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6. S.§quenti~)ly~ ;normeg_syaces 

We consider a linear space X with two different norms 

It x II 1 and II x lb . 
The norms are said to be ~o;n;;i~r.@lELJ with U x 111 being the 

weaker norm and II xii 2 the s ~ranger norm, if there exists a fixed 

constant C such that 

( 6 .1) 

forallxe.X. 

If Xis complete with respect to both norms then it follows 
from Banach 1s theorem 5.4 of the inverse operator that comparable 

norms are even equivalent i.e. there are constants c' and c" 
such that 

(6.2) 

If Xis not complete for both norms then the process of 

completion may be applied for either norm. This gives two com­

plete spaces x1 and x2 . 

If Ux" 2 is the stronger norm then any fundamental sequence in 

x2 is also a fundamental sequence in x1 . Hence to any element of 

x2 there corresponds a unique element of x1 . It is possible that 

different elements of x2 correspond to one and the same element 

of x1 . In order to exclude this the norms are required to be 

concordant inthe following sense, 

The norms l!x 1\ 1 and II xll 2 of the linear space X are said to 
be concordant if for every sequence which is fundamental for 

both norms the convergence to zero for one norm implies that 

for the other norm. 

Example consider the space of all functions f(x), O ix 11, 

which have a continuous derivative. 
The norms 

II f ~ 1 == max I f ( x) l 
are concordant, 

However, the norms 

II f 11 1 == max I f ( x ) I 

!) f 11 2 = max { I f ( x ) I + I f ' ( x) l } 

II f 11 2 = max { J f ( x) I + j f ' ( 0) I } 
are not concordant. We may take a sequence fn(x) with f~(0)=1 

and which converges uniformly to zero. This sequence is a 
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fundamental sequence for both norms which converges to zero for 

the weaker norm but which does not for the stronger norm since 

Ur 11 2 ~ 1 for all n. n 

In the case of concordant comparable norms we have a one­

to-brte; correspondence between the completion x2 and a part of 

the completion x1 i.e. 

x1 ::, x2 '.:'.) x, 

From two concordant norms II x II 1 and II x (I 2 which are not 

comp~rable we may easily derive a set of concordant comparable 

norms by introducing the third norm \\x/1 3 - max{Hx/1 1 i l/x/1 2}, 

\,Ie shall now introduce the concept of a sequentially normed 

space v1hich is of the utmost importance for the theory of 

generalized functions. 

We consider a linear space X with a countable system of norms 

V X 11,, J II X n 2 J • • 0 J ll X II m J 

In thin space a topology is introduced by defining a system of 
'. ' 

neighbourhoods of zero U(m,e) as 

( 6 .3) ... , !!xii < e. m 

One may easily verify that by this choice X becomes a linear 

topological space which satisfies tHe first axiom of countability. 

The linear space X with a countable system of concordarit 

norms ~ith the above given topology is said to be a sequentially 

normed space. 

T&e topology of a s.n.s. implies the following definition 

of convergence. The sequence xn converges to zero if !lxnl!m-► 0 

for each individual m. Similarly the sequence x is a fundamental n 
sequence if for each m and every €. > o there j_s a number N(m, &) 

such that for ks 1 > N we have II x\.r -x] II < e . ,. . m 
~e may always assume that the sequence of concordant norms 

is arranged in order of increasing strength: 

(6.4) \I x I\ 1 ; \I x \\ 2 2 • . . ~ II x !! m ~ . . , 

1 (. 

1'.n a s.n.s. X with (6.4) the process of completion may becar•­

ried outwith respect to each norm. In this way a nesting 

sequence of Banach spaces 
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x1:;:, x2 ::> • • • :;:, xm ::i :::, x 

is obtained. It is to be expected that the limes of X, i.e. the m 
intersection of all Xm, gives the completion of X with respect 

to th~ topology (6.J). 
In fact, we have 

Theorem 6.1 
The s.n.s. Xis complete if and only if it coincides with the 

intersection of all individual completions X . 
m 

Proof 

1° If X= lim ., we take a fundamental sequence x (n=1,2, ... ) in m n 
X and show that it has a limit in X. The sequence x is by defini-

tion fundamental in each X and has there a iimit xfm). The con­

cordance of the norms saysmthat all limits x(m) (m=1,2, ... ) are 

essentially one and the same limit x which therefore belongs to 

X. _Since now llxn-xl\m-+O for each m the element x is the limit of 
the sequence xn in the topology of X so that Xis complete. 

2° If Xis 9omplete we take an arbitrary element x of lim Xm and 

show that x e. X. 

There exists for each number man element xme X for which 

ll~;;xml\ m < : , for Xm is the completion of X with respect to the 
m norm. 

It is now easy to see that the sequence x converges to x for 
m 

each 1.ndividual norm, hence x 4- x in the topology of X. In fact 
th m 

for the p norm and for m > p 

II x-xm\lp ~ II x-xmllm < 1/m; 

so that lim Ux-x Hp~ O for arbitrary p. m_,,.co m 
It follows that x is a fundamental sequence in X so that 

m 
the completeness of X implies xi X. 

From now on any s,n.s. will be tacitly assumed to be complete, 

Example 

In the space K(a) of all infinitely differentiable functions ~(x) 

(cf. section 3) a sequence of concordant norms may be introduced 

by means of 



-39-

The zero neighbourhoods U( m1 i,); !I (P ll m < c J coincide with those 

introduJ;ed, previously in se'ction 3 and determine consequently 

the same topo.logy, 

That the normsare concordant follows from the fact that if 
l (m) 'f 1 , <p; cp J ••• ,cp uni ·orm y converge to 

( m+'1) . also ~ converges to zero. 

zero in som~ interval (~a 1 a) 

It can be shown by means of the preceding theorem that 

K(a) is complete. Let Km(a) denote the space of all functions 

vanishing outside Ix I a a which have continuous derivatives up,. 
to the mth order and let K(a)m mean the completion of K(a) with 

respect to the norm m. Then it is clear that 

There remains to prove the opposite inclusion. According to 

Weierstrass 1 theorem any function cp(x) E::, K (a) can be approxi-m , , - ... 
mated by polynomials P (x) in such a way. that P (x)-,.. cp(x) uni-n · . n . • 
formly in :ic Take a function e(x) E- K(a) which equals '1 in the 

interval l x I 3 · a- o with J sufficiently small positive. T.hen 
-m 

e(x) Pn(x) converges to f(x) in the topology of K(a) so that 
cp(x);;. K{a)m. This means 

K (a) c. ~ 
m 

so that 

K (a) = K(a )m 
m 

Since K(a) is the intersection of all (a) ~tis complete. 

Example 

In the space S of all infinitely diff eren tlab le func.tions (f) ( x) 

for which 

for all k anc:! n (k=Os'1,2., .. ,; n=0;;1,2,., .) 

~ sequence of concordant norms may be introduced by means of 

\I cp ll m = max ! x k (fl ( n) ( x) I 
k:; n?. m 

m=O, 1 ., 2, •.• -··t_ 

It can be shown in a slmilar way as before that Sis a (complete) 
s.n.s, 

~- ' 

A s.n.~. may be considered as a lin~ar metric space by 

defining the distance d(x 3 y) as 
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. T6 :5) 
CD 1 Ux-yl\m 

.'d{x,y) = L m 1+Ux~yll 
· rh=''L 2 •• . . . . m 

The veri)ficat:tbri Hf the six axioms of the linear metric space 
(;~f'\';·sect1on :4);·:fo; l'ef't to the reader. We note the important 

?ractAth~t the n~tural' topology of the linear metric space is. 
'. •~quiv!aiJ;ehf to theii topology of the s . n. s . 

' 'Irt Tact, i the ;system Of z·ero neighbourhoods v( a) is according 
1~ td "'·(6 .• "'5;) clet·ermHied by spheres 

(6.6)' • 
CD 

L 
,m==1 

1 l\xl\m 
2m 1+1lxllm 

< 0 

_.,.,a,.EachU{m,E.) contains a V{,'f) for (6.6) implies 

or 

1 
~k 
2 

!lxl\k 
1+1!xl\k 

. 21-<i 
ll x\\k < 1-2keY 

for all k 

If . . J· is sufficiently small for k=1, 2, ... , m we shall have 

llxllk < a . 
b. Each V(J) contains a U(m.,e.) for it is possible todeJermine 
m ands such that 

From the equivalence of these topolog'ies it follows that a 

complete s.n.s. is also a complete ~et~ic space. This fact makes 
it possible to apply the important theorim 4.1 of Baire and its 

consequence theorem 4.2. 

We consider in a linear space X two sequences of norms 

Uxl\1 ~ !lxl12 ~ ... ~ )lxilm ~ 

)Ix ll~ ~ l!x\12 .; .. : ~ llxll~ ~-

0 0 0 j 

o O 9 o 

Then the first Sequen&e is said to be weaker and the second to 

be stronger if each norm II x Ilk (k=1, 2, .. ·.) is weaker than some 
norm Uil~ · of the·second iequince~ 

If this i~ the case then each s~quence of elements x1,x2 , ... 

which convergeswith respect to the second system of norms con­
verges also with respect to the first system of norms. We shall 
sh6w that also the converse is true. 
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If each sequence_· x1~x 2 J ••• which converges for all norms 

(k=1,2, ... ) also 1converges for every norm Uxffk (k=1,2, .. ) 

~~heri. 4}1e .first. system is weBker than the second system~ 

. _,· If the. proposition is not true there exis·t.s .,a :norm !Lx 11 111 

. . . I 

which Js not w.eaker than any norm \lxlln (n=1,2,, ... ). Hence, for 

each n we may find an element X for which II X II > n JI X n.n1· • By n · n m "n ·· 
scalar ml/.l_tiplication, it can be arranged that II xnllm=1 so that 

1\xnll~ < 1in. The sequence xn (n=1,2, ... ) clearly converges to 
zero for each norm of the second system. However, this would 

imply convergence to zero for all.norms of the first system which 

contradicts the assumption lfxnl\'m = 1 for all n. 
If convergence to zero in the first system implies conver­

gence to zero in the second system and vice versa then the 
--- - ·-

systems are said to be equivalent. In vi~w of the preceding 

argument a necessary and sufficient condition for equivalence 

is that each norm of one system is weaker than some norm of the 

other system. 

The definition of a bounded set follows that of boundedness 
in a more general linear topological space. 

The set Sin a s.n.s. is bounded if and only if 

!) xi\ < C m m ( m=1, 2, ... ) for all x ~ S. 
The notion of a bounded set in a s.n.s, is essentially different 

from that in an ordinary normed space; For example in a normed 

space the unit sphere S (U x II -~ 1). is bounded and the sets nS 
(n=1,2, ... ) cover the whole space. On the contrary in a s.n.s. 

in general there exists no bounded set S for which the sets _nS 

(n=1,2, ... ) cover the whole space. In fact, if Sis d~te~mined 

by Jlxllm < Cm (m=1,2, ... ) then an element x 0 for which 

~x 0 I\ m_> mCm i.s. ,not _contained, in aq.y s_ei;; nS. That such an element 
actually exists will be proved below. 

Theorem 6.2 

Let X be a s .n .s. with a sequence (6 ,4 )· ·of norms and let Xm be 

the completion with respect to the mth nor:m:; Then·if all Xm 

(m=1,2, ... ) are different it is possible to find for any sequence 

of positive numbers c 1,c2, .•. an element xi=. X .for which 

Proof ---· 

C m 

We shall first show th~t for each integer~ and any choice of 
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positive numbers c-:anctc 1·1t···1s·rfossibTe to ffi1a·an·e1ement x 

for which 

In· fact, if such an element cannot be found then If xllm ~ c 

:a
0
l;~ys implies llxllm+'l < c' which \'lould lead to equivalence, i ,e, 

to X ~X +-/I. , , .. m m 1 

Next we shall give an explicit construction for an element x 

which satisfies the requirements of the lemma. We put x=x1+x 2+ ... 

and determine elements x 1 , x 2 , ... for which 

II x2 ll1 < ½ 

1lx3ll 2 -c.l 

il x11\1 > c1+1 _; 

Hx2fl2 ~ c2+'1+ l!x1ll2; 

etc. 

Then it is clear that the series [: xk converges for all norms. 
k=1 

Further we have 

II xllm ?;. /Ix ml\m - E. II xkllm - l 1 ll xl{l\m ~ 
k=m+1 . k:=1 

q,e,d. 

C 
m, 

At the same time we have now proved that the topolbgy of· 

a s.n.s. obtained by a sequ~nce of non-equivalent norms, f~r. 

which the completions X (m=1,2, ... ) are all different, is essen-m 
tially different from that of a normed space. It is easily seen 

that it is already sufficient that the sequence II x Jim ( m=1., 2, ... ) 

contains a subsequence of non-eq·ui valent norms. On the other 

hand a sequence of norms for which after a certain index 'all 

norms are equivalent clearly leads to a s.n.s. which is merely 

a normed space. 
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7. Functionals on a sequentially normed space 
• -. ,- I 

;_ .' !_·_ 

In section 3 we studied a number of properties of continuous 

linear functionals (f,x) on a linear topological space X. In 

section 5 the· general ·theory was applied to the. important special 

c:as~ wher~ x 'rs a normed space. For a clear ~nders\ai~din~ 1\6f t:he 

foundations of the theory of generalized functions or distributi­

ons we ne'kd some detailed knowledge on continuous linear func­

tionals on a sequentially normed space which is somewhat 

between the too general linear topological space and the too 

special normed space. 

However, as we shall see below a number of properties of functionals 

on a s.n.s. are closely analogous to those of functionals on a 

normed space. 

It will be assumed that Xis a complete s.n.s. with an 

increasing sequence of concordant norms 

A base of zero neighbourhoods is formed by the spheres 

(7.2) (m=1,2, ... , E..>0) 

Convergence x ~o in X means that n· 

(7.3) 

If X 
m 

llxllm 
(7.4) 

lim II x 11 = 0 
n+ro n m 

for each m. 

denotes the completion of X with respect to the norm 

we know by theorem 6~1 that 

000:, X ::> ;, •• , 
m . 

lim X = X. 
m 

We repeat the definition of a continuous linear functional. 

(:t,x:) 
. . ) 

is linear if 

(f,01.x+/3y) = o:(f.,x) + /3(f,y). 
2° ( f,x) is continuous if for each · E. > O there exists· a zero 

i ~ . 

neighbou·rhood U such that I ( f ,x) l < e for all x tc. U. 
As we have seen in section 3 fo~ a linear top6J.ogical space 

any Continuous linear functional is bounded on some 'neighbourhood 

of zero. Since for a s.n.s. a base at zero is formed by the 

spheres 1lxll1 < e. , IJ xn2 < e , ... , JI xllm < c. , ... this means that 
for any continuous linear functional there is an index m and a 

constant C such that 

(7.5) 



-59-

LetuB assume that each space X(m) satisfies the first axiom 

of ~ountability. Th~n it can be stated that a linear operator 

is continuous if and only if it is bounded. 

Theorem 10.3 
F 1 , t T th ' ,.(<-.J..l) .f - I ' i,.• h or a 1near opera or on .e union x o s~.s. sin w111c 

the first axiom of countability is satisfied continuity and 

boundedness are equivalent. 

Proof 

It is sufficient to show that T transforms any arbitrary X( m) 

in some y(P) for then we may apply theorem 8.1. First we note 

that in a linear topological space in which the first axiom of 

countability is satisfied for any sequence of elements xn 

(n=1s2, ... ) it is possible to find numbers ~ such that n 
i\X -+0. In fact, let U1 ':>U 0 :::> ••• be a decreasing base of zero n n c 

neighbourhoods then it is sufficient to take_-~ such that n 
'AX '<- U . n n n 
Let us suppose 
form some X(m) 

that the linear operator Tin X(w) does not 
into some y(P), i.e, TX(m)cj: y(P) for no,p, 

we may construct 
Tx ,1 y( n) -

n"t • 

" (m) - ) a sequence xn ~ X ( n-1, 2, . . . such that 

trans­

Then 

Let the numbers ~ be chosen such that n ?\ x _,.. O. If T is cont inu­n n 
ous then it follows that also T(?.. x ) = "- Tx ~o. However, -this 

n n ( ) n n 
implies that all Txn belong to some Y P contrary to~the 

assumption. If Tis bounded then the elements ~ Tx are also n n 
bounded, However 2 also this implies that they all belong to some 
y(P) contrary to the assumption, 

For a continuous linear operator T transforming a space 

X(w) into a similar spacey(•) we may determine a conjugate 

operator T "'. which transforms y(w) 1 into X(w) 1 according to 

( T ;.. g i X ) = ( g ; 'I'x ) _ 

where x ~ X ( oo) and g ~ y( w) 1 
, In virtue of the continuity of g and 

T also the conjugate operator T is continuous. 
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The sequence of functionals f a X(w)' is - . . n said to converge 

to the functional f if for each x~X(C..(J) 

This type of convergence might te called weak convergence. We 

shall, however, not introduce any other type of conve~~ence. 

Theorem 10.1 

If all X(m) are sequentially normed spaces then X(w) 1 is complete 
with respect to its (weak) convergence, 

Proof 

Let the functional f be defined· by (f,x)=lim (fn,x) then 
, r1~00 (m) 

obviously f is linear. According to ~heorem 7,5 for each X · 

it is continuous. Then by virtue of the definition it is also 

continuous in X(~) 1
• 

The set S of X(w) 1 is said to be bounded if for arbitrary 

x ~ X ( t.A;l) t he numbers ( f J x ) , f €.. S are b o u n de d . 

As regards the principle of uniform boundedness we may 

prove the following theorem 

Theorem 10, 2 

If all X(m) are sequentially normed spaces and if S is a bounded 

set of X ( w) I then the numbers ( f J X ~ J f ~ s are un1.f ormly bounded 

on an arbitrary bounded set Ac X (~ • 

Proof 

lJ " th d f. , ,... .D • d d . ,-(&J) th sing e e in1~ion or ooun .e .ness in X ere is an index m 

such that Ac X(m) and that A is bounded i:h res ct to its 

topology. 'I'he functionals f G S are j n particular continuous on 

X(m) and since they are bounde.d for each element x E.X(m) they 

form a wiakly bounded set in ~(m) 1
• then according to theorem 

7 .4 they are also strongly bounded 3 :L .e. s1..1p l ( f sX )\ < oo for 

f e, s and X ~ A. 

The linear operator T transfor 

into itself or into a similar spacey( 

a un1on of s.n.s, x(w) 
is said to be continuous 

if x 11----+0 (n=1J2, ... ) implies Tx 11->-0, It is said to be bounded 

if it transforms every bounded subset of X(w) into a bounded 

subset of y(w). 
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10. Union of sequentially normed spaces . 

. Let there be given an increasing sequence of linear 

topological spaces 

x( 1 )c x( 2 ) c ... c x(m)c ... 

It will be assumed that at each inclusion convergence is 

preserved, i.e. if the sequence x ~ X(m) converges to zero 
then it also converges to zero innthe larger space X(m+1 )_ 

The union of all X(n) (n=1,2, ... ) will be indicated by 

X(~) It represents a linear space with the usual ~inear rela­

tions, 

We shall introduce in X(w) the following type of conver­

gence. The sequence xn (n=1,2, ... ) of elements of X(w) is 

said to converge to the limit x of X(~) if all elements xn and 

x belong to some subspace X(m) and if x , x in the topology of 
x(m). n 

The union X(~) of the linear topological spaces X(n) will 

not be considered as a topological space and no definition of 
open and closed sets in X(M) will be g;ven. 

Example 

We consider the union K of the spaces K(m) consisting of 

all infinitely differentiable functions ~(x) which vanish 

outside ( -m,m). Convergence ~n-+ rp in K means that all 'Pn 
and ~ vanish outside some interval (-m,m) with a fixed m and 

that ~n(x) and each derivative converges to ~(x) and the 

corresponding derivative uniformly in (-m,m). 
The set Sc x(tA>) is said to be bounded if there is an index 

m such that Sc X(m) and that S is bounded in the topology of 
x(m). 

The linear functional f on X(~) is said to be continuous 

if it is continuous on each X(m)_ If each space X(m) satisfies 

the first axiom of countability this definition is equivalent 

to the following: 

The linear functional f is continuous if it is bounded on each 
bounded set of X( 60). 

All continuous linear functionals on X(~) form the con­
jugate space X(w)' which, of course, is a linear space. 

In this space the following type of convergence will be intro-

.. 
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Proof 

Remembering that X'1:,,X2 :::, ... ~ X there are two possibilities. 

Either all X are separable or at least one is not separable. 
n 

In the first case a dense set Sin Xis obtained as the 

(countable) union of dense sets Sn in Xn (n='1,2, ... ). In the 

second case we may assume e.g. that X'1 is not separable. 

According to the axiom. of choice we may imagine a not countable 

subset Z'1 of X which is bounded with respect to the norm of 

X'1 and for which the distan~e of any two points always exceeds 

some positive number ~. Z'1 may not be bounded with respect_-to 

the norm 1-0 2 but then we can take a bounded subset z2 of Z'1 

which is equally not countable,. 

Proceeding in this way a nesting sequence of not countable 

sets Zn is obtained of which Zn is bounded with respect to the 

norm l! • !!n. We note that for any two points of Z'1 l!xi-x 11 lln> ! 

for all n. 

Now we take a sequence x (n='1,2, ... ) by for x an n n 
arbitrary element of Z . This sequence is bounded in the topolo-

- n 
gy of X but clearly it does not dontain any converging subsequen-

ce, However, this contradicts the property of compactness. 

From the proceding theorems we may at once deduce. 

Corollary 

In the conjugate space of a perfect space each bounded set is 

compact in the weak and strong sense. 

\ 1,,t_,; . 
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2 Let f -!>' 0 in X 1 • 'Then according to theorem 7. 3 there is an n 
index 1 such that f ~ X' and that the sequence is bounded with n 1 
respect to its norm. We take the index m > 1 such that the 

boundedness of every sequence xn~ X with respect to the norm 

D·H. implies its compactness with respect to the norm U,U 1 . . m 
The sequence f which is bounded for the norm \I• l\ 7 is also 

n -
bounded for each higher norm and in particular for n-ll • We 

m 
shall show that f -o with resoect to the latter norm, i.e. n . 
( f , x )-+ 0 uniformly in the unit sphere II xH ~ 1. If this were n m 
not true it would be possible to construct a sequence x such 

n 
that with some positive number 6 

'rhe sequence xn is compact for the norm ll·l!l' say that x ~x n 
in X111 • But then 

f ( f n, xn ) I ~ I ( f n, xn -x ) I + ! ( f n 2 x ) J ~ II f n !\ 1 II xn -x II 1 + I ( f n, x) I, 
so that with n➔ oo a contradiction is obtained, 

The conjugate of a perfect space is in general not perfect, 

it is not even a sequentially normed space. However, it can be 

shown that just as a perfect space it enjoys the property that 

its bounded sets are compact. 

Theorem 9.4 
In the conjugate space X1 of a separable s.n.s. X each bounded 

sequence fn(n=1,2, ... ) contains a weakly convergent subsequence. 

Proof 

Using the diagonal process a subsequence , 

constructed which converges for each elemen~ 

, . . . can be 

(k=1,2, ... ) of 

a dense set Sin X. The c sen subsequence is bounded and belongs 

to 1 for some index m (theorem 7.3). The functionals f f 
~n1' n2, ... 

converge on S which is dense in X and hence dense in 

Then (corollary 2 of theorem 7.4) they are weakly convergent to 

s ::ime limit f E:. X~. This means that for any x 't, , and in particu-

lar for any xe.X, (fnk,x)-+(f,x) q.e.d. 

This theorem hoids in particular for a perfect space, for 

we have 

Theorem 9.5 
A perfect space is separable. 
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Then it will be shown that Sis compact with respect to the 

norm llq,llm_ 1 . The derivatives of c/m-'1)(x) (<p ~ S) are uniformly 

bounded so that according to the theorem 4.3. of Arzela-Ascoli 

it is possible to select a uniformly convergent sequence 
(m-1)(· ) (m-1)( ) m (k)( ) ep1 · .x , rp 2 x , .... lhen also the sequences y::i 1 x , 

<f>/k)(xL... (k=O, 1, ... ,m-2) are uniformly convergent. 

This means that the sequence fn(x) converges with respect to 

the norm U ~1/m-'1' Hence, according to the theorem K(a) is perfect. 

'liheorem 9. 2 

In the conjugate X 1 of a perfect space X strong and weak conver­

gence are equivalent. 

Proof 

It .is sufficient to show that fn-:i-0 in the weak"Ctl,? implies 

fn~O in the strong sense, i.e. (fn_.x)-+0 uniformly on every 

bounded subset A of X. It follows from the first corolliry of 

theorem 7.4 that the set fn (n=1,2, ... ) is already strongly 

bounded. If (f ,x) is not uniformly convergent in a bounded set n 
A it is possible to construct a sequence x (n=1,2, ... ) such . n 
that / ( f , x ) j > E for some posi t1 ve number E. • On the other n n 
hand the sequence xn has a limit point x since A is compact. Let 

us assume that x ➔ x. Then according to theorem 7.7 we have n 
( f, x )-,;. ( f, x) uniformly in every bounded set of X 1 • n 
If for the latter set we take the elements fn then we have in 

particular (f 11 _,xn-x) ➔ O. But since also (fn,x) ➔ O we would also 

have (f ,x ) ➔ O thereby obtaining a contradiction. n n 

For perfect spaces in which the conditions of theorem 9.1 

are satisfied something more may be said concerning (weak or 

strong) convergence in the conjugate space. 

'I'heorem' .9,, 3 

With the conditions of theorem 9.1 the sequence fn (n=1,2, ... ) 

converges (weakly and st~ongly) X 1 if and only if there is an 

index m such that all f bel 
11 

respect to its norm. 

Proof 

..1 If fn ~ x;1 and ii fn -f !Im➔ O 

I (fn-f,x)I ~ llrn-rHm !I xllm->o 

to f in X 1 • 

to X 1 and are convergent with m 

then for each x ;e. X we have 

so that f is (weakly) convergent n 
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9. Perfect spaces 

A sequentially space with the property that all its 

bounded subsets are compact is said~o-be a-perfect space. 

We recall the property enjoyed by any linear topological space 

that any compact set is also bounded (theorem 3.2). A sim~le 

criterion that a given s.n.s. be perfect is: 

Theorem 9.1 
Let X be a sequentially normed space with norms 

II x H 1 ~ II x II 2 ~ . , . :i II x llm 

and let there be given a sequence of indices m1 < m2 < ••• < mk < •••• 

1rhen if from every set Sc X which is bounded with respect to the 

norm II · ft m it is possible to select a sequence with distinct 
elements k+'lwhich is fundamental with respect to the norm 

n•ttm the space Xis perfect. 
k 

Proof 
Let S be a bounded subset of X. In particular Sis bounded with 

respect to tt·ttm. It contains a sequence x 11 ,x 12 , ... which is 

fundamental witfi respect to l\·Jlm. This sequence is further 

bounded with respect to U·Hm and contains a subsequence 

x21 ,x22 , ... which is fundamerital with respect toll· llm . 

Continuing this procedure a system of sequences is ob~ained 

x ,.., xm2 m ,. 

x1m 

X 2m. 

X 
mm 

each of which is fundamental to the previous norm. The diagonal 

sequence x 11 ,x22 , ... is fundamental with respect to all norms 

i.e. fundamental in the topology of X. Since Xis complete the 

limit exists so that Sis compact. 

Example The space K(a) is perfect 

In fact, let S be a bounded set with respect to the norm 

II <p II m = max f I <p ( x ) I , ... , I <p ( m ) ( x ) I } , m ~ 1 . 
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F'or a sequence Tn (n=-1,2, ... ) we may it;1:troduce weak 

convergence in the usual way as follows: 

A sequence Tn (n=-1,2, , .. ) of continuous linear operators 

is said to be weakly convergent to the limit T if 

lim T x = T x for all x G. X n 

in the topology of x*. 
It is not a priori obvious that the limit operator is linear 

and continuous. Clearly it is linear; that it is also continuous 

is expressed in the following theorem. 

'rheorem 8. 4 

The limit T of a weakly convergent sequence of continuous linear 

operators Tn mapping a s.n.s. X into a s.n.s. X is also linear 

and continuous. 

Proof 

In view of theorem 8.-1 it is sufficient to prove that T trans-

* forms every bounded set Ac. X into a bounded set TA of X • In 

order to prove the boundedness of TA we may use theorem 7.2. 

Hence there remains to show that for each continuous linear 

functional g the numbers 

bounded. 

\(g,Tx)I , x ~A are (uniformly) 

With a fixed g the sequence of continuous linear functionals 

fn defined by (fn,x) = (g,Tnx) (n=-1,2, ... ) is weakly convergent 

to the limit (f,x)= (g,Tx). 

According to theorem 7.5 the limit f is also continuous. However, 

this means that supj(f,x)!.:co for xttA. But then also 

sup I ( g, Tx) I < oo for x £ A which proves the theorem. 

We note that this theorem rests essentially upon the principle 

of uniform boundedness (see theorem 5.8). 
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Using the concept of concordant topologies the following 

theorem may be formulated 

Theorem 8.! normed 
If X and X c. X are (complete) sequential~ces with concordant 

topologies then convergence x -+X in the topology n of X implies 

convergence xn-+X 

Proof 

in the topology of X. 

ii' 

Let l!x!lm and Uxl!~ (m=1.,2, ... ) be the norm systems of X and X. 

Then we introduce a third norm system by means of 

l!xil 11 = max {!lxl\ , l!x!l 1 }. First we shall show that x.-i• is complete m m m · 
with respect to-the new norm, In fact, let x e. x* (n=1,2, ... ) be 

n 
a fundamental sequ.ence for llxll;. 'rhen it is also fundamental 

for 11 x llm and ll x !I' so that x _.,.. x in X and x •-+ x.,, in X *. m n o n o 
From the concordance of the topologies it follows easily that 

*' x es: x . Hence also x -+X for the new norm. o o n o 
From the corollary of theorem 8.2 it follows that in XM the 

comparable norms UxU~ and nxu; are equivalent. 
~ 

Let now x """"';),X n o in the topology of X . This means of course 

that l!x -x I\ 1 .......... 0 (m=1,2., ... ). e equivalence proved above says n o m 
that then llx -x l\ 11 ➔ 0. But this implies Jjx -x l' -+0 i.e. x ->-x n om n olm n o 
in the topology of X. 

This theorem means that with the condition of concordant 

norm systems convergence in the narrower space implies convergen­

ce in the wider space. Also we have 

Corollary 

Any continuous linear functional on the wider space Xis also 
¾-

a continuous linear functional on the narrower space X . 

In section 1 we have seen that the linear (continuous) 

opera tors 'I'( x~*X where X and X * are arbitrary linear topologi­

cal spaces form a linear space, In fact, the following definitions 

of addition and scalar multiplication 

( " T ) x = i\ Tx ., 

where x e.X, 

clearly satisfy the axioms of the linear space. Moreover, it is 

easily seen that the continuity of T1 and T2 implies that of 

T 1+T2 and the continuity of T that of ?\ T. 

.. 
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8. Operators on a sequentially normed space 

We consider a continuous linear operator T which trans-
~. 

forms a s.n.s. X into a s.n.s. X. 

The general theory of a continuous linear operator on a lin~ar 

t6pological space has been given in section J. According to 

the theoremsJ.Ja and 3.3b the continuity of a linear operator 

on a s.n.s. is equivalent with boundedness. The theory of 

linear operators was continued in section 4 where we discussed 

Banach 1 s theorem of the inverse operator with respect to a 

complete linear metric space, $ince a s.n.s. is also a linear 

metric space this important result also holds for a s.n.s. 

We repeat the definition of a continuous linear operator. 

1° Tx is linear if 

'I'(O(.x+py) = o:.Tx + 13 T-y. 

2° Tx is continuous if for each neighbourhood V of Tx there is 

a neighbourhoqd U of x such that TU c V. 

Next we repeat the following theorem 

'Theorem 8. 1 

A. linear operator is·continuous if and only if it transforms 

bounded sets into bounded sets. 

Banach 1 s theorem 4.6 may be formulated as follows 

Theorem 8.2 
A continuous linear operator T which transform a0omplete)s.ri.s. 

* -1 X one-to-one into a s.n.s. X has a continuous inverse T . 

As in section 6 we have the following corollary 

Corollary 

If Xis a (complete) s;n.s; wi respect to two sequentes of 

norms: Hxl\m and ijxil:i1 ,(m=1,2, ... ) and if these sequences 

are comparable then they are equivalent. 

Let X and 
» 

X is ~, 
Cc subspace 

to be concordant 

X be 

of X; 

if for 

two linear topological spaces where 

then the topologies of X and X are said 
ii· 

each sequence xn G.. X which converges 

* to zero in the topology of X and which at the same time con-

verges to an element x in the topology of X we always have x=O. 

A common situation in which this arives is that where the norms 

* in X are stronger than those in X. 
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Again the sequence fn is strongly bounded. We now apply theorem 

7, 3 which sayfi that all f n belongs to some x;n and are bounded 

there. Since (f ,x)-+(f,x) on X which is dense in X convergence n. m 
also holds in X 0 

m 
2° If f -i- f for x f, X then convergence certainly holds in the n m 
subspace X of X. 

m 

Later on we shall need the following lemma 

Theorem 7.7 
If the sequence x (n=1,2, 0 •• ) converges to the element x of a n 
s. n. s, X then . ( f, xn)-+ ( f, x) uniformly for every bounded 

subset of functionals f of X 1
• 

Proof 

We note that by theorem 7.4 it makes nc difference whether 

bounded is meant in the strong or in the weak sense. Let B be a 

bounded subset of X'; then by theorem 7.3 we know that there 

exists an index m suchtl1at Bc.X' and that Bis bounded with 

respect to its norm, say 

llrllm < M, 

For ea~h n we have 

sup I ( f, x -x) I ~ sup 
f¢..B 11 fe.B 

m 

f E.. Bo 

Hence ( f, xn -x )->-0 uniformly in B, 

II X -x !I . n m 



-48-

Corollary 1. 

If f 0 is a weakly convergent sequence of continuous linear 

f~nctionals on a s.n.s. then fn is strongly bounded. 

Corollary 2 

The sequence fn of continuous linear functionals on a s.n.s. 

is weakly convergent to zero if and only if the sequence is 

strongly (weakly) bounded and if (f ,x)-+O at least for those -~ : n . 
x belonging to a set which is dense in X. 

We are now able to prove the following importanttheorem. 
Theorem 7.5 
The conjugate space of a sequentially normed space is complete 

with respect to weak convergencie. 

Proof 

We com3ider a weakly fundamental sequence f. ~ X' ( n=1, 2, .•• ) • 
.,. , • C • : C n • , ' , 

This means that for each x '- X the sequence (fn,x) converges to 

some limit, say (f,x). The limit is obviously a linear functional. 

There remains to prove its continuity. We have.just shown 

(Corollary 1 of the preceding theorem) that the sequence f is n 
also strongly bounded. Then according to lemma 3.9 there exists 

a neighbourhood of zero U on which the functionals fn are 
bounded: 

X ~ U. 

But then also 

I ( f, x) I = 1 im ( ( f n, x) I ~ C, Xe, U. 
n--+OO 

This means that f is bounded on U which according to e.g. 

theorem 3.7 implies continuity, 

Theorem 7.6 
The sequence fn of continuous linear functionals on a s.n.s. 

converges weakly to the functional f if and only if all fn are 

continuous functionals on a common normed space X and if they . m 

are weakly convergent in X i.e. 
m 

(fn, x)-+(f,x), 

Proof 

1° Let fn be weakly convergent to f. 
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'{ I index m the set Sis contained in 'm 

to its norm. 

Proof 

1° Let Sc. X~ and be bounded in x;n. 
'l1ake the zero neighbourhood Uc X with 

ness of Sin X 1 means that m 

and bounded with respect 

Ux~ S 1. The bounded­m 

I (f,x)I ~ M for x E.. U, f ~ S. 

But this means that Sis bounded on some zero neighbourhood of 

X. Hence Sis.bounded on every bounded set in X, i.e. strongly 

bounded. 

2° Let S 

According 

of X, say 

be strongly bounded. 

to lemma 3.9 there exists 

)! x II < & , for which m 

sup I ( f, x) ! < M 
f E. s 

some zero neighbourhood U 

for some constant fv1. But this means that ever'Y functional f e. S 

is bounded on U by the constant JV! so that f ~ X with a norm not 
m 

exceeding M/c q.e.d. 

It will be clear that strong convergence implies weak 

convergence and that any strongly bounded set is also weakly 

bounded. However, as for Banach spaces (theorem 5.8) we have 

Theorem 7.4 
A weakly bounded set of X' is also strongly bounded. 

Proof 

It is sufficient to show that a weakly bounded set Sis bounded 

on some zero neighbourhood of X. Consider the set C of all 

x €. X for which 

(7.13) for all f <, S. 

The set C is closed since for each f.:. S the set for which 

j(f,x)! 2 1 is closed. The set C is convex since for each fe.S 

the set for which \(f.,x)I & 1 is convex. over, C is symmetric. 

Finally C absorbs all elements of X. In fact, since Sis weakly 

bounded the numbers I ( f, x) I , ft:: S are bounded f :Jr any fixed 

x so that e.g. I (f,x0 )j a JVI and hence I (f,x 0 /M)/ ~ 1, i.e. 

x 0 /M E"; C. Now we may apply theorem 1.J.. 2. Hence C contains a zero 

neighbourhood U. On this neighbourhood Sis uniformly bounded 

in view of (7.13). This proves the theorem. 
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I\-· llm for arbitrary rn .. We may consider S as a subset of Xm f 

Then on Sin particular all continuous linear functionals of the 

order m, which constitute X 1 , are bounded. 
m 

But then theorem 5.8 can be applied. 

Accor_ding to the general theory of section 3 in the conju­

gate space X' a weak topology and a strong topology can be 

introduced. 

The weak topology is determined by weak zero neighbourhoods 

depending on a finite number of elements x 1,x2 , ••• ,xm of X and 

a positi\re number e.. rrhe neighbourh'.Jod U(xrx2 , ... ,xm, a) is 

defined as the set of those f «:. X I for which 

(7.9) j ( f , x 1 ) l < i:. , I ( f , x 2 ) I < E. , • • • , l ( f , xm ) I < e 

The set Sc X' is weakly bounded if for each x ~ X 

( 7. 10) sup [ ( f, x) ! < co .. 
f €- s 

rThe sequence fn c;.. X 1 (n=1,2, ... ) is weakly convergent to f if for 

each x ,, X 

The strong topology is determined by strong zero 

neighbourhoods depending on a bounded set B of X and a positive 

number E.. • The neighbourhood U( B, E-) is defined as the set of 

those f ~- X' for which 

sup I (f,x)) < 1::., 
x e. B 

The set Sc.X I is strongly bounded j_f for· every bounded subset 

A of X 

( 7. 12) sup \(f,x)l<E-. 
x ~ A, f ~ S 

The sequence f ~- X 1 (n=1, 2, ... ) is strongly convergent to f n 
if 

-.(f ,x)-+(f,x) n 

uniformly in evefy bdunded subset B of X. 

· The notion of a strongly bounded set may here be put in a 

simpler form. 

Theorem 7.3 
rrhe set S of X 1 is strongly bounded if and only if for some 
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differentiable fu'nctions <p(x) which vanish outside (-a,a). 

We have seen that K(a) is a complete s.n.s. with the norms 

11. 'f II m = max 
Ix I :a a 

m=O, 1, 2,... . 

We have seen that every continuous linear functional on K(a) 

turns out to be a continuous linear functional on the normed 

space K (a) for some m. The space K (a) consists of the functions · m · m 
f(x) which have continuous derivatives up to the mth order and 

which vanish outside (-a,a). To any <p ~ Km(a) we may associate 

the continuous function o/(x)= f(m)(x). This defines a mapping 

of Kn/ a) in to a subspace of C (a), the space of all continuous 

functions in (-a,a). It is easily seen that this is a continuous 

one~to-one mapping since 

ll (p II m = max { I <f I , I (p ' I , . . . , I cp ( rn ) l} ~ C max \ <p ( m ) ! = 

= C max l 1¥ l ~ C II tp lLn; 
or more constructively 

X 

cp(x)= f q,'d!= = 
-a . 

Therefore (f,,) is equivalent to 

(g,~) = (f,f) on the subspace of 

x lm·· l2 (·) 
j j . . . j <p n, ( 11 ) d l 'Id i 2' .. dfm' 

-a -a --a 
a continuous linear functional 

C(a): According to the theorem 

5.6 of Hahn-Banach this functional can be extended to the whole 

space C(a). Then we may apply the representation theorem 5.10 

of Riess saying th~t there exists a function of bounded variation 

p,( x) for which a 

(g , "'I'") = f "If ( X) d f'-'( X) . 

Hence we cibtain -a 
a 

(7.8) (f,<p) = j <p(m\x) dp,(x). 

-a 
For sequentially normed spaces the following analogue of 

theorem 5.9 may be formulated (principle of uniform boundeduess). 

Theorem 7.2 

If Sis a subset of a s.n.s. X then Sis bounded if for each 

continuous linear functional f the numbers ! ( f, x)) , x E:- S are 

bounded, 

Procif 

According to the definition of boundedness in a s.n.s. it is 

sufficient to prove that Sis bounded with'~espect to the norm 
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This result is important enough to state it in the form of a 

theorem: 

'l'heorem 7. 1 

Every cbntinuous linear functional on a s.n.s. is bounded with 

respect to some norm in the sequence. 

The converse of this theorem is obvious. 

The least number m for which (7.5) is true is said to be the 

order of the functional. 

All continuous linear functionals on a s.n.s. X form the 

conjugate X'. We shall now study the structure of this space. 

All continuous linear functionals of an order , m, i.e. 

those functionals which are continuous with respect to the norm 

of Xm form a subspace X~ of X 1 which is the conjugate of Xm. 

Therefore X1 is a complete normed space. We have 
m 

co 
X 1 = l.J X~ 

k=1 

It is obvious that a functional of order mis also bounded on 

the sphere s II x ii m + 1 ~ 1 , /I x II m + 2 ~ 1 , . . . s o that i t i s an 

element of v 1 x' Hence we have the nesting sequence Am+1' 'm+2' · · · · ~ 

(7.6) ) TI xt r 1.1 C.. 2 C ''' -... c: . . . , lim 

The functional f of order m has in X~, 
wing norms 

- X. 

1 ' ... t he llo-

! (f,x) I , Jlflir~+-1= sup j (f,x) I, ... 
dl I jl !l 1 

1X m+1= 

so that 

(7.7) > II .0 "' 1 
:,, 

1 

s may be summarized as follows. 

Property 
vi space A ich is conjugate f the s.n.s. Xis the union 

of an increasing sequence of complete normed spaces with norms 

becoming weaker and weaker. 

Example 
?4 

It is now possible to obtain the general form of a continuous 

linear functional (f,f) on the s e K(a) of all infinitely 


