STICHTING

MATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

T™W 62 N

The North Sea Problem I.
General Considerations Concerning The Hydrodynamical

Problem of the Motion of the North Sea

D. van Dantzig and H.A. Lauwverier

1960



NEDERL AKADEMIFE VAN WETENSCHAPPEN  AMNTERDAM

: _
Proceedings, Seres A, 03, No. 2 and Indag. Math., 22, No. 2, 1960

L] LR ol L e Lt I L e 11 LADE - I 3 Ty v Ak 7 Rala PR e TR YT =T | LA P R T BECoe o e e v E ] Ergea Ao .- e e kI R -1 350 ST . '--umniw:m«tmmﬁsﬂﬁftmﬁmuﬁ!p

L LY S R L

SEsETE W gk aeiaR 1 fomged R gy
o & X b A Howp #T R & : : N

THE NORTH SEA PROBLEM 1

INRIDERATIONS CONCERNING THE HYDRODYNAMICAL
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ast of symbols

r. i,z Cartesian coordinates. The undisturbed surface of the water 1s
given > h:

¢ the time;
. v, the components of the current at depth z;

w, v the components of the total stream.
R
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- the elevation of the water-surtace. The undisturbed level is given
by iﬁ st O;
Pa the atmospheric pressure;

[’,, V; the components of the force of friction by which the water above
the depth z acts on the water below that depth;

[’s. Vs the components of the friction of the wind on the watersurface:

s, Vp the components of the friction of the water on the bottom:

{2 the coeflicient of the Coriolis torce, 2= 2w, sin ¢, where wg 1s
the velocity of the rotation of the Karth and ¢ the geographic
latitude:

A a coefficient of friction:

q the acceleration of the Karth's gravity;

0 the density of the water. assumed uniform (p =1.027 g/em3);

Oa the density of the air (g, - 0.00125 g/cm3):

Vs the velocity of the wind at sealevel;

p the variable of the Laplace transformation:
» defined by x2=p(p-+ A)"H(p+AP+£22], Re x=0;
tg v defined by tg y=0Q(p-+ A)"1, —dx < Re y = im.
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1y Report TW 62. Mathematical Centre.
¢} The first author deceased Julyv 22nd 1959.
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1. Introduction

On February lst 1953 the South-Western part of the Netherlands was
stricken by a flood disaster unsurpassed in the memory of this country.
In order to design measures for preventing similar disasters in the future
the government appointed a committee, consisting of prominent engineers
with Ir A. . Maris as Chairman. This so-called Delta-committee took
several scientific institutions as advisers. The Mathematical Centre was
asked to analyse the available statistical data on high tides 1n order to
predict, as far as possible, the frequencies ot extremely high tides. During
the investigations this task was extended by an econometric study of the
protection of the low areas against floods and also by a hydrodynamic
study of the influence of a storm on the level of the sea.

D. vax DanNTzi¢ was charged with the research on all these subjects.
He carried this out in cooperation with a number of scientific workers
of the statistical department and the applied mathematics department
of the Mathematical Centre (Amsterdam). The present series of papers
under the common title “The North Sea problem’ contains a number
of results obtained at the latter department with reference to the
hydrodynamical problem.

Although Vax DaxNTzic himself wrote relatively little on this subject
and in his publications restricted himself mainly to reviewing the work
of others, he knew to inspire his co-workers who profited time and again
from his constructive mind and critical remarks. Already at the occasion
of the International Congress at Amsterdam of 1954 VAN DanNtzIiG [1]
delivered an address which made a strong impression on the audience
and in which some aspects of the statistical and hydrodynamical North
Sea problems were treated. Two years later [2] in a speech before the
“Koninkljjke Nederlandse Akademie van Wetenschappen’” he reviewed
the work carried out at the applied mathematics department on the
hydrodynamical problem. Further in 1958 [4] in an address on the
occasion of a meeting of the GAMM at Saarbriicken he gave a survey
of some recent results of the hydrodynamical problem. In the same
year [3] he published a paper in the Proceedings of the Kon. Ned. Ak.
v. Wet. containing his solution of a boundary value problem 1).

Already during the life of VAN DaxTtzic it was planned to publish the
research carried out at the Mathematical Centre in connection with the
hydrodynamical problem in the form of a series of papers. The present
paper 1s the first of a set of probably six papers written by the second
author in memory of VAN DaxnTzig. In this series a broad survey of the
hydrodynamical North Sea problem is given. In it both old material
contained in reports of the Mathematical Centre and new results obtained
atter VAN DanTzic’s death will be discussed. Part of the material of the

L LTy

) A second solution of this boundary value problem has been given in
LAUWERIER [3].
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present paper is borrowed from VAN DaxTzia [1] [4] and LAUWERIER [1].
For that reason VAN DANTZIG must be considered as a (posthumous)
co-author although the second author is responsible for the contents.

An adequate mathematical treatment of the hydrodynamical problem
is only possible at the cost of a number of simplifications the majority of
which hardly affect the final result. In the first place the hydrodynamical
equations are simplified. The vertical component of the velocity of the
stream 1s neglected, the equations are linearized, and the coefficient of
Coriolis 1s assumed constant. For the North Sea basin these simplifications
are quite acceptable. In the second place the form of the basin is replaced
by a simple mathematical model. This implies that the influence of
irregularities of the coast and of variations of the depth are neglected.
The North Sea can be conveniently represented by a rectangle which is
bounded on three sides by coasts and which borders on an infinitely deep
ocean on the remaining side. This means that the influence of e.g. the
Channel 1s neglected. The grand total of all simplifications cannot be
neglected if 1t is required to know the exact elevation at a given time at
a given spot. But by ignoring local circumstances they permit us to
obtain a clear picture of the overall motion and elevation of the surface.

The rectangular model of the North Sea mentioned above suffers from
two disadvantages. In the first place the leak of the Channel is neglected.
In the second place the assumption of a uniform depth is rather drastic.
In reality the depth increases gradually in the direction of the ocean.
However, 1n a subsequent paper the stationary state of a sea with an
exponentially increasing depth under a non-uniform windfield will be
discussed. The mathematical difficulties would be considerably reduced if
the rotation ot the Karth were negligible. However, it has been found
time and again that the rotation is an essential feature of the problem
which cannot be left out of account.

With the simplifications discussed above the problem can be described
by an elliptic partial differential equation with oblique boundary con-
ditions. This type of problem has not yet been solved entirely. A number
of partial results which are obtained at the Mathematical Centre will be
reported in this and the following papers.

2. The mathematical problem

The linearized equations of motion are 1) 2)

O Uz . oL 1 dp. 10U,
S ot — 2, = Y 0 OX o 0z

(2.1)

1)  Cf. list of symbols at the begin of this paper.
2y Cf. J. ProubpmanN [2], 44.
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Integration of these equations with respect to z gives

U o _}Ebpa }_ .
Sﬁ“9”+gh$“”@ S5 T gl e U
(2.2) z; ke 1
e FQutghse = — 28 4 = (V= V).

The surface of the sea is subjected to a tractive force which has the same
direction as the velocity of the wind at sealevel and which has an absolute

value determined by the following semi-empirical law 1)

(2.3) VU2 + Vi? = koa vs?,

where % is a dimensionless constant for which usually the value £ =0.0025

is taken.
The fundamental assumption is made that the bottom f{riction is

proportional to the total stream 2)
(2.4) ~ U » = AU, Vb AV,

where A 1s uniform and constant.
If next we put

Uml[js._._f’:__&

0 0 0x

(2.9) 1 h 3pa
Vm“Vg“‘“‘m

0 o Oy

the equations of motion (2.2) can be written in the form 3)

S( +A)u—Quv+ghse = U
=0 2( +1)v+Qu+gh gmv.

To this we add the equation of continuity 4)

(2.7) %+w+£ 0.
The system (2.6) and (2.7) is the starting-point for a great number of
investigations. We note that the quantities 4, Q and gk are assumed to
be uniform and constant. By a proper choice of the units it can be
attained that gh=1.

The sea will be represented by a domain D, its boundary by (', the
coastal part of (' by (1, the oceanic part by (5. The boundary conditions

express the fact that the normal component of the total stream vanishes

Wik

1) Cf. J. Proubpman [1], 135.

?) Ct. J. ProupMAN [3] and W. F. ScHALRWIIK [1].
3) Cf. J. C. ScHO6NFELD [1].

1) Cf. J. Proupmax [1], ch. 2.
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along ('; and that the elevation is continuous along ('s. Since the invariable
level of the ocean can be taken as the zero level it can be assumed that
C:f = () a,long C 9.

We 1magine that at a certain moment £=0 the sea is at rest. Then

the system (2.6) and (2.7) will be subjected to a Laplace transformation
according to

(2.8) C(z, Y, p) = Fe“l’t C(x, y,t)dt,

and similarly for %, v and U, V.
The system (2.6) and (2.7) is transformed into

S (p+2A)a— Q25+ %—g =U

(2.9) ) Y
((p-i—l)'v—r—.Qu-% S

and

(2.10) UL T L pE =

The same system is obtained if a solution of (2.6) and (2.7) is sought in
which the dependent variables contain the time in the form of an
exponential factor exp pt only. This is of importance e.g. in the case
of free and forced oscillatory motions.

By elimimation of % and ¢ from (2.9) and (2.10) the following non-
homogeneous equation of Helmholtz is obtained

_ )2 32 =
(2.11) (w+3—g§mx2)é-ﬁ’,
=def QU DV DV 20
FE(G+3) e (%)
(2.13) %2 2= p(p+ A) + Q2 p(p+ A)-1, Re » =0,
and
(2.14) tg y EQ(p+Ai)l, —in<Rey=in.

The combinations Uz+ V4 and Uz— V, are often called the divergence
and the rotation of the windfield respectively.
The boundary conditions for  become

(2.15) =0 along Cb,
(2.16) %—g + tg ygg- = f along (4,
with

(2.17) fg Wn +1tg v WS:

where W, and W are respectively the normal component and the
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tangential component of the wind-stress vector (U, V). We note that

the normal n is directed outwardly.
If Z is known the components of the total stream can be derived from

(2.9) as tollows

From (2.11) and (2.18) it follows that % and & satisty the following non-
homogeneous equations ot Helmholtz

1 d NV dU

(2.19) (A — 52) 4 = “"‘““““'“‘“(“55“ —b—g)*—p(ﬁ+tgy7)

and

| | 1 d NV U = i

3. (Green’s theorem

The solution of the problem (2.11) with the boundary conditions (2.15)
and (2.16) can be facilitated by making use of Green’s theorem.
For simplicity we shall assume that the domain D is simply connected

and that its boundary is piecewise smooth. The points (x, %), (xo, ¥o) ete.
will be denoted shortly as P, Py etc. The distance between P and P
will be indicated by o(P1, P2). We now consider two functions ¢ and v
with continuous second derivatives in D with the exception of at most
a single point. We assume that ¢ has a logarithmic singularity in 4 of
the kind —(27)-11In g(P, A) and that » has a similar singularity in B.
Then we have

VT [ —
(3.1 D
| ? — f¢§wds+¢(3)

In view of the symmetry of the left-hand side we obtain the equality
(3.2) p(4)— ff{w —#%) — (4 —2?) y} dedy + f{wbn "-993% as.

After some elementary reductions it follows from (3.2) that

p(A) — g ” W(4—27) o— p(d —=2) y} dwd@/+

(3.3)
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From (3.3) a number of interesting conclusions can be drawn which will
be listed below.

a. It G(P, Py, tg v) satisfies the Helmholtz equation

(3.4) (4—%2) G=0
the ocean condition
(3.5) G=0 along C's,
the adjoint coast condition
Ye: G |
(3.6) E’; *—-tg ‘}’".é-; = () &long C]_,
then
(3.7 L(Po)=— | J G(P, Po) F(P)dxdy— | G(P, Po) f(P) ds
D C,
Proof
Put

p =G, A = Py; v=_, Babsent.

h. For the function of Green determined by (3.4), (3.5) and (3.6)
the following oblique symmetry relation holds

(3.8) ' G(P1, Ps, tg y) =G(P2, P1, —tg ).

Proof

Put
o = G(P, P2,tgy), A = Py;

wEG(P, Pl, --—tg‘y)BEPl*

¢. If there is a function G which satisfies the Helmholtz equation (3.4)
with a singularity at Py and the ocean condition but not necessarily the
coast condition we obtain easily from (3.3)

(3.9) E (Po) = Z(Po) + J‘ ¢ (P) (—b%—-—tg y%)G(P, Po) ds,
C

where Z(Pg) represents the right-hand side of (3.7) which is a known

function of Py.
The equation (3.9) may be considered as a singular integral equation

along the coast (.
d. If there is a function G' which satisfies the Laplace equation

(3.10) AG =0

with a singularity at Po and which satisfies both the ocean condition (3.5)
and the coast condition (3.6), we obtain in a similar way

(3.11) F(Po) = Z(Po) — »? f f E(P) G(P, Po) dady.
D
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This represents a two-dimensional Fredholm equation. A solution of
(3.11) in the form of a Neumann series would lead to an expansion of

s In powers of x2.
It has been found possible to obtain the function of Green in an explicit
form for a few simple regions which are bounded by at most two straight

lines. The relatively simple case of a half-plane with a coast condition
will be discussed in the following section. The difficult case of an angle
has been treated by VAN Daxtzic [4] and LAUwERIER [2], [3].

4. Solution of the problem of Green for a half-plane
The function of Green Gy in the full plane satistying

(4.1) (4 —=2)G(x, Yy, Zo, Yo) =0

and which for Re x>0 vanishes exponentially at infinity according to

(4.2) G = 0 (exp—e Va2 +4?),

where ¢ 1s an arbitrarily small positive quantity is given by
(4.3) Go(, Y, %o, o) = (27) ™ Ko (),

where '

(4.4) 0 = V(z—x0)2+ (y — yo)>.

We note the integral representations

(4.5) Go = (4mt)~1 [ exp— (xp cht) dt
and
(4.6) Go = (47t)71 [ exp—2 {|y—yo| cht+i (x— zo) sht} dt.

From (4.3) the solution of the following problem of Green can be derived.
To find a function of Green G; satisfying (4.7) in the half-plane % >0
and the boundary condition

(4.7) G=0 for y=0.

By means of the well-known reflection principle it follows that

(4.8) G1(, y, o, yo) = (27)~1Ko(x0) — (277)~1K o(x0*),
where
(4.9) 0* = V(x—x0)2+ (¥ + y0)2.

It can easily be shown that

o 02 : 02
(4.10) (0083 VS T S1n 2 y-b—--mz) Gh= 0 for y = 0,
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for the left-hand side of (4.10) can be written in the form

f o - 08 bﬁ) 92 ) 2 it d
| C‘?(}Si i T om T Te— G oo xﬁz (3(}52 LY T ¢ - 0
% ‘ (‘axﬁ% dyr) T dxti ( Y — == )G =

in view of (4.7).
Theretore the function (/2 defined by

. d : d -
(4.11) (ro(x, Y, Xo, Yo) = (G‘DS Y3y TSImY g;) G2, ¥, xo, Yo)

satisfies the boundary condition

N d LD _
($.12) (czos y@ — SIN == (o = 0 for 4= 0.

, b » a » "
The operator cosy Sy~ SV 52 represents for real » a directional

derivative, the direction of which makes the angle y—34a with the
positive X-axis.

The solution (4.11) can be interpreted as being generated by a dipole
at (xo, %o) In the direction —y — 37 and a dipole at the reflected source
(o, — yo) In the direction —y +4n (see figure 1).

"y

it

("'m Yol

Ay

{xgz"ya J’

Fig. 1

From the solution (> the function ot Green (/3 which satisfies (4.1), the
boundary condition (4.12) and which has a logarithmic pole at (xg, yo),
can easily be derived by integrating the dipole at (xy, yo) of (G2 over the
half-line

x=xo+tsiny, y=yottcosy O<i<oo

assuming that —im<y-<idm
Then the halfline of dipoles, which are lying head to tail, reduces to
a single pole at (xg, yo). The reflected dipole is integrated over the half-line

r=xo+tsmy, y= —yog—1Itcosy, 0<t<oo,

In that case, however, the dipoles do not annihilate each other and there
remains a line of dipoles as shown in figure 2.
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¥
" X0 ~Yo!
Kig. 2
This corresponds analytically with the formula
Gs (z, y. xo, Yo) = Gy (x, ¥, o, Yo) +
(4.14) o
-+ (cc}s v -+ 81n -;13-) f Go(x, v, 2o+t sin Y, —Yo —t cos y)dt
é ay ; Bw 0 3 ya ’ .
0
By using (4.3) and (4.6) this may be written in the form?1)
\ R " 1 mch(t—i—iy)
(4.15) SG*" (£. 9 %0, y0) = 5 Ko(xo)— 2 f ch(t —iy)
} exp—x { (¥ +yo) cht +1 (x— o) sht} di.

Mathematisch Centrum, Amsterdam
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