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I. I rit1·oductio·n 
011 Ji..,ebruary 1st 1953 tl1e South-West,er11 part of the Netherla11ds ,vas 

st1ricke11 by a flood disaster u11sl1rpassed i11 tl1e memory of tl1is cou11try. 
In order to desig11 111easures for p1"eve11ti11g sin1ilar disasters i11 tl1e fut,ure 
tl1e govE:~1·11111e11t appoi11ted a co111111ittee, co11sisti11g of pro1ninent e11gineers 
wit,11 Ir A. G. lv1ARIS as C11airma11. This so-called Delta-con1n1ittee took 
several scie11tific i11stitt1tio11s as advisers. Tl1e lvlathen1.atical Ce11tre was 
asked to a11alyse tl1e available statistical data on high tides in order to 
predict, as fa1· as possible, tl1e frequencies of extremely higl1 tides. Duri11g 
the investigatio11s this task was extended by an econometric study of the 
protection of tl1e low areas agai11st floods a11d also by a hydrody11amic 
study of the influence of a storm on the level of the sea. 

D. VAN DANTZIG was charged with the research on all these subjects. 
He carried this out in cooperation witl1 a number of scientific workers 
of the statistical departme11t a11d the applied matl1e111atics department 
of the Matl1ematical Ce11tre (Amsterdam). 11he present series of papers 
t111der the commo11 title ''The Nortl1 Sea problem'' contains a 11.umber 
of results obtained at tl1e latter department with reference to the 
l1ydrodyi1a1nical proble1n. 

Although VAN DANTZIG himself wrote relatively littile on this subject 
and in l1is publicatio11s restricted himself mainly to reviewi11g the work 
of ot,hers, he k11ew to inspire his co-workers who profited time and agai11 
from l1is constructive mind a11d critical ren1arks . ..._i\lready at the occasion 
of the I11ternational Congress at Amsterdam of 1954 ·VAN DANTZIG [I] 
delivered a11 address wl1ich made a strong impression 011 the audier1ce 
a11d i11 whicl1 some aspects of the statistical and hydrodynamical North 
Sea problems were treated. Two years later [2] in a speech before the 
''Koninklijke Nederlandse Akademie van Wetenschappen'' he reviewed 
tl1e work carried out at the applied n1athematics departme11t 011 the 
hydrodynamical problem. :B.,11rther in 1958 [4] in a11 address 011 the 
occasion of a meeting of the GA ...... at Saarbriicken he gave a survey 
of some recent results of the hydrodynamical problem. In the sarne 
year [3] he published a paper in the Proceedings of the Ko11. Ned. Ak. 
v. Wet. co11taining his solution of a bo1111dary value problem 1) . 

... t\.lready during tl1e life of VAN DANTZIG it was planned to publish tl1e 
research carried out at the Mathematical Ce11tre i11 connection with the 
hydrodynamical problem in the form of a series of papers. The present 
paper is the first of a set of probably six papers written by the second 
autl1or in me1nory of V~.\N DANTZIG. Ir1 this series a broad survey of the 
hydrodynamical North Sea proble111 is given. In it both old material 
co11taiJ1ed in reports of the l\tlathematical Centre and new results obtained 
after VAN D-t\.NTZIG's deatl1 will be discussed. Part of the mat,erial of the 
-----·- -~-

1
) A second solutio11 of this rJc)undary value proble1r1 has been given in 

LAUWERIER [3]. 
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prese11t paper is borrowed from VAN DANTZIG [l] [4] arid I"'AUWERIER [I]. 
For that reason VAN DANTZIG must be co11sidered as a (posthun1ous) 
co-author although the second author is respo11sible for tl1e co11tents. 

An adequate n1athematical treatn1e11t of tl1e l1ydrody11amical problem 
is only possible at tl1e cost of a n1-1mber· of siinplifications the majority of 
which hardly affect the final rest1l t,. 111 the first, place tl1e hydrodyr1a1nical 
equations are simplified. The vertical co1npo11e11t of the velocity of the 
st-rean1 is neglected, tl1e equations are linearized, a11d the coefficient of 
Coriolis is assumed co11.stant. For the North Sea basin these simplifications 
are quite acceptable. In the seco11d place the form of tl1e basin is replaced 
by a simple mathematical n1odel. This i111plies tl1at the influe11ce of 
irregularities of the coast and of variations of the depth are neglected. 
The North Sea can be conveniently represe11t,ed by a rectangle whicl1 is 
bo11nded on three sides by coasts and which borders on ar1 infinitely deep 
ocean on the remai11ing side. Tl1is 111eans that tl1e influence of e.g. tl1e 
Chan11el is 11eglected. The grar1d total of all si1nplifications can11ot be 
neglected if it is required to know the exact elevatio11 at a give11 tin1e at 
a, give11 spot. But by ignori11g local circumstances they permit llS to 
obtain a clear picture of the overall 1notio11 and elevation of the sur·face. 

,.rhe 1·ectangular model of the North Sea mentioned above suffers from 
two disadvantages. In the first place the leak of the Chan11el is neglected. 
I11 the second place the assumption of a t1niforn1 depth is rather drastic. 
I11 reality the depth increases gradually in the direction of the ocea11. 
However, in a subsequent paper the stationary state of a sea with an 
expone11tially increasing depth under a non-uniform \\rindfield will be 
discl1ssed. The mathematical clifficulties wol1ld be co11siderably reduced if 
the rotation of the Earth were 11.egligible. However, it has bee11 fou11d 
time and again that the rotation is a11 essential feature of tl1e p1--oblem 
wl1.ich cannot be left out of account. 

,vith the sin1plifications discussed above the proble1n ca11 be described 
by an elliptic partial different,ial equatio11 with oblique boundary con­
clitio11s. This type of problen1 has 11ot yet bee11 soJ,red e11tirely. A number 
of partial results which are obtained at t,he 1\1:athematJical Centre will be 
reported i11 this and the following papers. 

2. '11 he mathematical proble,1n 

The linearized eql1ations of r11otio11 are 1) 2) 

OUz !Jvz -- oC 1 opa 
gox -at e ox 

(2.1) ,, 
oC I apa , OVz + D11.,z goy - oy Dt (} 

\. 

-·-·----·-·--- -

1 ) Cf. list of symbols at the begin of this paper. 
2 ) Cf. J. PROUDMAN [2], 44 . 

• 

I oUz -
(! oz 
l O irz 
- oz • e 
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lntegratio11 of these equatio11s with respect to z gives 

au - = - "!!:. opa + !:. ( Us- Ub) 
ot g ax e 

(2.2) ' 

. av O C = - ~ 0Pa + .! ( V 8 - Vb). 
e oy e 

The surface of the sea is subjected to a tractive force which has the same 
directio11 as the velocity of the wind at sealevel and which has an absolute 
value determined by tl1e following semi-e1npirical law 1 ) 

(2.3) 

where k is a dimensionless constant for which usually the val11e k = 0.0025 
is taken. 

The fundamental assumption is made that the bottom frictio11 is 
proportio11al to the total stream 2) 

(2.4) 
1 - ub = lu, 
e 

I - vb= iv, 
(! 

where A is uniform and constant. 
If next we put 

U= 
(2.5) 

V= 

1 h opa 
- Us -e ox !J 
1 h ""opa 
- Vs -e oy e 

the equations of rnotion (2.2) can be written in the form 3 ) 

0 
ot +i -=U 

(2.6) 
() 

ot +i 

To this we add the equation of continuity 4) 

(2.7) ()U OV + o, 
ox-+ oy ot = 0-

The system (2.6) and (2. 7) is the starting-point for a great number of 
investigations. We note that the quantities A, Q and gh are assumed to 
be uniform and constant. By a proper choice of the units it can be 
attained that gh = l. 

The sea will be represe11ted by a domain D, its boundary by C, the 
coastal part of C1 by 01, the oceanic part by 0 2• The bou11dary conditions 
express the fact that the normal component of the total stream vanisl1es 
---·----

1 ) Cf. J. PROUDMAN [l], 135. 
2 ) Cf. J. PROUDMAN [3] and V\7 

• 

3 ) Cf. J. C. SCHONFELD [I). 
4 ) Cf. J. PROUDMAN [l ], ch. 2. 

.};.,_ 8CHALKWIJK [l]. 
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alo11g G'1 a11d tl1at the elevatio11 is conti11uo11s along C1
2• Si11ce tl1e i11variable 

level of the ocea11 ca11 be taken as the zer~o level it can be assumed that 
( = 0 along C2. 

We imagine that at a certain 1nome11t, t c__ 0 tl1e sea is at rest. Then 
tihe systen1 (2.6) a11d (2.7) will be subjected to a Laplace transfo1·1nation 
according to 

00 

(2.8) t (x, y, p) f e-Pt ((x, y, t) dt, 
0 

and similarly for u, v and U, V. 
The system (2.6) and (2. 7) is transforn1ed into 

u 
(2.9) 

V 

a11d 

( 2.10) OU+ ov L ?: = O ox oy ,- P~ · 

The same system is obtained if a solutio11 of (2.6) and (2. 7) is sol1ght in 
which the dependent variables contain the time in the form of an 
exponential factor exp pt only. This is of importance e.g. in the case 
of free and farced oscillatory motions. 

By elimination of u and iJ from (2.9) and (2.10) the following non­
homogeneous equation of Helmholtz is obtained 

(2.11) 

(2.13) 

and 

(2.14) 

= F, 

F def 
ox oy g Y £)a: - oy ' 

x2 def p(p+ A)+ Q2 p(p+ l)-1, Rex~ 0, 

tg y def .Q(p+A)-1, -½n <Reys: ½n. 

The combinations Ux+ Vy and Ux- Vy are often called the divergence 
and the rotation of the windfield respectively. 

The boundary conditions for t become 

(2.15) 

(2.16) 

with 

(2.17) 

along 02, 

along C1
1 , 

- def .,. J= Jlin+tgy Ws, 

whe1"e W 1i and Ws are respectively the normal component and the 

• 
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tange11tial co1npo11e11t of the wind-stress vector ( U, V). We note that 
t,he 11or1nal ,,i is directed outwardly. 

If t is k11ow11 tl1e co111ponents of tl1e total st1·ea1n ca11. be derived fro1n 
(2. 9) as follows 

1 x2 _ ot o, - V + ( u + t,gy ) 
(2.18) 

, x 2 _ _ _ o t _ t o t 

' 

l.,ro111 (2.1 l) a11d (2.18) it fol.lows that ii a11d fJ satisfy the following non-
horx1ogeneous eq11atio11s of Helmholtz 

(2.19) 

and 

(2.2()) 

3. G1,.een's theorem 

- -
= _ _I o " l' _ o U 

- -
1 o 10 V o U 

-p(U +tg yV) 

-p(V-tgy U). 

The solution of the problen1 ( 2.11) with the bou11dary co11ditior1s ( 2.15) 
arid (2.16) can be facilitated by 1naking use of Green's theorem. 

For simplicity we shall assume that the domain D is simply connected 
a11d that its bound.ary is piecewise smooth. The points (x, y), (xo, yo) etc. 
will be de11.oted shortly as P, Po etc. The distance between P a11d Po 
,vill be i11dicated by e(P1, P2). We 11.0,v consider two fu11ctio11.s cp a11d 1P 
witl1 co11t1inuous second derivatives in D with the exception of at most 
a single point. We assun1e that cp has a logaritl1mic singularity in A of 
the kind -(2n)-1 111 e(P, A) a11d that VJ has a similar si11gularity i11 B. 
Then we have 

<p(L'.1 - x2) VJ dxdy + 
(3.1) , D D 

\ a 

In view of the symmetry of the left-hand side we obtain the equality 

(3.2) 1P(A)-cp(B) = { 1P(A - -x2) cp- cp(L1 -x2 ) "P} dxdy + ocp otp 
"Pon - cp on ds. 

D 0 

After some elementary reductions it follows from (3.2) that 

V'(A)-cp(B) = 
D 

+ 
ocp 

'l/J on - <)8 ds+ 

(3.3) \ 

ds+ tg y 

on 
<l'f/J 

<p --:,. ds. un 
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Fron1 (3.3) a nun1ber of interesting conclt1sions can be drawn which will 
be listed below. 

a. If G(P, Po, tg y) satisfies the Heln1holt1z eq11ation 

(3.4) (L1 -x2) G=O 

tl1e ocean co11ditio11 

(3.5) G=O along G1
2 , 

the adjoint coast condition 

(3.6) 

the11 

(3. 7) 

Proof 

Pt1t 

t(Po) = -

oG ?JG 
on - t,g y 08 = 0 along C1

1, 

.. 
G(P, Po) F(P) dxdy- G (P, Po) f (P) ds. 

D 

::::::: G, -44 == Po; VJ == C, B absent. 

IJ. For the functio11 of Green determined by (3.4), (3.5) and (3.6) 
tl1.e following oblique symmetry relation holds 

(3.8) 

Proof 

Put 

G(P1, P2, tg y) =G(P2, Pi, -tg y). 

cp == G(P, P2, tg y), A ~ P2; 

VJ== G(P, P1, -tg y) B == Pi. 

c. If there is a function G which satisfies the Helmholtz equation (3.4) 
with a singularity at Po and the ocea11 condition but not 11ecessarily tl1e 
coast condition we obtain easily from (3.3) 

(3.9) t (Po) Z(Po) + 
0 

tgy 08 G(P,Po)ds, 

where Z(Po) represents the right-hand side of (3.7) whicl1 is a known 

functio11 of Po. 
The equation (3.9) may be considered as a si11.gular integral equation 

along the coast 01. 
d. ·· If there is a function G which satisfies the Laplace eq11ation 

-· 

(3.10) LIG=O 

with a si11.gularity at Po and which satisfies both the ocean condition (3.5) 
and the coast condition (3.6), we obtain in a similar way 

(3.11) t (Po) Z(Po) - ,e2 t(P) G(P, Po) dxdy. 
D 
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This represer1ts a two-di1ne11sional ]-,redl1ol111 equatio11. A solutio11 of 
( 3.11) i11 the forn1 of a N eltma1111 se1·ies would lead to a11 expa11sion of 
t ir1 powe1·s of ){2. 

It l1as bee11 fot111d possible to obtain tl1.e fu11ction of Gree11 i11 an explicit 
fo1·n1 for· a few sin1ple regior1s wl1ich are bou11ded by at most two straight 
lir1es. Tl1e relatively sin1ple case of a half-plar1e witl1 a coast conditio11 
will be discussed ir1 the f ollowi11g section. The difficult case of an a11gle 
has bee11 treated by VAN DAN'l1ZIG [ 4] and LAU\VERIER [2], [3]. 

4. Solutio1i of the problem of Green for a half-plane 

Tl1e ft1nction of Gree11 Go in the full plane satisfying 

( 4.1) (L1 -x2 )G(x, y, xo, yo)= 0 

a11d whicl1 for Re x > 0 va11isl1es exponentially at infinity according to 

(4.2) G = 0 (exp-s Vx2+y2), 

wl1ere s is a11 a1--bitrarily small positive quantity is given by 

( 4.3) Go(x, y, xo, yo) def (2n)-1 Ko (ue ), 

wl1e1·e 

(4.4) V (x- xo)2 + (y-yo)2• 

We note the integral representations 

(4.5) 

and 

( 4.6) 

00 

Go= (4n)-1 J exp-(ue_cl1t) dt 
-oo 

00 

Go= ( 4n)-1 f exp-x { IY-Yol cl1t + i (x-xo) sht} dt. 
-oo 

Frorn (4.3) the solution of the following problem of Green ca11 be derived. 
To find a function of Green G1 satisfying ( 4. 7) in the half-pla11e y > O 
and the bou11dary condition 

( 4. 7) G=O for y= 0. 

By means of the well-known reflection principle it follo,vs that 

( 4.8) G1(x, y, xo, Yo) def (2n)-1K 0 (xe )-(2n)-1K 0(ue*), 

where 

(4.9) e* = 

It can easily be shown that 

(4.10) 
~2 ~2 

COS 2 y _u_ - · 2 u 
oy2 S111 y ox2 for y = 0, 
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ill Vit~W ()f (4.7). 
Tr1tirt~f ore tl1t~ f'11r1ctio11 (:12 clefi1·1ec·l bv .. 

(4.11) ( ~ . ~ . ~ 
.(2(.i·. y, Xo. 1/o) -::::::: (".08 .. ,,, ~ + Slll ",·', ' ~ · y vX G1 (l~, y, xo, yo) 

sat.isfies tl1e bou11darv co11ditio11 .,. 

( 4. 12) 
Q . 0 

cos ""' - - 8111 ,, -
I oy I OX 

0 "rl1t:~ ()fX~rat()T C()S ,., - •-.-• 
I oy ,x 

GQ ::;::::; ( ) ... . for y} = (). 

y a clirectional 

tlt:i,ri vi1.ti ,·e, t l1e direct.ior1 of wl1ich r11akes t.l1e angle y- ½n witl1 tJl1(~ 
posit.ive ...:Y-axis. 

'I,he solut.it)Il ( 4.11) can be i11t:erpret,ecl as bei11g ge11erated by a dipole 
at. (xo, yo) i1·1 tl1e directio11 --y -- ½n i111(l a dipole at the reflected sot1rce 
(xo, ---· !/o) i11 the clirection --y -+- ½n (see figure l ). 

J;"'ig. I 

:£."'r<)Ill tl1(~ solut.io11 (12 the ft111ction of (Jret;tl (ts which satisfies (4.1), t.l1e 
bountiary cor1dit:ion ( 4.12) a11d whicl1 has a .logar·ithn1ic pole at, (xo, y0 ), 

ca11 easily be derivecl by i11t,egrat,ing tl1e dipole at. (xo, yo) of (}2 ovt~r t,}1e 

}1alf-lint~ 
• 

X :::::-- J'.~o + t Slil y, 1..J -'~ '?lo ·+ t cos '1', fl .,_, I 

i1ss11n1i11g tl1a t, - in <: ,, ~-:~ ½n. 
'l"'r1t:~11 tl1c~ l1alflir·1e <>f dipoles, \\·hicl1 ti1~<~ lyi11g l1eacl t1<) t~1il, rt.~(l11ces t-o 

it si11gle pole at (x0 , J/o). 'fl·1e reflectecl dipole is ir1t,egratt~<:l 0\1'er· tl1e l1itlf-li11e 

x =--::, xo -t- t si11 ,, , y - Yo -- t cos y, 0 < t < t'X). 

111 t,}1at case, l1owe, .. e1·, t;he dipoles (io 11ot ar111il1ilate each ()ther ar1cl t,llere 

ren1ains a lir1e of dirloles a.,C:; sh<>,v11 i11 figur·i, 2. 
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Fi~. 2 

Tl1is correspo11ds a11alJ1tically with the f orn1ula 

( 4. 14) 

def 
Gs (x, y, Xo, Yo)= Go (x, y, xo, Yo)+ 

00 

o . o 
-t- cos ,, dy + sin y 0 Go(x, y, xo+t sin'}', -yo -t cos 11 } dt. 

0 

By usi1ig (4.3) &nd (4.6) t,his n1ay be written in the form1) 
I 

(4.15) 
(}3 (x, y, xo, Yo) 

00 

1 
4:t 

-oo 

ch(t +i y) 
ch(t -i y) 

exp-x {(y+yo) cht+ i (x-xo) slit} dt . 
• 

M athema.t1.'.scJ;, Oentru.rn, .. 4 msterda·r,i 

I)ANTZIC1, 1). ,r_..\N, [ 1] 1\1,at,hematical problems raised by the flood disast,er 1953. 
l">r<)c. Ir1t. Co11gr. l\latll. Amsterdam. I, 218-239 (1954) . 

• 

1
) Tl1ese t\\'O exproosio11s have l>een first given by H . . i\. L . .\.U\<\rERIER [l]. The 

above.give11 elegant deri'.·ation is due to G. W. VELTK .. -lMP. 
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