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'he following abbreviations are used:

L.t.8. = linear topological space, n.l.s. = normed linear space,

>.n.s. = sequentially normed space, u.s.n.s., = union of sequentially

~ormed spaces, c.s. = conjugate space.

sbsorbing set '8.| countability (first axiom of) 0.
convergence in a8 u.s.n.s. 57.

calanced set 3.| convergence in the c¢.s. of u,s.négn

3anach space 27.| convex set :

sage of neighbourhoods -9,

younded functional on a 1.t.s. 15.] dense set 10,

" . " "n,l1.s. 30.| distance 19.
sounded operator on a n.l.s. 283.
roomdad et of a 1.t.s. 13, | equicontinuous 22,

: L I =T 28.| equivalent 36,

K " " s n.s. 4,

. " "M u.s.n.s. 57.| fundamental sequence 16,17.
csed set 9. limit 10.
crpect {sequentially) 10, | 1limit point 9.
cmparable - 7 36.| linearly independent 7.
zomplete {in the weék resp} strong linear operator 7.

sense) 16,17.| linear space 6.
soncordans 36.
ronjuzote space of a 1.t%.s. 6. | metric space 19.
" u 1" " n.l.s 5 30.
: n Ts.n.s. Wl norm 27.
. " " y.s.n.s. 57. | normed space 27.
rcatcinuous linzer IZunctional on
1.t.s. 15 | norm of operator on n.l.s. 28.
" " " n.l.s. 30. { norm of functional on n.l.s. 30.
! . " 5.n.8. L3,
! " " u.s.n.s. 57. | open set 9,
cntinuous linsar operator on
1.t.s8. 14 . | order of functional on s.n.s. b
" : " n.l.s. 23,
: " " s.n.s. 50. | perfect space 53,

mn.8.nN.8.

59.




separable 10.] topological space ¢

sequentially coumpact 10.] totally bounded 2°

sequentially normed space 37.

space C(0,1) 27,3%,] union of sequentially normed
spaces 57

" K(a) 12,15,38, 44 45 53,

" K 57.1 weakly bounded subset of the c.s.
strongly bounded subset of the c.s.| of n.l.s. | 3C
of n.l.s. | 31.| of s.n.s. Le
of s.n.s. | 46 .| weak convergence in the c.s. of
strong convergence in the c.s.of 1.t.s. 1€
1l.C.s. 17.1 n.l.s. 3C
n.l.s. 31.1 s.n.s. Le
s.n.s. b6,
symmetric set 8.

Some importan® tTheorems

1. Baires category theorem (4.1) 2C

2. Haugdorff's criterion on compactness (4.3) 22

3. Theorem of Arzela-Ascoli (4.4) 23

). Banach's theorem on the inverse operator (4.6, 5.4, 8.2) 25,30
and 50

5. Principle of uniirorm boundedness or the theorem of

Banach-Steinhaus (5.3, 5.8, 5.9, 7.4) 29,33,34,47
6. Hdahn-Banach's extension theorem (5.6) 31
7. Riesz representation theorem (5.10) 3k
8. Completeness of the conjugate of 2 s.n.s. (7.5) L8
9. Equivalence of strong and weak convergence in the conjugate of

a perfzct spece (9.2) 54
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6. Sequentially normed spaces

ie consider a linear space X with two different norms
"XW]anduxng'

The norms are said to be comperable, with [ x|, being the
weaker norm and ﬂxug the sironger norm, if there exists a fixed
constant C such that

(6"/]) HX“/] g Cnxﬂg

for all xeX..

If X is complete with respect to both norms then 1t follows
from Banach's theorem 5.4 of the inverse operator that comparable
norms are even equivalent i.e. there are constants ¢c' and C” '
such that

(6.2) llxﬂq < ¢ lixﬁg < c" l‘X“1°

If X is not complete for both norms then the process of

completion may be applied for either norm. This gives two com-
plete spaces X,l and in
If uxH2 is the stronger norm then any fundamental sequence in
X2 is also a fundamental sedguence in qu Hence to any element of
X2 there corresponds a unigue element of an It is possible that
different elements of X2 correspond to one and the same element
of Xq, In order to exclude this the norms are reguired to be
concordant inthe following sense.

The norms x|, end )(xﬂ2 of the linear space X are said to

be concordant if for every sequence which is fundamental for

both norms the convergence to zero for one norm implies that
for the other norm.

Example e consider the space of all functions f(x), 0§x $1,
which have a continuous derivative.
"The norms

[, = mex | £(x)] Il

are concordant.

I

wex { |£()] + ()]

However, the norms
Ielly = mex | £(x)] helly = max {1eG | +]e' (o)}

are not concordant. We may take a sequence fn(x) with £ (0)=1

and which converges uniformly to zero. This sequence is a
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fundamental sequence for both norms which converges to zerp for
the weaker norm but which does not for the stronger norm since
e o2 1 for 211 n.

In the case of concordant comparable norms we have & one-
to-orne correspondence between the completion X27and’a part of
the completion X, i.e.

X,l:3X2:>X°

From two concordant 1’1or‘ms{}xl{,I and Hxﬁ2 which are not
comparable we may ecasily derive a set of ooncordant comparable

norms by introducing the third norm'“xﬂ = max-{ﬂ 40 ”Xﬂg}n

Yie shall now introduce the concept of a sequentially normed
space which i1s of the utmost importance for the theory.of S
generalized functions.

We consider a linear space X with a countable syocem of norms
P PR Y T F1

In thluspace a topology is introduced by deflnlng a system of
nelghbourhoods of zero U(m,z) as

(6.3) ~  lxlq<e o, fxlp<e , oo, fxl <k
 One may easily verify that by this choice X becomes a linear
topological space which satisfies the first sxiom of countability.

The linear space X with a countable system of concordant

norms with the above given topology is said to be a sequentially
normed space.

The topology of 2 s.n.s. implies the following definition
of convergence. The sequence x _ converges to zero if'nxnﬂm~+0
forhoaohnindiviQual m., Similarly the sequence X is & fundamental
sequence if for each m and every & » 0O there is & number N(m,s)
such that for k,1>N we have | x ~X§Y‘< &

Vie may always assume that the sequence of concordant norms'f

1

is arranged in order ovancre851ng strength
(6.4) B=ll, ¢ I=ll,5...5 nxnm § ...

In a s.n.s. X with (6.4) the process of completion may becaf
ried oucw1th respect to each norm. In thls way 3 neqtlng
sequence of Banach spaces ‘
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K32 %, 2 ..o 22X D coe ™ X
is obtained. It is to be expected that the limes of'Xm, i.e. the
intersection of all Xm, gives the completion of X with respect
to the topology (6.3).

In fact, we have

Theorem 6.1
The s.n.s. X is complete if and only if it coincides with the

intersection of all individual completions X .

Proof ' '

j? If X= lim X we take a fundamental sequence xn(n=1,2,..u) in
X and show that it has a limit in X. The sequence x_ is by defini-

m). The con-

tion fundamental in each X_ and has there a limit x
cordance of the norms says that all limits x(m) (m=1,2,...) are
essentially one and the same limit x which therefore belongs to
XnISinoé now Hxn-xﬁmﬁbO for each m the element x is the limit of
the sequence xn'in the topology of X so that X is complete.

g? If X is complete we take an arbitrary element x of lim X  and
show that xe X.

There exists for each number m an element X, € X for which

Ix-x_ 0}, < % ,for X is the completion of X with respect to the

m norm,

It is now easy to see that the sequence X, converges to x for
each individual norm, hence X > X in the topongy of X. In fact
for the pth norm and for m=>p

-zl s lx-x < 1/m,

so that lim |Jx-x_ ||, = O for arbitrary p.

Mt m"p

It follows that X is a fundamental sequence in X so that
the completeness of X implies xeX.

From now on any s.n.s. will be tacitly assumed to be complete.

Example

In the space K(a) of all infinitely differentiable functions ¢(x)
(cf. section 3) a sequence of concordant norms may be introduced
by means of

L= nex { Lol 1o’ Gl .. Jet™ N}

m=0,1,2, ...
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The zero neighbourhoods U(m, 8 [(@ﬂ , coincide with those
introduced previously in section 3 and determine coneequently
the same: topology '

That the normsare concordant follows from the fact that if o
@,@’,D,D,o(m) uniformly converge to zero in some interval (-a,a)

m+"1 - R
( ) converges to zero. R

also ¢«
- It can be shown by means of the preceding theorem that

K(a) is oompiete, Let Km(a) denote the space of all functions

venishing outside |{x| £ a which have continuous derivatives up.-

to the m'" order and let K(a)"  mean the completion ‘of K(a) with

reSpeotito‘the norm m. Then it is clear that

TE)" e Ky(a).

There remains to prove the opposite inclusion. According to . .-
Weierstrass' theorem any function @( )e K (a) can be. approxi-
mated by polynomials P1(X) in such a vay chat P (k)~»,g(x) uni--
formly in x. Take a function e( ) e K( ) which equals 1.in the
interval | x|sa-J with & Sufflclently small positive. Then -

m
e(x) Pn(x) converges to ¢(x) in the topology of K(a) so that-
w(x)eX(a)". This means | ‘
K (a) < K(a)™
so that

,(a) = K@)"

Since K(a) is the intersection of all Km(a) it is: complete.

Example
In the space S of all lﬂflhlEEly dlfferentlable functlons e(x)
for which
1x1% (p(n)(x)w-;-()' 1% | — o
for all k and n (k=0,1,2,...; n=0,1,2, )‘ ‘ }
a sequence of concordant norms may be 1ntroouoeo by means of
k 1 .
ol = mex | x w(“)(X)i - m0,1,2, 0
k,nsm -

It can be shown in a 51mllar way as bezore thBE s is 2 (complete)
s.n.s.

A s.n.s. may be considered as a linear metrio‘soece by
defining the distance d(x,y) as



iNg¥n

8] 1 ifx-ynm

e e L e

The vefification'of’the six axioms of the linesr metric space
(cf° section 4) is' left to the reader. Ve note the important
“fact that the natural topology of the linear metric space is
1»equ1valent to the' topology of the s.n.s. ‘ S

0 Td fact, the system of zero neighbourhoods V(&) is according

(6 5) determined by spheres

66 . 89) 1 ﬂX“m P
(6.6 L o <7
~a, Bach U(m,e) contains a V(&) for (6.6) implies
E*k W < d for all k
or 1
oy
xl, <« — -
ko g oky

CIf ¢ is sufficiently small for k=1,2,...,m we shall have

"X“k < & , _

b. Each V(&) contains a U(m,&) for it is possible to determine
m and & such that

. <« & — —_—
e o Tl T TwE i ok Sy ok

no

From the equivalence of these tobologies it follows that a
complete s.n.s. is also a complete métrio Spacé5 This fact makes
it possible to apply the important theorem 4.1 of Baire and its
consequence theorem 4.2.

We consider in a 11near space X two sequences of norms
I=ly = l=ls HXR

EIHPR P Tl

Then the first sequence is said to be weaker snd the second to

A

e o o

fh

HA

fiA

TS
iA

TN

c o o

CHA

be stronger if each norm quk (k=1,2,...) is weaker than some

norm Jxf, = of the second sequence.

If this 1S the case then each sequence of elements XgsKops oo

-which convergeswith respect to the second system of norms con-

verges also with respect to the first system of norms. We shall
show that also the converse is true.



4

If each sequencé ) 13 Xps oo which converges for all norms
"X“Q (k=1,2,...) also converges for every norm ﬂxﬂ (k=1,2,..)
.then the first system is weaker than the second systems
- .‘ If the proposition is not true there exists .2 norm{}x”
whléh is not weaker then any norm an (n~132,°,°)° Hence, for
each n we may find an element x, for whlch “Xnum> n]lxnﬂé_g By
~scelar multiplicetion, it cen be arranged that |lx |l =1 so that
“xnﬂé«ﬁﬂ/n; The sequence x_ (n=1,2,...) clearly converges to
zero for each norm of the second system. However, this would
imply convergence to zero for all norms of the first systemvwhich
contradicts the assumption flx [, = 1 for all n.

If convergence to zerc in the first system implies conver-
gence to zero in the second system and vice versa then the
systems are said to be equivalént, In view of the preceding
argument a necessary and sufficient condition for equivalence
is that each norm of one system is weaker than some norm of the
other system.

The definition of & bounded set follows that of bouﬁdedness
in a more general linear topological space. |

The set S in a s.n.s. is bounded if and only if

l)x“m <C (m=1,2,...) for all x&S.
The notion of a bounded set in a s.n.s. is essentially different
from that in an ordinary'normed space. For exampie in a2 normed
space the unit sphere S(|x | £1) is bounded and the sets nS
(n=1,2g,Qc) cover the whole space. On the contraery in a s.n.s.
in general there exists no bounded set S for which the sets nS
(n=1,2,...) cover the whole spaéeo In feact, 1f S is determined
by ]{x“ <C.  (m=1,2,...) then an element x, for which
Hx fl m> mC is not contained in any set nS. That such an element
actually ex1sts w111 be prOJed below

Theorem 6.2

Let X be a s.n.s. with 2 séqdehce (6.4%) of Aorms and let X De
the completion with respect to the mCn norm; Then if all Xm'

(m=1,2,...) are different it is possible to find for any sequence
of positive numbers CqsCps-0. 8N element x& X for which

=l 2 o, (m=1,2,...),
Proof ' -

Ve shall first show uhaﬁ for eaoh 1nteger m and any choice of
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positive numbers ¢ and ¢ 1t is poggible fto find an element x
for which

hxly s o0 Axlyqze’

In fact, if such an element cannot be found then =l s
elways implies anm+1< ¢' which would lead to equivalence, i.e.

to & —Xqu

"Next we shall give an expllclt comqtructvon for an element x

which satisfies the reguirement ts of the lemma. We put x—x1+x2+..

and determine elements X5 xggeeq for which
x,]]\,l > e+ ;
2ol <2 I=olls > 02+1+{}x1ﬁ2
4 ] N
nx3ug<*22 “XB!EB > CB+/l'* “X/IHB‘ HXE“B
ete.

w0
Then 1t is clear that the series E:‘ X, converges for all norms.

Further we have

, 0 m-"1
”X“m % H? mnm h kg%L1 izxkum mlz;i “Xk“m 2
O E1 1 S I U It S

g.e.d.

At the same time we have now proved that the topology of
a s.n.s. obtained by a sedquence of non-eguivalent norms, fqr
which the completions X (m=1,2,...) are all different, is essen-
tially different from that of a normed space. It is easily seen
that it is already sufficient that the sequence | x]|_ (m=1,2,...)
contains a subseguence of non-equivalent norms. On the other
hand a sequence of norms for which af'ter a certawn index all
norms are equlvalent clearly leads To a s.n.s. which is merely

a normed space.,
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7. Functionals on a sequentially normed space

In section 3 we studied a number of properties of continuous

linear functionals (f x)_on a linear topological space X, In
sectlon 5 the general ‘theory was applled to the 1mportant spe01al
case where X is a normed space, For a clear understanalng ‘of ‘the
foundations of the theory of generalized functions oy distributi-
ons we need some detailed knowledge on continuous linear func-
tionals on a sequentially normed space which is somewhat
between the too general linear topological space and the too
special normed space.
However, as we shall see below a number of properties of functionals
on a s.n.s, are closely analogous to those of functionals on a
normed space, T ,

It will be assumed that X is a complete s.n.s. with an

increasing sequence of concordant norms

(7.1) Py s Il s Il
A base of zero neighbourhoods is formed by the spheres
(7'2) HX“m < E (m:/lﬁe."-\’.! E‘ > O)
Convergence xnweO in X means that

(7.3) lim x| =0 for each m.
n-=co
Ifr Xm denotes the completion of X with respect to the norm

"Xﬂm we know by theorem 6,71 that

(7.4) X 2%, 2 .. 22X 2 ..., lim X = X.

We repeat the deflnltlon of a contlnuous 11near functlonal
a° (f x) is llnear if _
' (f,c&rxﬁ-ﬁy) = Ql(f,X) +’/3(f:_y),

° (f x) is continuous if for each & » 0 bhere ex1sts a zero

2
nelghbourhood U such that |(f,x)]<¢ for all x 2 U.

o ‘As we have seen in section 3 for a linear topologlcal space
any continuous linear functional i1s bounded on some nelghbourhood
of zero. Since for a s.n.,s. a base at zero is formed by the
spheres fxll; <& , Ixl,< & ,..., Hxﬂm< £ ,... this means that
for any continuous linear functional there is an index m and a

constant C such that

(7.5) [(r.)] ¢ o Jix]



_59_

Letug assume that each space X(m) satisfies the first axiom
of countability. Then 1t can be stated that a llnear operator
is continuous if and only if it is bounded.
Theorem 10.3
For a linear operator T on the union X(w)of 30.8.'s in which

the first axiom of countability is satisfied continuity and
boundédness are equivalent.

Proof

It is sufficlent to show that T transforms any arbitrary.X(m)
in some Y(p) for then we may apply theorem 3.1. First we note
that in a linear topological space in which the first axiom of

countability is satisfied for any sequence of elements xn”

(n=1,2,...) it ‘is possible to find numbers », such that
ﬁhxnuwoe In fact, let U,2U, @ ... be a decressing base of zero

neighbourhoods then 1t 1s sufficient to take_zﬁn such that
%hxnaaUn

Let us suppose that the linear operator T in X(w) does not trans-
form some X(m into some Y(p), i.e. TX<m)¢ Y(p) for no.p. Then
we may construct a sequence X, ¢ X(m) (n=1,2,...) such that

Tx, ¢Y ‘

Let the numbers %n be chosen such that = xn5+o If T is coﬁtinu—
ous then it follows that also T(mnxn) = Tx =0, However, this
implies that all TXn belong to some Y P contrary tothe
assumption. If T is bounded then the elements = Txn are also
bounded. However, also this 1mplles that they all belong to some

Y(p contrary to the assumption.

For a continuous linear operator T transforming a space

X(W) into a similar space th) we may determine & conjugate

(w)’

. t
operator T which transforms Y(“) into X

(T%gs X) = (gs TX).,

where x ¢ %(® ang gev(® | In virtue of the continuity of g end

according to

-
T also the conjugate operator T is continuous.

_—
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duced. v ,
I L)t .
The sequence of functionals f & X' 18 said to converge

B . - B n
"~ to the functional f if for each x & x (@)

lim (fnsx) = (f,X) .

=00
This type of convergence might be called weak convergence. We
shall, however, not introduce any other tType of‘convéfgencen

Thecrem 10,1

A m o 4
If all K( ) are sequentially normed spaces then X
with respect to its (weak) convergence.

(w)' is complete

Proof

Let the functional f be defined by (f,x)=lim (fnsx) then
obviously f is linear. According to theorgﬁfa)715 for each X(m
it is continuous. ?hen by virtue of the definition it is also
continuous in X(w '

!
The set S of X(w) is said to be bounded if for arbitrary

(w)

As regards the principle of uniform boundedness we may

xeX the numbers (f,x), f& S are bounded.

prove the following theorem

Theorem 10,2

If all X(m) are sequentially normed spaces and if S 1s a'bounded

1
set of X<h0 then the numbers (fgxgﬁ 23 are uniformly bounded
on an arbitrary bounded set Ac;X(w .

Proof

(@)

such that Ac:X(m) and that A is bounded with respect to its

Using the definition of boundedness in X there 1s an index m
topology. The functionals fe 5 are in particular continuous on
LAm) o . . - lm
X and since they are bounded for each element x ax< ) they
y N I

form a weakly bounded set in K( ) . But then according to theorem
7.4 they are also strongly bounded, 1.e. sup |(f,x)l< oo for
fedS and xe A, ’

The linear operator T transforming e union of s.n.s. X(“)
i Ny . o W) . . .
into itself or into a similar spacefY( ) is said to be continuous
e1d to be bounded

it x 0 (n=1,2,...) implies Tx ~+0. It is

S
if it transforms every bounded subset of X w) into a bounded
subset of v(@
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10, Union of sequentially normed spaces

Let there be given an increasing sequence of linear
topological spaces

m)

X(q)c X(g) c ... C X( c

It will be assumed that at each inclusion convergence is
preserved, i.e. 1f the sequence X & X(m) converges to zero
then it also converges to zero in the larger space X(m+1),

The union of all x\™) (n=1,2,...) will be indicated by
X(M), It represents a linear space with the usual linear rela-
tions, o _

We shall introduce in X(w) the following type of conver-
gence. The sequence x (n=1,2,...) ?i)elements of X\ ig
said to converge to the limit x of X if all elements X, and

)

X belong to some subspace X(m

and if XX in the topology of
L(m)

P

“) of the linear topological spaces X(n) will

The union X(
not be considered as a topological space and no definition of
open and closed sefs in X(:"’g will be given.

Example '

We consider the union K of the spaces K(m) consisting of
all infinitely differentiable functions ¢(x) which vanish
outside (-m,m). Convergence @n~¢(pin K means that all ?n
and ¢ vanish outside some interval (-m,m) with a fixed m and
that ¢ _(x) and each derivative converges to ¢(x) and the
corresponding derivative uniformly in (-m,m).

The set S::X(w) is sald to be bounded 1f there is an index
m(s%ch that Sc:X(m) and that S is bounded in the topology of
xim)

The linear functional f on X(w) is said to be continuous

if it is continuous on each X(m). If each space X(m) satisfies
the first axiom of countability this definition is equivalent
to the following:
The linear functional f is continuous if it is bounded on each
bounded set of X(w),

All continuous linear functionals on X

(o0)

jugate space X(w) which, of course, is a linear space.

form the con-

In this space the following type of convergence will be intro-




Proof

Remembering that X1:>X2 ™ ... =™ X there are two possibilities,

Either all Xn are separable or at least one 1s not separable,

In the first case a dense set S in X 1s obtained as the
(countable) union of dense sets S, in X (n=1,2,...). In the
second case we may assume e.g. that Xq is not separable.
Accordlng to the ax1om of ch01ce we may imagine a not countable
subset Zﬂ of X whlch is bounded with respect to the norm of

X4
some positive numoer £ . Zq may not be bounded with respect -to

and for whlch the d;stance of any two points always exceeds

the norm “-ﬂg but then we can take a bounded subset Z, of Zq
which 1s equally not countable.

Proceeding in this way a nesting seguence of not countable

sets Z_ is obtained of which z, is bounded with respect to the
norm | - . We note that for any two points of Z ﬂX*—X”“n> &
for all n.

Now we take a sequence x, (n§1,2,ug,) by taking for x an
arbltrary element of Z . This sequence 1is bounded in the topolo-
gy of X but clearly 1t does not contain any converglng subsequern-

ce, However, this contradicts the property of compactness.

From the proceﬂlng theorems we may at once deduce
Corollarg
In the conjugate space of a perfect space each bounded set is

ompact in the weak and stfong sense.
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2 Let fdwwo in X'. Then according to theorem 7.3 there is an

index 1 such that fne Xi

respect to 1ts norm. We take the index m»> 1 such that the

and that the sequence is bounded with

boundedness of every sequence X, € X with respect to the norm
H-H implies its compactness with respect to the norm |-}
The sequence f_which is bounded for the norm R'“T is also
bounded for each higher norm and in particular for ||. Hm

shall show that fnm»O with respect to the latter norm, i.e.
(fn,x)«+0 uniformly in the unit sphere Hxﬂm'éﬂ, If this were
not true it would be possible to construct a sequence X such
that with some positive number &

g, s (n=12,...) . (£,x )|z e.

The sequence X is compact for the norm H'Hl’ say that XX
in Xm. But then

f(fn,xn)l £ l(fn,xn—x)l + 1 (r_,x)] 3 Hf ( | = —xll + l(fn,x)h

so that with n-so00 a contradiction is obtained,

The conjugate of a perfect space is in general not perfect,
it is not even a sequentially normed space, However, it can be
shown that just as a perfect space it enjoys the property that

its bounded sets are compact,

Theorem 9.4
In the conjugate space X' of a separable s.n.s. X each bounded

seguence fn(n=1,2,,=,) contains a weakly convergent subseguence.

Proof
e can be

Using the diagonal process a subseguence fY1 s 0
constructed which converges for each element xkc (k=1,2,...) of
a dense set S in X. The chosen subseqguence is bounded and'belongs

to X% for some index m (theorem 7.3). The functionals fn ’fn

S e
converge on S which is dense in X and hence dense in Xm :
Then (corollary 2 of theorem 7.4) they are weakly convergent to
some limit fe.Xéu This means that for any x:eXﬁ} and in particu-
lar for any x eX, (f = x)=(f,x) dg.e.d.

This theorem ho%és in particular for a perfect space, for
we have |
Theorem 9,5

A perfect space is separable,
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Then i1t will be shown that S is compact with respect to the
norm Jl?lhﬂ_q. The derivatives of %(m-ﬂ)(x) (pes) are uniformly
bounded so that according to the theorem 4.3, of Arzela-Ascolil
it is possible to select a uniformly convergent sequence

(m-1) (in-1)
0. " x), e, (
@2( )( )seo. (k=0,1,...,m-2) are uniformly convergent°

x),... . Then also the seguences (x),

This means- that the seqguence ¢n(x) converges with respect to
the norm N@ihnéﬂ‘ Hence, according to the theorem K(a) is perfect.

Theorem 9,2
In the conjugate X' of a perfect space X strong and weak conver-

gence are equivalent.

Proof A

It is sufficient to shdw that fnw&o in the weak ‘enze implies
fhu»o in the strong sense, 1.e. (fn,x)w»O uniformly on every
bounded subset- A of X, It follows from the first corollary of
‘theorem 7.l that the set £ (n=1,2,...) is already strongly
bounded. If (fn,x) is not uniformly convergent in a bounded set
A it is possible to construct a sequence X (n=1,2,...) such
that }(fn,xn)]> £ for some posgitive number & , On the other
hand the sequence X, has a limit point x since A is compact. Let
us assume that X X Then according to theorem 7.7 we have
(f,xn)mk(f,x) uniformly in every bounded set of X',

If for the latter set we take the elements f then we have in
particular (fn,xn~x)m¢o. But since also (fn,x)~+0 we would also

have (fn,xn)vwo thereby obtaining a contradiction,.

For perfect spaces in which the conditions of theorem 9.7
are satisfied something more may be sald concerning (weak or

strong) convergénce in the conjugate space,

Theorem- 9.3 o
With the conditions of theorem 9,7 the sequence f (n 1,2,...)

converges (weakly and strongly) in X' if and mnlj 1f there is an

index m such that .all fn belong to X% and are convergent w1th

respect to its norm.

Proof

a1 Iff e Xé and an—fﬂm~+o then for each x & X we have |
[(fn r,x)| s nfn-fnm uxﬂm«wo so that f_ 1is (weakly) convergent
to £ in X' '

o
7 s
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9, Perfect spaceg

A sequentially space with the property that all its

bounded subsets are compact is said £0*be a-perfect space.

We recall the property enjoyed by any linear topological space
that any compact set is also bounded (theorem 3.2). A simple
criterion that a given s.n.s. be perfect 1s:

Theorem 9.1 N

Let X be a sequentilally normed space with norms

Ixly s b=l s o.0g izl

and let there be given a sequence of indices m, < My <a,,<1nk< o

Then if from every set S<X which 1s bounded with respect to the

norm || -ﬂm it is possible to select a sequence with distinct

elements k+/]which is fundamental with respect to the norm

I, the space X is perfect.
k

Proof

Let S be a bounded subset of X. In particular S is bounded with
respect to H “ . It contains a sequence XgqsXqns « - which 1is
fundamental w1tg respect to |- H . This sequence 1is further
bounded with respect to ||| ana contains a subseguence

X5qsXpps - .. which 1is fundame%tal with respect to H~Rm

Continuing this procedure a system of sequences 1is ob%ained

X X X

14 12 s Im
Xoq  %op om
X X A~ X

m7. me mm

each of which is fundamental to the previous norm. The diagonal
sequence Xgq5%o0s e - is fundamental with respect to all norms
i,e. fundamental in the topology of X, Since X is complete the

limit exists so that S is compact.

Example The space K(a) is perfect
In fact, let S be a bounded set with respect to the norm

{l@l!m = max {}@(X)l,,,., l@(m)(x)[}, mz 1.
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For a sequence T  (n=7,2,...) we may introduce weak
convergence in the usual way as follows:
A sequence Tn (n=1,2,...) of continucus linear operators

is said to be weakly convergent to the limit T if

1im.Tnx =T x for all xeX

in the topology of X,

It is not a priori obviocus that the limit operator is linear

and continuous, Clearly it is linear; that it is also continuous
is expressed in the following theorem,.

Theorem 8,4

The 1imit T of a weakly convergent sequence of continuous linear

operators Tn mapping a s.n.s. X into a s.n.s. Xﬁ'is also linear
and continuous.

Pfoof 7‘

In view of theorem 8.1 it is sufficient to prove that T trans- |
forms every bounded set Ac X into a bounded set TA of X'ﬁ In
order to prove the boundedness of TA we may use theorem 7.2,
Hence there remains to show that for each continuous linear
functional g the numbers |(g,Tx)| , xeA are (uniformly)
bounded, -

With a fixed g the seguence of continuous linear functionals

£ defined by.(fn,x) = (g,Tnx) (n=1,2,...) is weakly convergent
to the limit (f,x)= (g,Tx).

According to theorem 7.5 the 1limit f 1s also continuous. Howevér,
this means that sup|(f,x)] <o for x ¢A., But then also
sup}(g,Tx)(< c0 for x €A which proves the theorem.

We note that this theorem rests essentially upon the principle

of uniform boundedness (see theorem 5.3).
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Using the concept of concordant topologies the following

theorem may be formulated

Theorem 8,3 Qﬁﬁﬁﬁﬂi '

If X and X*c X are (complete) sequentiallyYspaces with concordant

topolbgies then convergence X =X in the topology of X * implies
convergence X —+X in the topology of X.

Proof

Let Hxﬂm and ﬁxuﬁ (m=1,2,...) be the norm systems of X and X .
Then we introduce a third norm system by means of

Ixl) = max'{ﬂxﬂm, lxl0) } . First we shall show that X is complete
with respect to the new norm., In fact, let X, e X" (n=1,2,...) be
a fundamental sequence for “X"%. Then it is also fundamental

for Hxﬂm and Nxﬂ% so that x -»x_ in X and xnf*xg' in X",
From the concordance of the topologies it follows easily that
xoa:x;'. Hence also X =X for the new norm,

From the corollary of theorem 8.2 it follows that in X ¥ the
comparable norms Hx”& and HX“% ari%equivalent.

Let now XX in the topology of X . This means of course

that Mxn—xoné~*o (m=1,2,...). The equivalence proved above says
that then |jx -x|

in the topology of X.

\ggﬁo, But this implies Hxn_xonmw*O i.e. xp= X
This theorem means that with the condition of concordant

norm systems convergence in the narrower space implies convergen-

ce in the wider space. Also we have

Corollary

Any continuous linear functional on the wider space X is also

. . . e
a continuous linear functional on the narrower space X .,

In section 1 we have seen that the linear (continuous)
operators T(Xw+X*) where X and X © are arbitrary linear topologi-
cal spaces form a linear space, In fact, the following definitions

of addition and scalar multiplication

(T, + T.)x = T.,x + T.X,

1 2 1 2

(AT)x = =~ Tx,
where x X,
clearly satisfy the axioms of the linear space., Moreover, it 1s
easily seen that the continuity of T1 and T2 implies that Qf

T,I+T2 and the continuity of T that of =aT.
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8. Operators on a sequentially normed space

We consider a continuous linear operator T which trans-
forms a s.n.s. X into-a s.,n.s. X .

" The general theory of a contlnuous llnear operator on a linear

topologlcal Space has been given in sectlon 3. According to
the theorems?3, 3 and 3. 3 the continuity of a linear operator
on a gs.n.s, is equ1va1ent with boundedness The theory of
linear operators was contwnued in sectlon 4 where we dlscussed
Banach's theorem of the inverse operator with respect to a
complete_linear metric space, Since a s.n.,s. 1s also a linear
metric space this important result also holds for a s.n.s.

We repeat the definitioh of a continuous linear operator.
1° Tx is linear if

T(ex+py) = oTx + fp Ty.

© mTx ig continuous if for each neighbourhood V of Tx there is

2
a neighbourhood U of x such that T U <« V.

Next we repeat the following theorem
Theorem 8, 1

- A linear operator 1s continuous if and only if it transforms

bounded sets into bounded sets.

‘Banach's theorem 4.6 may be formulated as follows
Theorem 8,2

A continuous linear operator T which transform a (complete)s.n.s.

# X .
X one-to-cne into a s.n.s. X has a continuous inverse T

As in section 6 we have the following corollary

Corollary. -

If X is-a-(complete) s.n.s. with respect to two sequences of

. norms: Hxnm. and sgxﬂé (m=1,2,...) and if these sequences-

are comparable then they are eguivalent,
Let X and X be two linear topological spaces where

Xﬂ is a subspace of X;'ﬁhen the topologiles of X and X*eare said

to be concordant if for each §equence X e X ¥ which converges
to zero in the topology of ¥ " and which at the same time con-
verges to an element x in the topology of X we always have x=0.
A common situation in which this arives is that where the norms

in X" are stronger than those in X,

S
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Again the sequence fn is strongly bounded. We now apply theorem
7.3 which sayg that all fn belongs to some X& and are bounded
there, Since (fn,x)~%(f,x) on X which is dense in X convergence
also holds in Xm,

go Ir fh~*f for x @Xm then convergence certainly holds in-the

subspace X of Xm.

Later on we shall need the following lemma
Theorem 7.7

If the sequence x (n=1,2,...) converges to the element x of a

s.n.s, X then A(f,xn)—a-(f,x) uniformly for every bounded
subset of functionals f of X'.
Proof
We note that by theorem 7.4 it makes no difference whether
bounded is meant in the strong or in the weak sense. Let B be a
bounded subset of X'; then by theorem 7.3 we know that there
exists an index m suchthat Bc:X% and that B is bounded with
respect to its norm, say

ﬂfl{m <M, feB,

For each n we have

fiyg | (£,x -x)] s fi:g el fx, -xl, < u ”Xn—xum‘

Hence (f,xn-x)~w0 uniformly in B,

W——

s
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Corollary 1.

If>fn is a weakly convergent sequenoe<ﬁ‘continuous linear

,funcpionals on a s.n.s. then £ is strongly bounded.,

Corollafy 2

The sequence fn of continuous linear functionals on a s.n.s.
is weakly convergent to zero if and only if the sequence is
strongly (weakly) bounded and if (fn,x)~+0 at least for those

X belonging to a set which is dense in X.

We are now able to prove the following importanttheorem.r
Theorem 7,5 J

The conjugate space of a sequentially normed space is complete
with respect to weak convergence,

Proof '

We qpngidér,a weakly fundamental sequence fnjaX' (n=1,2,f.i).
This means that for each x &X the sequence (fn,x) converges to
some limit, say (f,x). The limit is obviously a linear functional.
There remains to prove its continuity. We have just shown
(Corollary 1 of the preceding theorem) that the sequence fn is
also strongly bounded. Then according to lemma 3.9 there exists
a neilghbourhood of zero U on which the functionals fn are

bounded:

| (£,,%) 2 ¢, xeU
But then also
L(f,x)] = 1im ((fn,x)ig c, xelU.
1~ CO

This means that f is bounded on U which according to e.g.

theorem 3.7 implies continuity.

Theorem 7.6
The seguence fn of continucus linear functionals on a s.n.s.

converges weakly to the functional f if and only if all fn are
continuous functionals on a common normed space Xm and 1f they

are weakly convergent in Xm i.e,

(£ X) s (T,x), XxeX .

Proof
1°  Let £ be weakly convergent to f.




B
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index m the set S is contained in X& and bounded with respect

‘to its norm.

Proof

1% Let ScX! and be bounded in X!.

"Take the zero neighbourhocd Ue X with Hxﬂm s 1. The bounded-

ness of s”in“xé means that
l(r,x)} ¢ M  for xaU, fe&S.

But this means that S is bounded on some zero neighbourhood of
X, Hence S is.bounded on every bounded set in X, i.e. strongly
bounded.

go Let S be strongly bounded.

According to lemma 3;9 there exists some zero neighbourhood U
of X, say Hxlh}c &, for which
sup | (f,x)] < o
fesS
for some constant M, But this means that every functional f &S
is bounded on U by the constant M so that f eXm with a norm not

exceeding M/é& q.e.d.

It will be clear that strong convergence implies weak
oonvergénce and that any strongly bounded set 1s also weakly
bounded. However, as for Banach spaces (theorem 5.8) we have
Theorem 7,4

A weakly bounded set of X' is also strongly bounded.

Proof

It is sufficient +to show that a weakly bounded set S is bounded
on some zero neighbourhood cf X. Consider the set C of all
x ¢ X for which

(7.13) o e,x)) s for all f 8.

]

The set C is closed since for each f &« S the set for which
|(f,x)| s 1 is closed. The set C 'is convex since for each f & S

the set for which [(fyx)tg 1 is convex. Moreover, C is symmetric.
Finally C absorbs all elements of X. In fact, since S is weakly
bounded the numbers |[(f,x)| , fe S are bounded for any fixed

X so that e.g. !(f,xo)fg M and hence k(f,xo/M)lé 1, 1.e.
xo/MfaC, Now we may apply theorem 4,2, Hence C contains a zero
neighbourhood U. On this neighbourhood S 1s uniformly bounded

in view of (7.713). This proves the theorem.




Hg,ﬂm for arbitrary m. We may consider S as a subset of X

Then on S in particular all continuous linear functionals of the
order m, which constitute X' are bounded.
But then theorem 5.3 can be applied, ;

- According to the general theory of sectlon 3 in the conJu—
gate space X' a weak topology and a strong topology can be
intrcduced. 7 ' , »

The weak topdidgj is determined by weak zero neighbourhoods

depending on a finite number of elements xq,xg,,..,xm of X and
a positive number &, The neighbourhood U(x, ;%X ,...,%X,,€) 18 '
defined as the set of those fe X' for which

(7.9)  Mrx)lee, [(f)lee i T(E,x )]z

The set ScX' is weakly bounded if for each xzX

(7.10) sup | (f,x)l< o .
fesd

The sequence f ¢ X' (n=7,2,,,,) is weakly donvergent to £ if for

each X ¢ X
(fl’l’x)m}(fsx)a

The strong topology is determined by strong Zero

nelghbourhoods dependlng on a bounded set B of X and a p051t1ve
number & , The nelghbourhood U(B, &) is defined as the set of
those f eX' for which
(7.11) sup | (f,x)] < e.

XeB ‘
The set SeX' is strongly bounded if for every bounded subSéﬁL;
A of X

(7.12) sup L (f,x) )<=,
xeh, ¢35

The sequence fna,X“ (n=1,2,...) is strongly convergent to f
if

-.:<fr;;$<_>-—§>¥<f,x>

"The notion of a strongly bounded set may here be put in a

51mpler form

Theorem 7.3

The 'set S of X' is strongly bounded if and only if for some




_45_

differentiable functions ¢(x) which vanish outside (-a,a).

We have seen that K(a) is a complete s.n.s. with the norms

m ,
loll,, = max {|o()] , o' ()] .oos Jot™ 01},
. . t ’X_’éa .
m=0,1,2,...
We have seen that every continuous linear functional on K(a)
turns out to be a continuous linear functional on the normed
space Km(a) for some m, The space Km(a) consists of the functions

th order and

¢(x) which have continuous derivatives up to the m
which vanish outside (-a,a). To any ¢ @ Km(a) we may associate
the continuous function w(x)= ¢ m (x). This defines a mapping
of Km(a) into a subspace of C(a), the space of all continuous
functions in (-a,a). It is easily seen that this is a continuous

one-to-one mapping since

loly, = max 1ol le'l oo 1ol™)} 0 omax |ol™]-
- max lvl g ol el
or mdre constructively :
X ‘ X fm : 52 (m)
olx) = [ ey o= [ [ et (500588 0y

Therefore (f,¢) is equivalent to a continuous, linear functional
(g,¥) = (f,9) on the subspace of C(a). According to the theorem
5.6 of Hahn-Banach this functional can be extended to the whole
space C(a). Then we may apply the representation theorem 5.10

of Riess-saying that there exists a function of bounded variation

A{x) for which

a
(2, v) =f w(x) dpm(x).
Hence we obtain ﬂaa
(7.8) (,0) = [ o'™x) apix).
-a

For sequentially normed spaces the fecllowing analogue of
theorem 5.9 may be formulated (principle of uniform boundeduness).
Theorem 7.2 ‘ o
If S is a subset of a s.n.s. X then S is bounded if for each

continuous linear functional f the numberg }(f,x)f , X &S are
bounded,

Proof

According to thé definition of boundedness in a s.n.s. 1t is

sufficient to prove that S is bounded with respect to the norm
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This regult is important enough to state it in the form of a
theorem:
Theorem 7.1

Every continuous linear functional on a s.n.s, is bounded with

respect to some norm in the sequence,

The converse of this theorem is obvious.
The least number m for which (7.5) is true is said to be the

order of the functional.

All continuocus linear functionals on a s.n.s. X form the
conjugate X', We shall now study the structure of this space.

All continucus linear functionals of an order g m, 1.e.
those functionals which are continuous with respect to the norm
of Xm form a subspace X% of X' which is the conjugate of Xm’
Therefore X% is a complete normed space. We have

_8 g
X = g X
k=" K
It is obvious that a functional of order m is also bounded on
the spheres fx{ .. &7, [l=xl ., $1,... so that it is an
element of{X&+q, X$+2,,,. . Hence we have the nesting sequence
! <71 - 1 ;. 1
(7.6) Xge¥y, @ oo @ X .., lim X = X,
The functional f of order m has in X X%+4,.5. the follo-
wing norms
bell, = suwo [ (£,x) ], If],,4= sup | (f,x) | ,...
nX”m:/1 ' % m+1:1
so that
o
(7.7) S]fmng “fnm+1 N

This may be summarized as follows.
Property , _ , .
The space X' which is the conjugate of the s.n.s. X is the union

of an increasing sequence of complete normed spaces with norms

becoming weaker and weaker,

Example
It is now possible to obtaln the general form of agcontinuous

linear functional (f,¢) on the space K(a) of all infinitely




