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1. Quoting the words of the late van Dantzig in an address 
for the international congress of mathematicians held in 1954 
at Amsterdam., 11 the hydrodynamical problems posed to us in 
connection with flood prevention offer a typical instance 

where the job of a mathematician does not consist of just 
"feeding a machine 11 , and which., although it ultimately 
certainly will require large scale computing, has need of 
what might be called 11 large scale mathematics'"'~ 

The investigation of the effect of wind upon the level 
of a shallow sea raises a great number of mathematical 
problems. In this paper a few typical problems will be selected 
and in particular it will be shown what can be reachei by 
analytical methods. These methods may be indicated by the 
following headings: Boundary value problems in partial 
differential equations; eigenvalue problems, theory of complex 
functions and conform mapping; singular integral equations of 
the Cauchy type and of the Wiener-Hopf type; Laplace and 
Fourier transformij. 

The above-mentioned analytical tools are most effective 
when the mathematical model under consideration is of a 
relatively simple kind. The analytical approach is aimed at 
understanding the influence of the parameters of the model 
and of the singularities of the solution. The analytical 
approach is aimed at deriving general laws and not so much 
at concrete numerical results. 

The present-day powerful numerical tools may deal with 
far more complex situations. However, here it is difficult 
to assess the influence of the parameterssince this would 
require numerous repetitions of the same calculation with 
each time a different combination of values. With three or 
more degrees of freedom this would lead to an almost impossible 
task. 

Thus the analytical approach and the numerical approach 
yield information of different natures. It will be clear that 
these two approaches may profit very much from each other. 
The laws discovered by analytical means may be numerically 
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checked and, guided by the understanding gained by the 

analytical approach, the numerical calculation may be carried 

out in a much more economical way. 

We consider here a shallow sea S with a uniform depth h 

bounded by a coast c1 and a very deep ocean c2 . The dif

ferential equations are as follows 

( 1 , 1 ) . 0 ; + ),, W + .11. X W + gh V) = W ( X, y, t ) 
{ 

'3-+ ➔ ...,. -+ -+ 

";+il =O V • c) t , 
~ ~ 

where w is the vector of the total stream, W the wind stress 

acting on the surface, J the elevation of the surface, A a 

"'" constant accounting for the bottom friction and..O.. a constant 

vector representing the Coriolis effect. 

( 1. 2) 

( 1, 3) 

The boundary conditions are as follows: 
-+-+-
w.n = 0 

r = o 

To this we may add some initial conditions stating that at 

t=O stream and elevation are known. 

We note that the model is a linear one so that the 

important superposition-principle holds according to which 

the solution for an arbitrary wind field may be synthesized 

from a Green'! function, i.e. the solution for a point source 

disturbance J(x,y,t,x0 ,Y 0 ,t0 ). 

An explicit analytic solution can be attained only when 

further simplifications are introduced. 

The nature of these simplifications is indicated in the 

following scheme 

region 

time 

rectangle 

wedge 

circle 

{ 

stationary 

periodic 

aperiodic 

{ 
full plane 

half plane 

strip 

{ 
free motion 

external periodic force 
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In the next section we shall consider a few aspects of 
the analytical treatment of the stationary problem. The last 

section will deal with a particular case of the non
stationary problem. 

2. For the stationary situation the equations (1.1) may be 

written in Cartesian coordinates as follows 

"llu -nv + r = U(x,y) 
X 

(2.1) ">-.V +nu + r y = V(x,y) 

ux + V = 0 y 

A stream function ¢(x,y) may be introduced 

(2.2) AU = -¢ y , AV=¢ 
X 

The lines of constant¢ are streamlines. 
Then it follows from (2.1) that 

(2.3) A¢= R 

by means of 

where R=V -U is the rotation of the wind field. The boundary 
X y 

conditions become 

(2.4) 

(2.5) 

-+ ..i,. 

¢ = 0 

~ - f?: ~ s at c2 an " dS = , 

where S=W.s is the component of the wind field along the 
ocean boundary. We may state the following result 

Theorem 

If the rotation of the windfield vanishes identically and if 
there is no wind along the ocean boundary there is no stream 
in the stationary situation. 

Proof 

The problem (2.3),(2.4),(2.5) has only the trivial solution 

¢=0. 
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Corollary 

A stationary rotation-free windfield on a lake induces no 

stream. 
We give the following simple example which is of 

importance for the behaviour of the North Sea. We consider 

the rectangular region O < x < a . O < y < b where X=O, X=a., y=O 

are coasts and y=b is an ocean boundary. The stationary wind 

field 

(2.6) V=-1 

will induce no stream. In fact (2.1) has the solution 

(2.7) U=V=O , 5" =b-y 

On the contrary the stationary wind field 

(2.8) 

does create a stationary stream the determination of which 

is not quite elementary. 

By virtue of the superposition principle the general 

problem (2.3),(2.4),(2.5) may be reduced to the somewhat 

simpler problem where the wind field is reduced to a stationary 

point source. The corresponding Green 1 s function G(x,y,x 0 ,y0 ) 

is determined by 

(2.9) AG= - J(x-x) J(y-y) 
0 0 

with homogeneous conditions at c1 and c2 . 

Calling in the aid of the theory of complex analytic 

functions we put 

(2 .10) G=Re L(z,z) , Z=X+iy, z =X +iy 
0 0 0 0 

where L(z,z ) is an analytic function of z and, with the sole 
0 

exception of a logarithmic pole at z, holomorphic in the sea
o 

region. More accurately the behaviour of L near z is as 
0 

follows 

(2.11) L(z,z 0 )=-i~ ln(z-z 0 )+0(1). 

The boundary conditions (2.4) and (2.5) may be translated 

as follows 
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( 2. 12) Re L=O at c1 

(2.13) Im e-if L=O at c2 

with / given by 

( 2 .14) r = arctg 
.n 
7\ . 

A few particular cases will be listed below. 

a Full plane 

L= - 2~ ln(z-z 0 ) , G= - 2~ ln /(x-x0 ) 2+(y-y 0 ) 2 ( 2. 15) 

b Half-plane y > O with coast at y=O 

( 2. 16) 
1 z-zo 1 

L= - 2 ,c ln z-'Z , G= - 47t ln 
0 

2 2 
(x-x ) +(y-y) 

0 0 
2 2 (x-x ) +(y+y ) 

0 0 

c Strip O < y < -,r; with coasts at y=O and y= 7C 

conformal map z -+ e 2 

( 2. 17) 1 L= - - ln 2rc 

z 
Z 0 e -e 
z Yo 

e -e 

-1 ch(x-x )-cos(y-y ) 
G i ln o o 

' = - 47t ch(x-x0 )-cos(y+y 0 ) 

d Half-plane y> 0 with coast at y=O, x > O and ocean at 

y==O, x < 0 

( 2. 18) 
CX) 

J 
z 

_1_+ l ( z ½- { z ½-
2 IV O 0 

s ---- -s-z s-z 
0 0 

The behaviour of G at the origin in polar coordinates 

is as follows: 

(2.19) 
l.+ l V 

G=c r 2 ~ sin(½+ ~)e 

e North Sea model, rectangle O<x<a, O<y<b with 

coasts at x=O, x=a, y=O and ocean at y=b. 

The solution can be obtained from (2.18) by means of 

conformal mapping with the mapping function 

( 2. 20) , 

where )~(z) is the Weierstrassian elliptic function with 
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periods 2a and 2ib. 

The behaviour at the ocean corners is as follows: 

{ 
1+ .?J 

( 0, b) G ~ r at 
(2.21) 1- El. 'Te 

(a,b) G~ r at 

where r is the local radius vector. 

We note that according to~.~ the stream vector is 

discontinuous at (a,b), A closer examination shows 

that· u and v are of the form 

{ 
u=c r -~ sin ~ e + ... 

( 2. 22) 
-¥ 51 cos e + 0 0 ;I v=c r 

where 9 is measured from the coast line x=a (9=0) 

to the ocean y=b ( 9=½n;). 

The North Sea model may also be treated by a direct 

method using series expansions. We shall demonstrate 

this for the particular wind field (2.8) although the 

method is of far greater generality, Thus we consider 

the following model of a rectangle x=O, x=Tli, y=O,y=b 

for which 

(2.23) ¢ = 0 

¢+tr•'/¢= y ,_ X -1 

The solution will 

(2.24) 

t:. ¢ =0 

be of 

at x=O, x='Jt', y=O 

at y=b. 

the following form 

sin nx 
n 

where the coefficients are determined by the ocean 

condition. Taking advantage of the fact that in this 

model of the North Sea the rectangle is about twice 

as long as it is wide this condition gives approximately 

00 

( 2. 25) -cos J = L en sin( nx+ {) , O < x < iC , 
n=1 

which may be called the expansion of a constant into 
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an oblique Fourier series. This has led us to the 

systematic study of such series which is not only of 

importance in itself but which has useful applications 

in more difficult questions in connection with this 

North Sea model. Here we mention only the fact that 

the coefficients C of (2.25) are determined by 
n 2Y 

( 2. 26) v(1-s) 7f ~ n cotgg 1+s = /;;o ens . 

3. The non-stationary situation is determined by the 

equations (1.1) which we repeat here in Cartesian coordinates 

({t+ 7-. )u -..n V + ~ = 
X 

u 

( 3 . 1) ( lt +" )v +.nu +) = y V 

/tr+ ux + V = 0 y 

Starting from a situation where everything is at rest at 

t=O we may apply Laplace transformation according to 

(3.2) - J!X) t ~(x,y,p)= e-p ~(x,y,t)dt 
0 

Then the equations (J.1) are transformed into 

( 3. 3) 

Elimination of 

equation 

( 3. 4) 

where 

( 3. 5) 

and 

( 3. 6) F = 

-( p+i\)u -S!.v +) X = u 

(p+X)v +.au + ~ = y V 
-p }. + u + V = 0 

X y 

-u and v gives the following Helmholtz 

- -
K:2 f Ixx + r yy = F j 

2 2 -12_ 
k, =p ( p + "') + .n + i\ 

-+ .n. div W + ~ rot p 

p 

➔ 

w = 

, 

( U +V ) + ~ i\ ( V - U ) . 
X y p X Y 

··--~ •·••·· 
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The boundary conditions are 

-
( 3. 7) ~ .0. ~ w + ~ w at c1 + p+i\ = ~n c) s n p+7'. s 

and 

(3.8) ) = 0 at c2 . 
-

From '.r(x,y,p) the original j"(x,y,t) may be derived 

by the inverse Laplace transformation 

(3.9) 1 f pt -j ( x, y, t) = 2'71ii , e r ( x, y, p) dp 
L 

where Lis a certain vertical line in the complex p-plane. 

By this formula the determination of) is reduced to the 

discussion of the singularities of the analytic function )" . 

Assuming the existence of a stationary situation lim !(x,y,t) 

fort ➔ co the ultimate elevation is determined by the 

residue of the pole p=O of '.5' . By way of illustration we 

consider the North-Sea model with the 11 northern 11 wind 

(3.10) U=O 
- e. t 

V= -( 1-e ) . 

Since r will not depend on x the equation (3.4) reduces to 

- - ~2 I ( 3. 11) ~yy =0 

with the boundary conditions 

- E. (3.12) ty = - p(p+e) at y=O 

and 

(3.13) ) = 0 at y=b . 

The solution is 

( 3. 14) - (x _ )- e _ sh k-(b-y) 
~ ' y ' p -p ( p + a.) 1'i: ch f<.. b 

We note that p=O is a pole with the residue b-y so that in 

agreement with (3.7) 

(3.15) S (x,y,oo) = b-y 

In view of the superposition principle it is sufficient 
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to solve the problem (3.4) with the boundary conditions (3.7) 
and (3.8) for a point-source disturbance. 

The corresponding function of Green can explicitly be 

determined only for simple regions such as a half-plane, 

circle, strip, or angle. For other regions a Green's function 

might be used for which only a part of the boundary con

ditions is satisfied but then the problem eventually reduces 

to a singular integral equation or to an equivalent problem 

such as non-orthogonal expansions. 

In order to show something of the relevant mathematical 

technique we consider the simplest case of a point-source 

disturbance on an infinite shallow sea. 

Then (3.4) reduces to 

( 3 . 16) = - l(x-x ) &(y-y ) 
0 0 

There are no boundary conditions but of course~ must be 

bounded at infinity. 

The equation (2.16) has the solution 

( 3 . 17 ) ~ = 2~ KO ( Vv ✓( X - X O ) 2 + ( y-y O ) 2 ) 

Writing 

( 3. 18) , 

Laplace inversion gives the following results 

a) i\ = .n =O 

( 3. 19) 

b) A=O, A f 0 

(3.20) 

c ) A f O, .n. =0 

(3.21) 

'r _ 8( t-R) 
J - ✓t2-i/2 

'r __ 21 i\. t 
.l = e 

e(t-R). 

ch ½" ✓t2-~2 
✓t2-R2 

8(t-R) . 

If both A and A differ from zero an explicit expression may 

be obtained but the solutions (~.20),(3.21) already show 
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the influence of the parameters i\ and .0.. upon the final 

elevation. 

For a stationary point-source disturbance which starts 

at t=O and which may be described by 

(3.22) 

the corresponding solution may be obtained from that of the 

momentary disturbance by integration with respect to the 

time. For the case a) from (3.19) we derive e.g. 

(3.23) ) = / l,'3::: __ = {1n(t+lt2~R2 )-ln R} 8(t-R) 
R "t2-Ii 

The presence of even a single boundary condition leads 

to mathematical complications. The simplest case might be 

that of a half-plane sea y > O with a coast at the X-axis 

y=O. Then the solution is 

(3.24) + i\ chw+in shw +->---<------,,---. 
p+" chw-i .n. shw 

The inverse Laplace transformation may be carried out as 

before and we find for the case i\ =n. =0 

(3.25) 

where 

( 3 • 26) 

:r = &( t-R) + &( t-R'l 
/t2-R2 ft2_R12 

0--
2 2 

RI == ( X -x ) + ( y +y ) . 
0 0 

The physical interpretation of this result is obvious. If 

A I- 0 and .n. =0 an analogous result is obtained. If "'==0 

and Al- 0 the inverse transformation may still be carried 

out in an explicit way but the final expression is slightly 

complicated and so it will be omitted here. 

In order to show some other aspects of the non

stationary problem we consider the case of a strip O < y < b 

with a coast line y=O and an ocean boundary. In order to 

simplify the discussion it will be assumed that the wind 
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field is of the form U=O, V= -f(t) and that the resulting 

motion does not depend on the x-coordinate. Then the problem 

(3.4L (3.7) and (J,8) reduces to 

~ 2-
(}.27) 2 - K ~ =0, 

dy 

with the boundary conditions -
( 3 . 28) 

d 'r = -~( p) for dy 

(3. 29) r = 0 for 

The solution is obviously 

( 3. JO) ~ = ~ ( p) sh ~ ( b-y) 
J T k. ch K. b 

y=O J 

y=b 

The eigenvalues of the problem are determined by the poles 

oft i.e. the zeros of ch~ b. 

Taking the values '"r..=0.12,.!l=0.6, b=2n:: of the North Sea 

model the following results are obtained. 

2 1 '1 2 
a) i\=0.12, ..n=o p + i\p+( 4~n) =O, n=0,1,2, ... 

p = -0.06 + i 0.24 

p = -0.06 + i 0.75 -
p = -0.06 + i 1.25 etc. -

b ) 7\ =O, .0. =0. 6 p2+ l n 2+( ;~n) 2 ! =O:i n =0, 1, 2, . , . 

p = + i o. 65 -
p = + - i 0.96 

p = + i 1,39 etc, 

C) i'.=0.12, n =o.6 

".) 2 2 1 1 2 1 1 2 
p~>+2Ap+{JI. +.n. +( 412n)} p + I\ ( 4~n) =O, n=0,1,2, ... 

p = -0.0173 -0.-11 + i o.65 , -
p = -0.067 -0. 09 + i 0,95 , -
p = -0.091 -0.07 + i 1.38 , -
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This simple example shows an important hitherto not 

observed effebt; If either~ or n vanishes the free motions 

are damped or undamped oscillations. However, if both~ and 

n differ from zero there results another sequence of real 

negative eigenvalues which corresponds to a sequence of free 

motions with a pure damping. The dominant eigenvalue is 

p= -0.0173 which is nearest to the origin. The effect upon 

the non-stationary behaviour of the sea may be illustrated 

by means of the special case of a step-function wind field 

f (t)=9(t). For the elevation at the coast y=0 we obtain 

(3.26) 

Laplace inversion gives with the above numerical values 

(3.27} 'r ( 0 t) 2 '7t - 4. 35 e-0. 017 3 t + ... ) x, j = 

The analysis of the North-Sea model is much more 

complicated and will not be discussed here. 

The results are very similar to those of the simple strip 

model. Again the eigenvalues appear in groups of three 

corresponding to a pure damping and damped oscillations. 

The lowest eigenvalue is here p = -0.074. The response to 
0 

a step-function wind field is here 

( 3. 28) 3"(x,0"t) = 2i':7 - 0.77 e-o.o74 t + .•. 

For further details the reader is referred to the papers on 

the North Sea Problem. 
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