that if the RCP(q(s), M(s)) has 
a unique solution for all q(s) as in Eq. (20) then the 
complementarity system (2)-(6) has for every fixed initial 
state x0 a unique solution on some interval [O, 1: [, i: > O. 
with u(t), y(t), ii'(t) and Y(t) real-analytic functions of t. 
This implies that also the state x(t) is real-analytic on 
[O, c: [.Now define t 1 as the maximal B such that u(t), y(t) is 
a solution to Eqs. (2), (4) (6). If t 1 = ,x_ then this means 
that there is a global solution from x0 corresponding to 
one location (discrete state) of the relay system. If t 1 < x, 
then this means that t 1 is a swi1chin9 time, where we have 
to switch to another location (mode). Define 

Def 
x 1 = limx(t). 

tJ' 1 

Then also from x 1 there exists a unique analytic solution 
of Eqs. (2), (4)-(6) on some interval [1 1, t 2 [ of maximal 
length (with t 2 ::S: ::YJ ). If t 1 < x then t 2 is the next switch
ing time, and we define x 2 = lim11 ,,x(I) as the initial 
condition for the next mode of operation of the relay 
system. Repeating this process we have obtained the 
following conclusion (sec Fig. 5 for an illustration). 

x 

Xo 

0 

Fig. 5. The state x(t). 

Theorem 14. Consider the relay system {}iven in Fig. 2. 
Assume 1/wt the transfer motrix G(s) = C(l 11 s - A)- 1 

B + D is a P-matrix j(!r s E IR1 sufficiently larqe. Then from 
l't'er.\' inilial condition x 0 and initial time t 0 = 0 there 
exists a uniquc solution 17(1), x(r), y(t), t 2 0, such that x(t) 
is a continuous jimction of' t. Furthermore, this unique 
solution is piecewise real-a11aly1ic, in the sense that there 
exists a countable number of' switching times t; such that 
fi(t), x(t), _v(t) is real analytic 011 every time-interval 

[ti, t;+ 1[. 

Remark 15. Note that we have not excluded the possibil
ity of existence of a finite accumulation point of the 
switching instants I;. Nevertheless, "deadlock" is ex
cluded also at such an accumulation point, since there 
exists a solution from the state reached at the accumula
tion point. An example of a finite accumulation point of 
switching instants is provided by the following relay 
system, which is derived by reversing time from an 
example of nonuniquencss of solutions in Filippov 
(1988): 

.'.\(1) = tl1(t)- 2u2(t), yi(t) = X1(t), 

.Xz(t) = 2111 (t) + Uz(t), Y2(t) = X2(I) 

with, 

u;(t) = - I 

11;(t) = I 

- I s; U;(t) s I 

if ydt) > 0 

if J';(/) < 0 i = 1. 2. 

if ,V;(t) = 0 

It can be verified that 

which means that from every initial condition the system 
converges in finite time to the origin. Since solutions 
cannot arrive at the origin without going through an 
infinite number of mode switches. this means there is an 
accumulation of event times. 

Remark 16. The LCP formulation of mechanical sys
tems with Coulomb friction as employed in Lotstedt 
( 1981) and Glocker and Pfeiffer ( 1993) is different from 
ours in at least two aspects. First, our formulation as 
a complementarity system as in Section 2 is different from 
Lotstedt (1981) and Glocker and Pfeiffer (1993). Secondly, 
in the present section we have transformed the comp
lementarity conditions in the time-domain, via the RCP, 
to a simple LCP(tJ(s). M(s)) for s large enough. As a result 
the complexity of the LCP to be solved in our formula
tion is much Jess than in Li.)tstedt ( 1981) and Glocker and 
Pfeiffer ( 1993). Therefore, our LCP formulation does 
not seem to suffer from the drawbacks as mentioned in 
Cellier et al. ( 1993). 
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Remark 17. Even if the solution is unique, we note, as in 
Van der Schaft and Schumacher (1996, 1998) that the 
corresponding mode need not be unique. (In these par
ticular cases the input-output values (u;,y;) remain at 
one of the two corners of the i-th relay characteristic for 
some i.) 

Remark 18. It has been shown in this section that the 
condition of G(s) being a P-matrix for real s large enough 
is sufficient for uniqueness of solutions for arbitrary in
itial conditions x 0 . An interesting and important ques
tion is how close this condition is to being necessary as 
well. 

It can be shown (starting from Theorem 3) that the 
LCP(q(s), M (s)) for fixed real s > 0 has a unique solution 

T TT T TT n· ·• U = ( U ,,, Uh) , Y = ( Y,,, Y h) for all q E ~ 1f and only 1! 
G(s) is a P-matrix. However, in the LCP(q(s), M(s)) the 
vector q(s) has the specific structure ( 16), with x 0 being 
any initial condition. This implies that the rational vec
tors q(s) in the RCP(q(s), M(s)) obtained by letting 
x 0 range through ~,,are not arbitrary. Thus the necessity 
of G(s) being a P-matrix for uniqueness of solutions for 
all x0 is not guaranteed. Indeed, in the following example 
G(s) is only a P0 -matrix, while uniqueness of solutions for 
all x 0 does hold. 

Example 19. 

Y2U) = Xz(t) 

with, 

U;(t) = - 1 if J';(t) > 0 

U;(t) = l if y;(t) < 0 i = 1, 2. 

-1 ::;; U;(t) ::;; I if y;(t) = 0 

It can be easily seen that this system has a unique solu
tion for every initial condition x0 , while 

G(s) = (~ -{) 
8 0 

is only a P 0-matrix. 
We conjecture that G(s) being a P 0-matrix is a 

necessary condition for uniqueness of solutions U and Y 
for all x0 . 

Another problem concerning uniqueness of solutions 
is that even if solutions U = ( u;~, Ui)T, Y = ( Y~, Yh!r 
and a, y may not be unique, the state-space solution 
x may still be unique, as was kindly pointed out to us by 
an anonymous reviewer. A typical example is the case of 
two relays in parallel, where the total input may be 
unique, but not its distribution over the two relays. (In 
this case, the Band the C matrix in (2) are not injective, 
respectively, surjective.) 

It is of interest to find necessary and sufficient condi
tions for uniqueness of the solution x(t). Again, we 
conjecture that G(s) being a P0-matrix is a necessary 
condition. 

Remark 20. In switching control schemes such as (sec 
Eq. (I)) u = 1 for y < 0 and u = - 1 for y > 0, the dynam
ics for y = 0 is usually deliberately left open. Indeed, the 
dynamics for y = 0 will be seen as the limit of a chattering 
behavior around the level set y = 0 in the state space 
(rapid switchings between 11 = l and u = - 1 ). In this 
context Filippov's equivalent control or convex defini
tion (equivalent for systems linear in u) is employed. Note 
however (see e.g. Filippov, 1988) that this assumes that 
the velocity vector .x for u = 1 points for v close to O into 
the direction of the subset of the state space defined by 
y > 0, and the velocity vector x for u = - 1 points for 
y close to 0 into the direction of the subset of the state 
space defined by y < 0. (Otherwise we do not obtain 
chattering.) 

On the other hand, if G(s) is a P-matrix then based 
upon Theorem 14, we may look at the situation in the 
following manner. Consider for simplicity the single-relay 
case with D = 0. Let x 0 be an initial condition with y = 0. 
By Theorem 14 there exists a unique solution from 
x0 corresponding either to u = - 1, u = 1 or y = 0 (in the 
equivalent control sense). If the unique solution corres
ponds to u = - I or u = 1 then obviously we are done. 
Now consider the case that the unique solution only 
corresponds to the mode y = 0. Then by the very fact 
that there is no solution corresponding to u = I or 
u = - I it follows that the velocity vector .x for u = I 
points for y = 0 into the direction of the set y > 0, 
and for u = - 1 into the direction of the set y < 0. Thus 
Filippov's equivalent control definition does make sense. 
This discussion can be extended to the general case of 
G(s) being a P-matrix. 

Our theoretical results suggest the following approach 
to simulation of relay systems (see Mattsson, 1996; Cellier 
et aL, 1993) for a clear discussion of the basic issues in 
simulation of such systems, and Heemels et al., 1997 for 
a similar approach to simulation of complementarity 
systems arising from ideal diode characteristics). 

Let x0 be the initial condition and t 0 the initial time. 
Consider M(s), q(s) as determined in Eq. (20), and solve 
the LCP(q(s), M (s)) for fixed real s large enough. This 
yields a unique solution U(s), f(s), with index sets 
/ 1, / 2 c{l,2, .. .,m} with J1nJ 2 =0 (not necessarily 
uniquely determined), such that 

Yi(s) > O, i EI 1' 

Yi(s) < 0, iE/2, (22) 

f;(s) = 0, itf:J 1 Uf z. 
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Based on these index sets we consider the system of 
differential-algebraic equations (DAEs) 

.x = Ax + Bfi, x(t0 ) = x 0 , 

(23) 

If we have chosen s large enough then it follows from 
Theorems 13 and 14 that the unique solution of Eq. (23) 
satisfies 

(24) 

for tE[t0, 10 +c;[,1; > 0. Hence we may numerically 
simulate the set of DAEs (23), while monitoring inequali
ties (24). (Obviously, the simulation of the DAEs (23) may 
not be an easy task, and, for example, we may wish to 
convert Eq. (23) into a set of explicit differential equa
tions first.) If for some time t 1 > t 0 inequalities (24) are 
going to be violated (event detection), then for this 
switching time t 1 we again consider the LCP(q(s), M (s)), 
for fixed real s large enough, with now q(s) determined as 
in Eq. (18) by 

x(t i) = lim x(t). 
r(l I 

This will yield again a unique solution il'(s), f (s), with 
index sets I 'i. I 2 defining as in Eq. (23) a set of DAEs, 
which then can be simulated, etc. 

Note that the LCP(q(s), M(s)), even for large m, admits 
efficient solution routines (see e.g. Cottle et al., 1992), and 
so the above strategy seems to offer a convenient way to 
handle simulation of relay systems. 

Obviously, the weak point in the suggested strategy, is 
that we do not know beforehand "how large" s has to be 
chosen for the LCP(q(s), M (s)) at every switching time. If 
we takes too small, then we will select different index sets 
I 1 , I 2 , and the solution of the DAE's (23) will not satisfy 
Eq. (24). 

On the other hand, after solving the LCP(q(s), M (s)) 
for some s E lR, and thus obtaining index sets I 1 and 
I 2 , it is possible to check algebraically whether these 
index sets I i. I 2 provide a solution for the RCP(q(s), 
M(s)), or equivalently (using the aforementioned 
correspondence between strictly proper rational func-

tions in s and real-analytic time-functions, a solution for 
Eq. (24). 

4. Examples 

Example 21 (System (1)). Consider again the system (1) 
described in Section 1. For this system G(s) is 
given by 

Obviously G(s) does not satisfy the conditions of 
Theorem 13, and so, uniqueness of solutions is not 
guaranteed, in accordance with the further treatment of 
this system in Section 1. If the sign in front of u in the first 
equation ofEq. (1) is reversed, then G(s) = s/(s 2 + 1) does 
satisfy the conditions of Theorem 13, and so there is only 
one solution from every initial state. 

Example 22 (Coulomb friction). Consider the system 
with multiple Coulomb friction as given in Fig. 6 (see also 
Glocker and Pfeiffer, 1993). In this figure we see two rigid 
blocks that are connected to a fixed wall by springs. The 
block on the bottom has mass m 1 > 0, the block on top 
has mass m2 > 0. The blocks make contact at the points 
1 and 2. In these points Coulomb friction forces Fc1 and 
Fc 2 act. By definition Fc 2 is the Coulomb friction as it is 
actiny on block 2. There is of course also an equal, but 
opposite friction-force acting on block 1. Let x 1 represent 
the deviation of the bottom block from its equilibrium 
position (no elongations of the spring ki). Let x 2 repres
ent the position of the top block, relative to the bottom 
block. This coordinate is chosen in such a manner that 
the system is in equilibrium for x 1 = x 2 = 0. Let x3 and 
x4 denote the corresponding velocities. The Coulomb 
friction characteristic of Fc1 is as in Fig. 1 with e = Fc1 
and f the velocity x1 (while c1 = c 2 = l). Similarly for the 
Coulomb friction Fc 2 with regard to the velocity .\:2 . 

The system can be described by the equations of a re
lay system as in Section 3. The plant dynamics described 

Fig. 6. Two blocks with Coulomb friction. 
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by Eq. (2) are for this system given by 

0 0 1 0 

0 0 0 1 
x(t) = 

k1 
x(t) 

0 0 0 
m1 

k1 kz k2 
0 0 ---

m1 m2 m2 

0 0 

0 0 [ili(t)J + 
il2(t) ' 

m1 m1 
1 1 1 

-+-
m1 rn 1 m2 

(ii; = - F;.;, i = 1, 2), 

[0010] 
ji(t) = 0 0 0 1 x(t) 

with 

ii;(t) = - l 
ii;(t) = 1 
- 1 :$;; ii;(t) :$;; 1 

if y;(t) > o, 
if y;(t) < o, 
if ji;(t) = 0. 

For this relay system the transfer matrix G(s) is given by 

s 

G(s) = 

s 
m1s2 + k1 

s((m 1 + m2)s2 + k1 + kz) 

(m 1s2 + k 1)(m2s2 + k2) 

This matrix is a P-matrix if and only if the principal 
minors of this matrix are positive: 

s >0 
m 1s2 + k 1 

and 

s((m 1 + m2 )s2 + k1 + k1) > 0 
(m 1 .~· 2 + ki)(m 2s2 + k2) 

and 
s2 

2 ' 2 > 0 
(m 1s + ki)(m2s + kz) 

(25) 

(26) 

(27) 

(in fact, because the matrix G(s) is symmetric, we may as 
well restrict (see Cottle et al., 1992) to the leading princi
pal minors (25) and (27)). We immediately see that this is 
true for real s large enough if m1 > 0 and m2 > 0. Thus 
(as is physically evident), the system has unique solutions 
if both m1 and m2 are positive. 

5. Conclusions 

Relay systems form a particular type of hybrid dynam
ical systems, where the discrete transition rules (from one 
mode to another) are not a priori given. For linear 
time-invariant relay systems we have shown, based on 
the formulation of a relay system as a complementarity 
system, that if the transfer matrix is a P-matrix (for real 
s large enough) then the relay system has a unique solu
tion that is continuous in the state; thereby specifying the 
discrete transition rules of the system. We have argued 
that our results suggest a promising approach to the 
simulation of relay systems, by solving at every switching 
time an LCP and simulating during the subsequent time
interval a set of DAEs specified by the solution of this 
LCP. Further topics for research concern the generaliz
ation of the obtained results to linear dynamical systems 
containing arbitrary piecewise-linear characteristics, and 
the extension to nonlinear dynamics. 

Acknowledgements 

We thank the NWO (Dutch organization for scientific 
research) for making the participation of Y.J. Lootsma 
possible. We thank The Scientific and Technical Re
search Council of Turkey (TUBiTAK) for awarding 
a NATO Science Fellowship to M. Kanat Camhbel 
which made his participation in this study possible. We 
thank the anonymous reviewers for insightful and con
structive remarks on the first version of this paper. Also, 
the second author likes to thank Hans Schumacher for 
the collaboration which started the research presented in 
this paper. 

References 

Barton, P. I., & Pantelides, C. C. ( 1994). Modeling of combined dis
crete/continuous processes, A.l.Ch.E. J., 411. 966--979. 

Brogliato, B. (1996). Nonsmooth impact mechanics -- models. dynamics 
and control. Lecture Notes in Control and Information Sciences. 

Vol. 220. Berlin: Springer. 
Cottle, R. W., Pang, J.-S., & Stone, R. E. ( 1992). T/w lin,•ar 

complementarity problem. Academic Press. Computer Sciences 
and Scientific Computing. New York: Academic Press. 

Filippov, A. F. (1988). D(fjer<'ntial eq1wtions with disconti11uo11., rif/ht

hand sides, Dordrecht: Kluwer Academic Press. 
Glock er, Ch., & Pfeiffer, F. ( 1993). Complementarity problems in multi

body systems with planar friction, Arch. Appl. Mech., 63. 452-463. 
Cellier, F. E., Elmquist, H., & Otter. M. ( 1993). Object-oriented 

modelling of hybrid systems. Proc. Europl.'an Simulation Symp .. 
ESS'93 (pp. 31-41). 

Heemels, W. P. M. H .. Schumacher, J. M., & Weiland. S. ( 1997). Linear 
complementarity systems. Report 97 l/Ol, Eindhoven University 
of Technology, Dept. of Electrical Engineering. Measurement and 
Control Systems, Eindhoven, The Netherlands. 

Heemels, W. P. M. H., Schumacher, J. M .. & Weiland. S. (1998). The 
rational complementarity problem. Technical Report 98 1/02. 



478 Y. J. Lootsma et al./Automatica 35 (1999) 467-478 

Eindhoven University of Technology, Dept. of Electrical 
Engineering. Measurement and Control Systems. Eindhoven, The 
Netherlands. 

Uitstedt, P. (1981). Coulomb friction in two-dimensional rigid body 
systems. ZAMM, 61, 605-615. 

Mattsson, S. E. (1996). On object-oriented modelling of relays and 
sliding mode behaviour. Preprints IF AC J 3th World Cony., F. 
259-264. 

Van der Schaf!, A. J., & Schumacher, J. M. (1996). The complementary 
slackness class of hybrid systems. Math. Control Signals Systems, 9, 
266--301. 

Van der Schaf!, A. J., & Schumacher, J. M. (1998). Complementarity 
modeling of hybrid systems. IEEE Trans. Automat. Control, Special 
Issue on Hybrid Control Systems, 43, 483-490. 

Seidman, T. l. ( 1995). Some limit problems for relays. Proc. lst Congress 
of Non/inear Analysts (Tampa, 1992) (pp. 787-796). Berlin: Springer. 

Tsypkin, Ya. Z. (1984). Relay control systems. New York: Cambridge 
University Press. 

Utkin, V. I. (1992). Sliding modes in control and optimization. Commun
ications and Control Engineering Series, Berlin: Springer. 

Yvonne J. Lootsma was born in Hasker
land, The Netherlands, in 1974. She re
ceived the undergraduate degree in Ap
plied Mathematics from the University of 
Twente, The Netherlands, in 1997, where 
she is currently a PhD candidate, spon
sored by the NWO (Dutch organization 
for scientific research). Her research inter
ests include nonlinear control systems and 
hybrid systems. 

A.J. (Arjan) van der Schan was born in 
Vlaardingen, The Netherlands, in 1955. He 
received the undergraduate and PhD de
grees in Mathematics from the University 
of Gronmgen, The Netherlands, in 1979 
and 1983, respectively. 

In 1982 he joined the Faculty of Math
ematical Sciences, University of Twente 
Enschede, The Netherlands, where he i~ 
presently an Associate Professor. His re-
search interests include the mathematical 
modelling of physical and engineering sys

tems and the control of nonlinear and hybrid systems. He has served as 
an Associate Editor for Systems & Control Letters, Journal ofNonlin
ear Science, and the IEEE Transactions on Automatic Control. He is 
the author of Systems Theoretic Descriptions of Physical Systems (Am
sterdam, The Netherlands: CWI, 1984) and coauthor of Variational and 
Hamiltonian Control Systems (Berlin, Germany: Springer-Verlag, 1987) 
and Nonlinear Dynamical Control Systems (Berlin, Germany: Springer
Verlag, 1990), as well as the author of L 2-Gai11 and Passivity Techniques 
in Nonlinear Control (London, UK: Springer-Verlag, 1996) and the 
coauthor (with J.M. Schumacher) of An lntrodul'tion to Hvhrid Svstems 
(London, UK: Springer-Verlag, LNCIS, 1999, to appeari. · . 

M. Kanat <;:amhbel received his B.Sc. and 
M.Sc. degrees in control and computer en
gineering from Istanbul Technical Univer
sity, Turkey in 1991 and 1994, respectively. 
From 1991to1997, he worked as a teach
ing assistant at the same university. After 
being awarded a grant by The Scientific 
and Technical Research Council of Turkey 
(T0BiTAK). he moved to The Nether
lands for PhD studies in 1997. His research 
interests include discontinuous dynamics 
and piecewise linear systems. 


