
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAAVESTRAAT 49

AMSTERDAM

AFDELING TOEGEPASTE WISKUNDE

Report TW 101

FORMULA MANIPULATION in ALGOL 60

(preliminary report)

by

R.P. van de Riet

August 1966

JiBLlvn'.',,;;l:l{ Ml\TMEMAT!SCH CENTRU!'f
----.. ~,. "~1STi:t,t;!,,"i

Table of contents

0 Summary

Introduction

2 A simple formula manipulation system

3 The form of formulae in the .general system

4 How to use the general system

5 The internal representation of formulae in the system

6 The heading and the procedure INT REPR

7 The basic procedures

8 The procedures S, D, P, Q, POWER and INT POW

9 The functions

10 The simplification procedures

11 The procedures QUOTIENT and COMMON DIVISOR

12 Storage allocation

13 Supplementary equipment

14 Outputting

•1 5 Inputting

p.

p. 2

P• 6

p. 14

P• 17

p. 19

p. 20

p. 25

p. 31

p. 42

p. 44

P• 53

p. 64

p. 70

p. 75

p. 81

Summary

This report describes two systems, consisting of ALGOL 60 procedures,

to be used for formula manipulation.

The first system is able to handle a rather general set of formulae,

built up by means of numbers (including complex numbers), algebraic

variables, polynomials, the operators:+,-,*, /, t and the function

symbols: exp, ln, sin, cos, arctan, s~rt.

The main capabilities of this system are:

1. Simplification, which is illustrated best by the examples:

(x2 - 1)/0£.2 + 2x + 1) is simplified to (-;x + ;)/(-lx: - n and

. 2() 2() sin x + y + cos y + x is simplified to 1.

2. Polynomial manipulation; the polynomials are treated as truncated

power series with arbitrary formulae as coefficients.

Besides these, there are less important capabilities such as:

1. Differentiation,

2. Complex conjugation,

3. Substitution,

4. Finding the coefficients ofcertain products of algebraic variables

occurring in a formula,

5. Outputting a formula,

6. Inputting a formula, with some simple instructions, from input tape.

The other system can handle formulae which are built up by means of

algebraic variables and the operators+ and*•

Its capabilities are only differentiation and outputting.

2

1. Introduction

The electronic digital computer, already intensively used in numerical

mathematics, will be used more and more in other branches of mathematics.

One of these branches is elementary algebra, used throughout mathematics

and physics.

It occurs frequently that one has to do quite an amount of long and

tedious, but elementary algebraic calculations, to solve some problem

in, say, mathematical physics.

It is for these calculations, henceforth called "formula manipulation",

that the computer may become usefull.

Two possible systems to instruct the computer to manipulate formulae are

described in this report.

Before these systems are discussed it is necessary to elucidate the term

"formula manipulation".

From Jean Sammet [2] the following rather rough definition is borrowed:

"Formula manipulation means the use of a computer to operate on mathe­

matical expressions in which not all the variables are replaced by num­

bers and in which some meaningfull mathematical operation is to be done ••• ".

In this report the mathematical expressions are particular arithmetic

expressions (see the ALGOL 60 report [1]), which, in the sequel, are

called formulae; the form of the formulae is described in sections 2 and

3. The meaningfull mathematical operations are for example: differentia­

tion, simplification, complex conjugation, finding a common divisor of

two formulae, substitution.

The two systems, with which one can manipulate formulae on a computer,

consist of sets of ALGOL 60 procedures.

One system, described in section 2, manipulates formulae of a very simple

form and is therefore called the simple system.

The formulae of the simple system may be built up with algebraic variables

and the operators+ and*•

The capabilities of this system are differentiation and outputting.

3

The other system, described in the rest of the report, manipulates

formulae which may be built up with numbers (including complex numbers),

algebraic variables, polynomials (i.e. truncated power series with

arbitrary formulae as coefficients), trigonometric and logarithmic

functions and the operators+,-,.,.., /, t.

This system, called the general system, has the following capabilities:

simplification, polynomial manipulation, differentiation, complex con­

jugation, substitution, finding the coefficients of certain products

of algebraic variables in a formula, outputting and inputting formulae

from input tape.

The reason to describe both systems is mainly that the simple system

serves as an introduction to the general system; a program using the

simple system is completely explained.

Moreover, due to the fact that the simple system is much shorter and

considerably less time consuming than the general system, it may be

more usefull than the general system in all those formula manipulations,

where the formulae have the simple form as defined above. Even if the

formulae are more complicated, e.g. as constituants also numbers and

as operators also the integral power is allowed, but in which the

division operator does not occur, then the simple system can be very

usefull since it can easily be extended into a system which handles

these formulae and which has e.g. the capability of simplification.

In fact, the combination of division and simplification in the general

system is one of the reasons why it is so lengthy and time consuming.

Section 4 gives the user information necessary for using the general

system as a "black box".

The way in which formulae are represenT,ed in the computer is described

in sections 5 and 6.
Section 7 describes the procedures for the basic operations, such as

storing a formula, extracting information of stored formulae and

erasing formulae.

The procedures for the basic arithmetical operation and for the trigo­

nometric and logarithmic functions are described in sections 8 and 9.

4

Simplification algorithms are treated in section 10, while algorithms

for the quotient and the greatest common divisor are described in

section 11. Some remarks on storage allocation are contained in section

12. Section 13 contains supplementary equipment in the form of ALGOL 60
procedures for differentiation, complex conjugation, substitution, and

finding the coefficients of certain products of algebraic variables

in a formula.

The last sections 14 and 15 are devoted to outputting formulae and

inputting formulae from input tape.

A program is reproduced which reads input tape on which formulae in

polish notation and instructions may be put, as e.g.

f :=*+a, b - a, b; g := SIMPLIFY(f); OUTPUT(g);

There exists already quite a number of publications on the subject of

formula manipulation, almost al.l reviewed in the already quoted paper

[2] and in the papers Ll,4] of the same auchor.

Several syinems for formula manipulation are developed, such as FORMAC

[5] or Formula ALGOL [6], to mention two important and general systems.

All these systems have, however, the disadvantage that they require

special translators.

Another disadvantage is that, a user, who has access to a computer for

which one of these systems is written, has to know machine code if the

system has to be somewhat modified,

Since both systems described in this report are completely written in

ALGOL 60, everyone who has access to a computer with an ALGOL compiler

can not on1y use them, but can also write some modified system which

can solve his special problem.

Furthermore, a consequence of writing the systems in ALGOL 60 is their

1.mambiguous definitions.

The disadvantages of in particular the general system should also be

mentioned: the system needs much storage space, it needs much time and

it needs much space for storing formulae.

5

If one does not need the full generality of the system one may modify

the system so as to gain storage space and time. Another way of obtaining

more efficiency is to write a machine-code procedure for storing formulae

in a compact form.

For applications of preliminary versions of the formula manipulating

system, the reader is referred to [:r,8,9] in which programs are dis­

cussed for obtaining respectively:

1. the second order solution of the (non-linear) Navier Stokes equations

coupled with the (non-linear) diffusion equation, together with compli­

cated boundary conditions at a free surface of a liquid;

2. the Taylor expansion of functions defined by the so-called Cauchy

problem, i.e. a set of partial differential equations (implicit in the

highest derivatives), with initial values;

3, the asymptotic expansion of rather arbitrary integrals by means of

the method of steepest descent (the saddle point method).

The procedures constituting the simple system are reproduced compactly,

whereas the reproductions of the procedures constituting the general

system are scattered throughout the text; they are preceded by the

sentence: "This is a part of the general system".

Some critical remarks leading to a considerable improvement of the text

of, in particular, sections 1, 2, and 3, are due to professor

A. van Wijngaarden.

The programs reproduced in this report were all run and tested for

ALGOL correctness on the Electrologica X8 computer, and some of them

on the Electrologica x1 computer, both of the Mathematical Centre.

Valuable assistence was given by P.J.J. van der Laarschot and his staff.

For the X8 the ALGOL compiler written by F.E.J. Kruseman Aretz was used,

while the two ALGOL compilers respectively written by E.W. Dijkstra

and J.A. Zonneveld and by P.J,J. van der Laarschot and J. Nederkoorn

were used for the X1.

6

2. A simple formula manipulation system

Prior to the sections which describe the general system, this section

contains a completely worked out program, which does some very simple

formula manipulations.

The procedures declared in this program, together with the heading of

the program and some initializing statements form the simple system.

By means of the reproduced program it will be shown how the formula

manipulation is internally executed by the computer. Since the internal

representation of formulae is essentially the same for the simple and

for the general system, it is not necessary to explain in the next

sections the detailed mechanism by which the computer treats formulae

in the general system.

The formulae to be manipulated occur in the ALGOL 60 program as

particular expressions of type integer.

They are syntactically defined as follows:

<formula> ::= <algebraic variable>l<formula designator>!

<sum>l<product>l<derivative>

<algebraic variable> ··=<variable>

<formula designator> ::= <variable>

<sum> ::= S(<lhs>, <rhs>)

<product> ::= P(<lhs>, <rhs>)

<derivative> ::= DER(<formula>, <algebraic variable>)

<lhs>

<rhs>

: :=

.. -
<formula>

<formula>

In this definition, which is only valid for this section, certain meta

linguistic variables were used but not defined; these are defined in the

ALGOL 60 report [1] •

7

Some examples of formulae are: which read in ordinary notation:

X

one

X

1

S(DER(a,x), DER(b,x))

P(x,y)

aa/ax + ab/ax

X*Y

A typical assignment statement in which formulae occur is for example:

derivative := if f = x then one else

if type = sum then S(DER(a,x), DER(b,x)) else

if type = product then

S(P(a,DER(b,x)), P(DER(a,x),b)) else

zero

Here, derivative, f, a, and bare formula designators; x, one, and zero

are algebraic variables.

begin ££!!1!!1ent SIMPLE FORMULA MANIPULATION SYSTEM

R 1050 RPR 180766/01;

integer one g zero 9s um ,product ,algebraic variable 9k;

integer array F[l:1000,1:3];

integer procedure STORE(lhs,type,rhs); ~ lhs,type 9rhs;

integer lhs,type 9rhs;

begin STORE:= k:= k + 1; F[k,1]:= lhs; F[k,2]:= type; F[k,3]:= rhs ~

integer procedure TYPE(fplhs,rhs); ~ f; integer f,lhs,rhs;

begin lhs:::c F[f,1]; TYPE:= F[f,2], rhs:= F[f,3] end;

:integer procedure S(a,b)., ~ a,b; integer a,b;

S:= if a = zero ~ b ~ !f.. b = zero ~ a else STORE(a,sum,b) .i

integer procedure P(a 9b); ~ a,b; integer a,b;

P:= if a = zero V b = zero then zero else

if a = one then b else if b = one then a else

STORE(a,product,b),

8

integer 9-rocedure DER{f~x); ~ f 9x; integer f 0x;

begin integer aptype,b; type:"" TYPE(f 9a,b);

DER:::s lf f c:c x then one else
~ - -

l:t type :c: sum ~ S(DER(a9x) 9DER(b 0x)) else

if type = product then S(P(a9DER(b0x)) 0 P(DER(atx) 0b)) else

zero

end DER;

INITIALIZE:: sum:=-0 U product:= 2; algebraic variable:"" 3; k:= 0;;

one:"" STORE(0,algebraic variable 00);

zero:=: STORE(0palgebraic variable 00);

ACTUAL PROGRAM:

begin integer f 9X9Y.1

procedu~ PR(s); string s;

£2!!1!!1~ PR prints the string s without the string quotes { and { ;

PRINTTEXT(s),

procedu~ OUTPUT(f); ~ f, integer f;

begin integer a 9type,b., type:= TYPE(f0a,b);

if f "" one ~ PR{ili) ~

if f = zero ~ PR({:o:!,) ~

!_:Lf = x then PR(<f:,q>) ~

if f ;::, y then PR({:y:\,) ~

begin PR({:(:}); OUTPUT(a),

if type "'' sum then PR({+{) else ~· -
if type "" product ~ PR({:>q,);

OUTPUT(b); PR({):!,)

~~~OUTPUT; 

x:=: STORE(0 9algebraic variable 9Q); 

y:= STORE(0 9algebraic variable,0); NLCR; 

fr"-' S(x,y); OUTPUT(f); NLCR; 

f::::; P(x 9y), OUTPUT(f); NLCR, 



9 

fr.c, P(S(xgy) 9S(x9y)); OUTPUT(f); NLCR-3 

fr"' DER(f9x); OUTPUT(f); NLCR; 

H= DER(f9y); OUTPUT(f); NLCR 

end 

end 

The program consists of two blocks. 

The outer block, containing a number of procedure declarations and some 

statements labelled INITIALIZE, is standard and forms the simple system. 

The inner block, labelled ACTUAL PROGRAM, is ad hoc and defines the 

specific formula manipulations to be performed. 

The variables of type integer one, zero, sum, product, algebraic variable 

and k, declared in the heading of the program, get values after the label 

INITIALIZE. 

The variable k is used as a pointer in the array F [j : 1000, 1 : 3], in which 

the formulae are internally represented. 

As will be seen in the sequel, all algebraic variables and all formula 

designators occur in the program as variables of type integer. 

In executing the program, they become equal to integers which define the 

location in F where the internal representation of the corresponding 

formulae are stored. 

The effect of executing the following statement·s will now be examined: 

one := STORE (0, algebraic variable, 0); 

zero ·- STORE (o, algebraic variable, 0) .-
The procedure STORE augments k by 1 (k was originally 0) and stores the 

three values of its three parameters: lhs, type and rhs into F ~, -i], 
F [k,2] and F [},3] respectively; moreover STORE itself becomes equal to k. 



Thus, after executing.· 

Furthermore, F O, 1] = 

In 

F(?,1] = 

the sequel this is 

one= 1(0,3,0), 

zero = 2(0,3,0). 

10 

the above statements, one= 

o, F [1 ,2] = 3, F [1,3] = o, 
o, F [2,2] = 3, F@,3] = o. 

abbreviated to: 

The first statements of the actual program are: 

x := STORE(O, algebraic variable, O); 

y := STORE(O, algebraic variable, 0), 

1 and zero = 2. 

whereupon x and y get the values 3(0,3,0) and 4(0,3,0) respectively. 

The effect of the statement NLCR is to give the printer a New Line 

Carriage Return command. 

The next statement is f := S(x,y) and f gets the value 5(3,1,4), since 

neither x nor y are equal to the variable zero. The effect of the 

statement OUTPUT(f) is the printing of the character string "(x+y)". 

This can be seen as follows: 

By means of the procedure TYPE, which is the counterpart of the proce­

dure STORE, the variables a, type, and b of OUTPUT get the values 3, l 

and 4 respectively. 

Since f is not equal to the variables one, zero, x or y, the character 

"(" is printed. 

A call for OUTPUT(3) has the effect of printing "x". 

Since type = sum the character "+" is printed. 

The character "y" is printed after a call for OUTPUT ( 4), and finally 

the character")" is printed. 

The effect of the statements f := P(x,y) and OUTPUT(f) is: f = 6(3,2,4) 

and the characterlist "(x~ )" is printed. 

A more complicated statement is f := P(S(x,y), S(x,y)). 

The parameters a and b of the procedure Pare called by value, thus they 

are calculated beforehand; 



11 

a gets the value 7(3,1,4) and b the value 8(3,1,4). 

Since neither a nor bare eQual to one or zero, P and thus f gets the 

value 9 ( 7 , 2, 8 ) • 

The procedure OUTPUT will now print the character string 

" ( ( x+y) .,... ( x+y) ) " • 

The statement f := DER(f,x) is discussed now and the roles of the 

algebraic variables one and zero will become apparent. 

The variables a, type and b of DER get the values 7, 2 and 8 respecti­

vely. DER becomes eQUal to S(P(7,DER(8,x)),P(DER(7,x),8)). 

First P(7,DER(8,x)) will be calculated and this in turn activates the 

calculation of DER(8,x). 

In the calculation of DER(8,x),a, type and b of DER become eQual to 3, 

sum and 4 respectively. DER becomes eQual to S(DER(3,x),DER(4,x)). 

DER(3,x) gets the value of one and DER(4,x) the value of zero. 

S(one,zero) becomes eQual to the value of one, and thus DER(8,x) = one. 

P(7,DER(8,x)) becomes eQual to 7, since the parameter b of Pis eQual to 

the value of one. 

In the same way P(DER(7,x),8) gets the value 8. 

Finally DER(f,x) and thus f getsthe value 10(7,sum,8). 

Next, OUTPUT prints the character string "((x+y)+(x+y))". 

It is left to the reader to verify that the effect of the last state­

ments: 

f := DER(f,y) and OUTPUT(f) 

is that f gets the value 11(1,1,1) and that the following character 

string is printed: "(1 + 1)". 

This section is closed with the following remarks: 

1. As shown above, the computer handles a formula by means of a number 

which defines the location of the internal representation of this 

formula in the array F. 

The actions of the procedures STORE, S, P and DER consist primarily 

of side-effects,namely storing formulae, while the calculated values 

of the procedure identifiers are only important within the computer. 



12 

The programmer is interested in the form of a formula such as it 

is stored in F, but not in the actual value of the corresponding 

formula designator. 

In the discussion of the next sections, therefore, reference is 

made to the formula which belongs to a certain formula designator., 

instead of the value of this formula designator. 

In notation this has the consequence that, for example, the follo­

wing sentence: 

"The value of the formula designator corresponding to the formula f 

becomes equal to the value of the formula designator corresponding 

to the formula g" 

is abbreviated to: 

"The formula f becomes equal to the formula g" 

or more simply: "f becomes equal to g". 

2. For the internal representation of algebraic variables, three array 

elements of F were used, whereas one array element, F [k,2] was effec­

tively used. 

The other array elements may be used, however, to store more infor­

mation of the algebraic variables, which will be done in the general 

system. 

If there occur a large number of algebraic variables then one may 

also specify an algebraic variable as having, in the computer, a 

negative value in contrast to all other formulae. 

The procedure TYPE has to be changed in such a way that it takes 

care of this situation. 

3. The array F was used to store formulae; evidently there will be 

difficulties if there are more than 1000 formulae to be stored. 

In the general system this problem is solved by using two devices: 

one is to use an own array F declared in the procedure body of 

INT REPR, which can grow if necessary until the program runs out of 

all available storage space, the other is to provide the user the 

means to erase uninteresting formulae. 



13 

4. If the user wants a system which applies the distributive law to 

formulae, he may use instead of the procedure P the following 

procedure: 

integer procedure P(a,b); value a, b; integer a, b; 

begin _integer ta; tb, la, lb, ra, rb; 

ta := TYPE(a, la, ra); tb := TYPE(b, lb, rb); 

p := if a = zero Vb = zero then zero else 

if a = one then b else 

if b = one then a else 

if ta = sum then S(P(la,b}, P(ra,b)) else 

if tb = sum then S(P(a,lb), P(a,rb)) else 

STORE(a, product, b) 

end 

Using this procedure,all formulae are stored internally in expanded 

form. 



3, The form of formulae in the general system 

The formulae used in the general system which occur in an ALGOL 60 

program should have the form syntactically defined below, in which 

meta-linguistic variables used but not defined are defined in the 

ALGOL 60 report [1] . 

<formula> : : = one I zero I <algebraic variable> I <.formula designator 

'sum> I <difference.> I <product> j <quotient> I 
<power>lzintegral power>l<number"' j<polynomial>I 

<function> I <extended sum,/ ,derivative> j <simplified formula.> j 

<complex conjugate> I <result of substitution> I 
<integral quotient> I <common divisor> 

<algebraic variable> .. - ~-variable> 

<formula designator> - <variable> 

<sum> ::= S(<lhs>, <rhs>), 

<difference> ::= D(<lhs>,<rhs>) 

<product> :::= P(<lhs>,<rhs>) 

<quotient> : : = Q( ,lhs>, <rhs>) 

<power> : : = POWER( <lhs>, <rhs>) 

<lhs : : = <formula> 

<rhs> - <formula> 

<integral power> ::= INT POW (<formula>,<.integral arithmetic expression>) 

<integral arithmetic expression> : : =<arithmetic expression> 

<.number> -- integer number> J <real number> I complex number> 

<integer number> : : = IN{ <integral arithmetic expression>) 

<real number> : := RN(<arithmetic expression>) 

<complex number> : : = CN( <arithmetic expression>, <arithmetic expression>) 

<polynomial> : : = POL ( <integer variable>, <degree>, <-formula>, 

<-coefficient depending on integer variable>) 

<integer variable> - <variable> 

<degree> - <intee;ral arithmetic expression> 

<coefficient depending on integer variable> : := <formula> 

<function> : : = special function designator> 

<special function designator> : : = <special function identifier> (<formula>) 



15 

<special function identifier> ::= EXPILNjSINJCOSIARCTANISQRT 

<extended sum> ::= Sum(<-integer variable>, <integral arithmetic 

expression>, <integral arithmetic expression>, 

<-formula depending on integer variable>) 

<formula depending on integer variable> : : = <formula> 

<derivative> : := DER( <formula>, <algebraic variable>) 

<simplified formula> : : = SIMPLIFY( <formula.>) 

<complex conjugate> : : = CC (<formula.>) 

<result of substitution> ::= SUBSTITUTE(<formula>, <integer variable>, 

<integral arithmetic expression>, <integral 

arithmetic expression>, <formula depending on 

integer variable>, <formula de~ending on integer 

variable>) 

<integral quotient> ::= QUOTIENT(<formula>, <formula>, <rest>) 

<rest> ::= <formula designator> 

<common di visor> : : = COMMON DIVISOR (<formula>, <formula>) 

The following remarks are made: 

1. An integral arithmetic expression is an arithmetic expression of 

type integer. 

2. degree is an arithmetic expression taking non-negative integral 

values only. 

3. Examples of coefficient depending on integer variable and formula 

depending on integer variable are RN( 1 /i) or a [i], where a [i] is a 

formula designator. 

4. In the sequel formulae will not only be written in the text as defined 

above, but also in ordinary notation. 

5. The symbols S, D, P, etc., occurring at the left hand sides of the 

above definition, are in fact identifiers of procedures of type 

integer (except for one and zero, which are integer variables) in 

the general system. 

This means that a formula occurring in an ALGOL 60 program is an 

integral arithmetic expression. 



16 

Examples of formulae are: 

S(one,x) 

S(INT POW(SIN(x),2), INT POW(COS(y),2)) 

Q(CN(1,1), CN(1,-1)) 

POL(i,n,x, if i = O,then zero else RN(1/i)) 

SUBSTITUTE(f, i, 1, 2, aQ_], RN(1/i)) 

COMMON DIVISOR(Sum(i, O, 3, INT POW(x, 3-i)), D(P(x,x),one)) 

which have in ordinary notation the meaning: 

1+x 
0 2 2 sin x +cosy 

( 1 +i ) / ( -1-i ) 
2 

X + X /2 + 

(i is the imaginary unit) 

+ xn/n 

if the variables a [1] and a [2] occur in f, then they are replaced by 

1 and~ respectively. 

d o o f 3 2 1 2 A common 1v1sor o x + x + x + and x - 1 is x + 1. 



n 

4. How to use the general system 

There are two ways to use the general system. 

If the tools of the system are sufficient, one may put the formulae 

on inpu~ tape and use the program as reproduced in section 1 5. 

The other way of using the general system is described in the rest of 

this section, it amounts to: 

1. Copy the general system as reproduced in sections 5-13. 

2. Write a program which defines the operations on formulae to be done, 

this program will henceforth be called "actual program". 

3. Combine the general system and the actual program, preceded by the 

statement: INITIALIZE and closed by an extra end, to one program. 

In most cases it is desirable to output formulae, one may then copy 

the declaration of the procedure OUTPUT (section 14), in the actual 

program. 

In the procedure OUTPUT a call for OUTPUT VARIABLE is made; the 

procedure OUTPUT VARIABLE should therefore also be declared in the 

actual program. 

OUTPUT VARIABLE defines the output of a specific algebraic variable. 

The algebraic variables and formula designators, used in the actual 

program, should be declared in the heading of the actual program as 

variables of type integer or as integer array elements. Before the 

algebraic variables are used, they should have got a value by means 

of a statement of the form: 

<algebraic variable> := STORE(<integral arithmetic expression>, 

algebraic variable, <integral arithmetic 

expression>) 

The easiest way to perform these actions is to write the procedure 

OUTPUT VARIABLE in such a way that it combines both the outputting 

and the initializing instructions. 

An example of a possible declaration of OUTPUT VARIABLE may be found 

in section 14. 



18 

The formula designators should get values in the program by means of 

statements of the form: 

<f'ormula designato'J:",> := <integral arithmetic expression> 

In most cases the integral arithmetic expression is a formula, it may, 

however, be built up by means of if clauses and formulae. 



19 

5. The internal representation of formulae, in the system 

The general system is constructed in such.a way that one and zero are 

represented as formulae of the form number ( in contrast to their re­

presentation in the simple system), moreover an extended sum, a deriva­

tive, a simplified formula, a complex conjugate, a result of a substi­

tution, an integral quotient and a common divisor is worked out, i.e. 

the "operators" Sum,, DER, SIMPLIFY, CC, SUBSTITUTE, QUOTIENT and 

COMMON DIVISOR are applied to the formulae occurring, as parameters. 

This means that each formula f can be characterized by three quantities 

which will be called: lhs, type, and rhs; 

type may be: sum, difference, product, quotient, power, integral power, 

number, function, polynomial or algebraic variable. 

In the first five cases, lhs and rhs denote the left hand side and the 

right hand side formulae with which f is built up, 

The meaning of lhs and rhs in the other cases is summarized in the 

:following table: 

type lhs rhs 

integral power exponent off base of f 

number "type" of number lo cat ion where the 

i.e. integer,real or value of the num-

complex ber can be found 

polynomial degree of polynomial location where the 

argument and the 

coefficients can 

be found 

function "type" of function argument of function 

i.e. exp, ln, sin, 

cos, arctan or sqrt 

algebraic variable may be used to define extra information 



20 

6. The heading and the procedure INT REPR 

The heading of the general system runs as follows: 

begin com!E~~ GENERAL SYSTEM fo~ FORMULA MANIPULATION 

R1050 RPR 290466/03/05/06; 

!,!_l_!,eger sumpdlfferencepproduct 9quotient 9power 9integral power p 

number 9polynornial 9algebraic variable 9functlon 9 

Integer greal 9Complex9expi\lnf 0sinf 9Cosf ?arctanf 9sqrtf? 

one 9zerofminone 9im unU 0di; 

real_ d.r9nu11; Boolean expand; hrteger §:_rray da[0:01; 

The values of the declared integer variables, except for the integer 

variables one, zero, min one, im unit and di, are used in defining 

the characterizing quantities lhs, type and rhs of the internal 

representation of formulae. The integer variables one, zero, minone 

and im unit will correspond to formulae of the form number, which in 

ordinary not at ion read: 1 , 0, -1 and i respectively. 

As "dummy" variables the variables di, dr and the array da are declared, 

to be used as uninteresting actual parameters in some procedure calls. 

The general system has its own arithmetic. 

Complex numbers with imaginary part smaller than the real variable 

null, are transformed into real numbers; real numbers lying near an 

integer number, within the accuracy defined by null, are transformed 

into integer numbers. 

Formulae in the general system can be treated in two ways: 

First, the formulae may be stored as they stand, in this case the 

Boolean variable expand= false. 

The second way is that the formulae are stored in expanded form, i.e. 

the distri1mtive law and other laws are applied; in this case expand = 

true. 



21 

The declaration of the procedure INT REPR is now reproduced. 

Although INT REPR is, as far as the storage of formulae is concerned, 

the keystone of the general system, the actual form of it is not very 

interesting. 

£2!!1!!1~ This is a part of the general system; 

procedure INT REPR(case 0formula 0lhs 9typegrhs 9rnum 9inum 9coeff); ~ case; 

integer case9formula,lhs 9type 9rhs; ~ rnum 9inum; integer array coeff; 

begin ~ :integer k 9krn,kcn9kpol,index,kmax9krnmax9kcnmax0kpolmax9 

degree max 9indexmax; integer i; !£. case + 1 ~ goto A; 

k:= krn:= ken:= kpol:= index:= 0; 

kmax:= krnma.x:= kcnmax:= kpolmax:= indexmax:= 1; degree max:= lhs; 

null:"" rnum; di:"" 0; dr:= 0; da[0]:= 0; expand:"" formula = 1; 

sum:"" 1; difference:= 2; product:"" 3; quotient:= 4; power:= 5; 

integral power:= 6; number:= 7; polynomial:= 8; function:= 9; 

algebraic variable:= 10; integer:= 1; real:= 2; complex:= 3; 

e:x"'J)fr=" 1; lnfa"' 2; sinfr= 3; cosfr= 4; arctanf::c 5; sqrtfr= 6; 

A: begin ~!!. integer array F[l:kmax91:3],FPOL[l:kpolmax0-l:degree maxlo 

INDEX[! :indexmax,1 :4 ]; 

~!!.~array FRN[l:krnmax]9FCN[l:kcnmax91:2]; 

~~ CASE:= END,STORE FORM,STORE REAL NUMBER,STORE 

COMPLEX NUMBER,STORE POLYNOMIAL,TAKE FORM 0TAKE 

REAL NUMBER,TAKE COMPLEX NUMBER,TAKE POLYNOMIAL, 

FIX,ERASE,LOWER INDEX,FIXED,REPLACE,MAKE SPACE; 

goto CASE[case]; 

STORE FORM: if k < kmax then k:= k + 1 else 

begin kmax~= kmax + 25; goto A end; 

F[k: 91]:= lhs; F[k,2]:= type; F[k,3]:= rhs; formula:= k; 

case:= if type = number then (if lhs = real then 3 else if lhs = 
~ ~ .__ - -=----

complex ~ 4 ~ 1) ~ !f. type = polynomial ~ 5 ~ 1; 

goto CASE[case]; 

STORE REAL NUMBER: if krn < krnmax then krn:= krn + 1 else 

begin krnmax::::: krnmax + 25; goto A ~ 



22 

FRN[krn]:=: rnum; F[kg3 ]:= krn; goto END~ 

STORE COMPLEX NUMBER: if ken < kcnrnax then kcn:=c ken + 1 else 

begin kcnmax::, kcnrnax + 25; goto A end; 

FCN[kcm91]:= rnum; FCN[kcnp2]::::s inurn; F[k 93]::::: kcnj goto END; 

STORE POLYNOMIAL: !L, kpol < kpolrnax ~ kpol:"" kpol + l else 

begin kpolrnax:= kpolrnax + 25; goto A end.; 

FPOL[kpol 9-l ]:::s rhs; !£E_ i:= 0 step 1 ~ lhs ~ 

FPOL[kpol 9i]:cc coeff[i]j F[k93]:= kpol~ goto END; 

TAKE FORM: lhs:= F[forrnula9l ]; type:= F[forrnu.la~2 h rhs:"' F[forrnula. 93 h 
goto END; 

TAKE REAL NUMBER: rnurn:= FRN[F[forrnula 93 ]19 goto END? 

TAKE COMPLEX NUMBER: rnurn:= FCN[F[forrnula 93],l]; 

inum := FCN [F [f orrnula,3 ]92 ]; goto END; 

TAKE POLYNOMIAL: f2E_ i:= 0 ~tep 1 ~lhs ~ 

coeff[i]:"" FPOL[F[forrnula 93 Uh rhs::c: FPOL[F[forrnulag3 le-1 b goto_ END; 

FIX: if index < lndexrnax then index:= index + 1 else 

begin indexrnax:'°' indexrnax + 10; goto A end; INDEX[lndex 9l]:= k.; 

lNDEX[index 92]:•" krn; INDEX[index,3]:= ken,; INDEX[indexA]:= kpol.t 

goto END; 

ERASE: k::::: INDEX[index 9l ]; krn:= INDEX[index 92 l; ken:"' INDEX[lndex 93 b 
kpol:"' INDEX[indexA]; index:= index - 19 g,oto END; 

LOWER INDEX: index:= index - 1; goto END; 

FIXED: type:= !!.,formula~ INDEX[index 9l] ~ 1 ~ O; goto END,; 

REPLACE: F[formula9l]:= F[lhs 9l]; F[forrnula 92]:= F[lhs 92]; 

F[forrnula 93]:"" F[lhs 03]; goto END; 

MAKE SPACE: kmax:= k; krnrnax:= krn., kcnrnax:"' kcni kpolrnax:= kpol.; 

lndexmax:"' i.ndex., case:= 1; goto A; 

END: end 

end INT REPR; 



23 

By means of the proceaure INT REPR, formulae are stored, information 

about stored formulae is defined, formulae are- erased, storage space 

is made available and the necessary initializing statements are 

executed. 

The effect of a call for INT REPR with, its parameter case equal to 

1, 2, 6, 7, 8, 9,-10, 11, 12, 13, 14 and 15 will now be discussed. 

It is remarked that the next section contains 15 procedure declarations; 

each one corresponds to a label of the switch CASE. 

case = 1 : The variables declared in the heading get values ( except for 

one, zero, min one and im unit); 

the own,declared variables k, krn, ken, kpol, index (used as pointers 

in the arrays F, FRN,• FCN, FP0L and INDEX), kmax, krn max,kcn max, 

kpol max and index max (used as bounds of the same arrays) get values; 

the variable degree max gets a value defining the maximal degree of 

the polynomials. 

The second block of INT REPR contains the declaration of the above 

mentioned arrays. 

Fis used to store all formulae, in FRN and FCN the values of real 

respectively complex numbers are stored; the coefficients of poly­

nomials and the argument are stored in FP0L. 

In INDEX fixed values of the pointers k, krn, ken and kpol are stored. 

case= 2: The three characterizing quantities: lhs, type and rhs are stored 

in F, possible values of numbers or polynomials are stored in FRN, FCN 

and FP0L; moreover the parameter "formula" gets the value of k. 

case= 6, 7, 8, 9: the process as described for case= 2 is reversed: 

the contents of the array elements defined by the value of "formula" 

is set in the parameters of INT REPR. 

case= 10: The values, at the moment INT REPR is called with case= 10, 

of the pointers k, krn, ken and kpol, called fixed pointers, are stored 

in INDEX. 

case = 11: The pointers k, krn, ken and kpol are set equal to the lastly 

stored fixed pointers, moreover these fixed pointers are removed from 

INDEX. 



24 

case= 12: The lastly stored fixed pointers are removed from INDEX. 

case = 13: INT REPR investigates whether the parameter "formula" has 

a value less than or equal to the lastly stored fixed pointer k. 

( In this case the co:rresponding formula was stored before this 

pointer was fixed.) 

case= 14: The contents of a given formula is replaced by the contents 

of another formula. 

case= 15: The lengths of the arrays are (in general) diminished, so 

as to obtain more storage space in the computer for other work 

which has to be done. 

Remark: If one does not have an ALGOL 60 compiler which accepts own arrays 

then the arrays F, FRN, FCN, FPOL and INDEX should be removed from 

INT REPR and they should be declared in the heading of the general 

system. 

The arraybounds should then be given beforehand, e.g. by means of 

numbers on input tape, or by means of some number which defines the 

total amount of storage space still available in the computer. 



25 

7. The basic procedures 

The procedures to be discussed in this section form the connection 

between the rest of the general system and the procedure INT REPR. 

They are used throughout the program, and are called basic therefore. 

A more efficient system would be obtained by replacing INT REPR by 

a machine code subroutine, which stores the formulae in a more compact 

form. 

The basic procedures should then be connected with this subroutine, 

their meaning· and their declaration should,however,be maintained. 

The declaration of the basic procedures now follows: 

~!!1~- This is a part of the general system; 

EE,OCedure INITIALIZE; 

begin real null; integer i 9j; j:"" read, null:"" abs(read); 

i:'°' read; INT REPR(l 9i,j,di,di,null,dr,da); 

one:"" STORE(i.nteger ~number ,1); zero:= STORE(integer ,number ,0); 

mlnone:= IN(-1); irn unit:cc CN(0 91); FIX 

~ INITIALIZE; 

!_nteger procedure STORE(lhs~type,rhs)., ~ lhs,type,rhs, 

i!!,teger lhs 0type~rhs; 

begin integer f, INT REPR(2,f,lhs 9type,rhs,dr,dr,da); STORE:= f ~ 

!!!!:,eger procedu~ IN(i); ~ i; integer ij 

i.f i = 1 then IN :c:c one else if i = 0 then IN:= zero else 
~ ~ ~~ --
begil!_ ~eger f; INT REPR(2 9f ,integer ,number ,i ,dr ,dr 9da),; IN ::::c f end,; 

!!!!,~ :2.rocedure RN(r); ~ r; ~ r~ 

if r - entier(r) 5, null ~ RN :::c: IN(entier(r)) ~ 

U - r - ent:i.er(- r) < null then RN:'""' IN(- entier(- r)) else 
= - -
begin integer f; INT REPR(2 9f 9real 9number,di,r 0dr,da); RN:= f end,; 

integer procedure CN (r ,i); ~ r ,i; ~ r ,i,; 

i.f absO) < null then CN:"" RN(r) else 
~ - -



26 

integer procedure POL(i9degree9x 9coeffi); ~ degree 9x; 

integer i 9degree 9x 9coeffi; 

begin integer f; integer array coeff[0:degree]; 

!2£ i:= 0 step 1 ~ degree 22, coeff[i]:= coeffi; 

INT REPR(2 9f,degree 9polynom:ial 9x 9dr 9dr 0coeff); POL:= f 

~POL; 

integer procedure TYPE(f0lhs 9rhs); ~ fp integer f 9lhs 0rhs.v 

begin integer t; INT REPR(6JJhs 9t 0rhs 9dr 0dr 9da)p TYPE:= t ~ 

procedure VALUE OF INT NUM(f9i); ~ f; integer f 9H 

INT REPR(6 9f,di 9di 9i 9dr 0dr 9da); 

procedure VALUE OF REAL NUM(f 0r); ~ f; integer f; ~:r; 

INT REPR(7 0f 9di 9di 9di 0r 9dr 9da); 

procedure VALUE OF COMPLEX NUM(f 9r 91) 9 ~ f; integer f; 

~ r 0i; INT REPR(8g{ 0di 9di 9di 9r 9i 9da); 

procedure COEFFICIENT(f9degree 9x 9coeff); ~ f 0degree; 

integer f 9degree,x; integer array coeff; 

INT REPR(9 9f 9degree 9di 0x 0dr,dr 0coeff); 

procedure FIX; INT REPR(l0 0di 9di 0di 9di,dr 9dr 9da)_g 

procedure ERASE; INT REPR(ll 9di,di 9di 0di 0dr 0dr 0da); 

procedure LOWER INDEX; INT REPR(12 0di 0di 0di 0di 0dr~dr 0da)~ 

~oolean procedure FIXED(f); ~ f; integer f; 

begin integer t; INT REPR(13 9f 0di,t,di 0dr 9dr 9da); FIXED:= t = 1 end; 

procedure REPLACE(f,g); ~ f,g; integer f 9g; 

INT REPR(l4 9f 9g 9di 9di 9dr 9dr,da); 

procedure MAKE SPACE; INT REPR(15 0di 9di 9d:l.,di,dr 0dr,da); 

A description of these procedures and some comment -is given below: 

INITIALIZE: A call for INITIALIZE is necessary before any action of 

the program. 

All variables used in the general system get values. 

From input tape INITIALIZE reads by means of the not-declared procedure 

read the values of: 



27 

1. the maximal deg-ree, of the polynomials, 

2. the real variable null, 

3. the Boolean variable expand, which becomes true if the read 

number is equal to 1. 

Finally, the integer variables one, zero, min one and im unit get 

values; by a call for FIX, the formulae corresponding to these 

variables are protected against (possible) erasing. 

STORE, IN, RN, CN, POL: store a formula. To the procedure identifiers 

numbers are assigned, defining the location of the internally repre­

sented formula. 

IN: stores an integer number with value i. If i is possibly 1 or 0 

then IN becomes equal to one or zero. 

It is evident now why the formulae one and zero were not stored 

in INITIALIZE by the statements one : = IN( 1 ) and zero : = IN( 0). 

RN: stores a real number, with value r. The real number is stored as 

an integer number if r lies close to an integer number (within the 

precision defined by null). 

CN: stores a complex number with value r + {:-:ii. If i = 0 (within 

the precision defined by null), the complex number is transformed 

into a real number. 

Remark: a consequence of the structure of IN, RN and CN is that e.g. 

EXP(P(RN(2 * 3. 149265359), im unit)) 

becomes equal to one (if null is 
de~ree 

POL: stores the polynomial l 
i=O 

Jensen device). 

not too small of course). 

l coeff i * x (use is made of the 

The next five procedure declarations are the counterparts of the five, 

discussed a moment ago; they deliver information of a stored formula f. 

TYPE: becomes equal to the type of f; the parameters lhs and rhs become 

equal to the lhs and rhs quantities of f. 



28 

VALUE OF INT NUM~ to the para.met.er i the value of the integral 

number f is assigned. 

VALUE OF REAL NUM: to the parameter r the value of the real number f 

is assigned. 

VALUE OF COMPLEX NUM: to the parameters rand i, the real and imagi­

nary parts of the value of the complex number fare assigned. 

COEFFICIENT: to the parameters x and coeff, the argument and the 

coefficients, with index running from Oto the value of degree, 

of a polynomial fare assigned. 

The value of degree should be smaller than or equal to the lhs off 

(the degree of the polynomial). 

FIX, ERASE, LOWER INDEX: During the course of the program certain formulae 

are built up which may be erased later on. This is- only possible if 

these formulae are stored consecutively. A call for FIX has the effect 

that formulae, which were stored before, are protected against the 

erasing effect of a next call for ERASE, later on. Moreover, a call 

It 

the 

for ERASE or LOWER INDEX has the•effect- of cancelling the effect of 

the last call for FIX. 

Example: Suppose the formulae f1, f2 and f3 are stored as an effect 

of the statements S1, S2 and S3 respectively, then the effect of the 

procedure statements FIX, ERASE and LOWER INDEX can be seen from the 

following sequences· of statements; the formulae, which are still 

available after these statements are executed, are placed between 

brackets. 

S1; FIX; S2; ERASE; S3 (f1 ,f3) 

S1; FIX; S2; ERASE; ERASE; S3 ( f3) 

S 1 ; FIX; S2; ERASE; S3; ERASE ( ) 

S1 ; FIX; S2; ERASE; FIX; S3; ERASE ( f1 ) 

S1; FIX; S2; LOWER INDEX; S3 (f1,f2,f3) 

S1 ; FIX; S2; LOWER INDEX; S3; ERASE ) 

should be remarked that the storage space, used for storing f2 in 

first sequence of statements, is used, after the call for ERASE 

and S3, for storing f3. 



29 

Each call for ERASE or LOWER INDEX should be preceded by a call for FIX. 

A problem occurs with the sequence· of statements 81 ; S2; S3, if af'ter 

execution of these statements, f1 and f3 ma;y be ·erased but f2 ma;y not. 

In this case one can use the procedure ERASE BUT RETAIN, defined in 

section 12 in the following way: 

FIX; FIX; S1; 82; S3; ERASE BUT RErAIN (i, 1, 1, f2) 

Af'ter execution of these statements, f1 and f3 are erased, the effect 

of the statements FIX;-.FIX is cancelled-and f2 is.still- available for 

further use. 

A better method of erasing formulae would be a garbage collection 

method. 

The reasons for not building in this method are described in section 12 

on storage allocation. 

FIXED: becomes equal to true or false depending on whether the formula f 

was stored before or af'ter the last, not cancelled, call for FIX. 

REPLACE: replaces the contents of the stored formula f by the contents 

of the stored formula g, without altering the number defining the 

location o·f the internal representation of f. 

The procedure REPLACE should be used very carefully (it is not used 

in the general system). 

Possible erroneous use of REPLACE is illustrated by the following 

example: 

Suppose expand= true, then the formulae are stored in expanded 

form, the formula g, defined by: 

f := S(a,b); g := P(f,c) 

is stored therefore as a* c + b * c. 

The statement REPLACE(f,S(x,y)) has no effect on g. 

However, if expand= false then also g would be altered by the 

statement REPLACE(f,S(x,y)); g is then internally represented as 

(x+y) * c. 

MAKE SPACE: storage space, used for already erased formulae, is made 

available for other purposes, e.g. for storage space needed by 

recursively called procedures. 



30 

MAKE SPACE can only effectively be used if one-has the possibility 

to ask for the-total amount -of storage space still available in the 

computer; one may then build in at ,some appropriate places (e.g. in 

the procedures S, P and Q) a check for the available storage space, 

which possibly leads to a call for MAKE SPACE. 

The general system does not use MAKE SPACE. 



31 

8. The procedures S, D, P,·Q,· POWER and INT POW 

The procedures of the title of this section are used to store a sum, 

a difference, a product, a quotient, a power and an integral power. 

In the declaration of these procedures use is made of the following 

procedures reproduced first. 

2.2!!1!!1~ This is a part of the general system; 

integer procedure CONST POL(degree9c); ~ degree,c; integer degree 9c; 

begin !2,teger i; CONST POL::a POL(i 9degree 9one 0!£_ :i. = 0 then c else zero) 

~ CONST POL; 

integer procedure OPER ON POL(oper0a 9ta,da0b 0tb 0db); 

~ oper,a9ta9da.9bptb,db; integer oper,a,ta0da0b,tb 0db; 

begin integer x,y 9i,degree,j; ~oolean B; B:"' ~ 

!£ ta + polynomial ~ 
begin degree:= db; a:= CONST POL(degree,a) ~ ~ 

!L tb f polynomial ~ 

begin degree:"" da; b:"" CONST POL(degree 0b) ~ ~ 

degree~= !!_ da < db ~ da ~ db; 

begin integer array coeff 9coeff a,coeffb [0 ~degree h 
COEFFICIENT(a,degree,x9coeffa); COEFFICIENT(b,degree,y,coeffb); 

g_ oper "" sum ~ 

begin !2!_ i:= 0 step 1 ~ degree 22, 
coeff [i k= SIMPLIFY(S(coeff a [i ],coeffb [i ]) ) 

~ ~ if oper = product ~ 

begin !2!_ i:= 0 step 1 ~ degree 22, 
coeff[ih"' SIMPLIFY(Sum(j,0,i,P(coeffa[j],coeffb[i-j]))) 

end ~ !f.. oper = quotient ~ 

begin !.2!. i:= 0 step 1 2!!L degree 2.2, coeff[i ]:= 

SIMPLIFY(Q(D(coeffa[i],Sum(j ,0,i-1,P(coeff[j ]9coeffb[i-j ]))) ,coeffb[0 ]) ) 

end; !.2!, i~= 1 step 1 ~ degree 22. B:= B /\ coeff[i] = zero; 

OPER ON POL:::, !!._ B ~ coeff[0] ~ POL(i,degree, 

[. x = one ~ y ~ x,coeff[i]) 

end end OPER ON POL; 



32 

procedure VALUE OF NUM(f,rpi); ~ f; integer f; ~r 9i; 

beg:i.n integer n 0type; TYPE(f,type,n); 

!!_, type = integer ~ begin VALUE OF INT NUM(f 9n); r:= n;; i:= 0 end 

else_!£ type = real ~ begin VALUE OF REAL NUM(f 0r); :i.:= 0 end 

~ VALUE OF COMPLEX NUM(fprpi) 

~ VALUE OF NUM.; 

integer procedure ARITHMETIC(oper9a 0b); ~ oper 0a 0b.9 integer oper0a0b$ 

begin ~ r 0:i.,rapiaprbpib; 

VALUE OF NUM(aprapia); VALUE OF NUM(b 0rb 0ib); 

if oper = sum then begin r:= ra + rb; i:= :i.a + :i.b end else 
~ -- ~---
!!., oper = product ~ 

begin r:= ra >< rb - ia >< ib; i:= ra >< ib + ia x: rb ~ ~ 

begin r:= rb >< rb + ib >< ib; !f. abs(r) ~ null x null ~ 

r:= null >< null; i:= (ia >< rb - ra >< ib)/r; r:= (ra >< rb + ia >< ib)/r 

end; ARITHMETIC:= CN(rpi) 

~ ARITHMETIC; 

integer procedure Sum(i,lbpub,fi); ~ lb,ub; integer i,lb 0ub 0fi; 

begin integer s; s:= zero; !2!:, i:= lb step 1 ~ ub ~ s:= S(s 0fi); Sum:= s 

~Sum; 

:integer procedure COMB(n,m); ~ n9m; :Integer n9rn; 

COMB::c: !£ m = 0 ~ 1 ~ (COMB(n,m-1) x (n + 1 - m)) !_, m; 

integer procedure REPEATED PRODUCT(f0n); ~ f 0n; integer f 0n; 

begin integer a; a:= INT POW(f,n~); REPEATED PRODUCT:= P(P(a 0a) 0 

!!_ (n:.?)><2=n ~ one ~ f) 

~~ REPEATED PRODUCT; 

integer procedure comm div(a,bg{); integer a 0b,f; 

pegin integer r 0cd; cd:= COMMON DIVISOR(a 0b); 

!£cd +one~ 

begin a::: QUOTIENT(a,cd,r); b:= QUOTIENT(b,cd,r) ~ 

comm div:== f 

end comm div; 



33 

A short discussion of these procedure declarations follows: 

CONST POL: has an obvious meaning. 

OPER ON POL: becomes a polynomial of degree-:,, 0 or a formula as the 

result of some calculation. 

At least one of the parameters a and b has to be a polynomial. 

The parameters ta and tb are the types of a and b, while the parameters 

da and db are the lhs of a and b; they define in the case that a orb 

are polynomials the degree of the polynomials. 

The parameter aper defines the sort of calculation: summation, 

multiplication or division, which should be done. 

If one of the formulae a and b is not a polynomial, it is transformed 

into a constant polynomial. 

The following recursive relations are used for the calculation: 

assume the coefficients of a and b are respectively coeffa .. and coeffb. 
l l 

a+ b : coeff. = coeffa. + coeffb. 
l l l 

coeffc = 
l 

l 
\ 
L. 

j=O 
coeffa, coeffb. , 

J l-J 

a / b: coeff. = (coeffa. 
l l 

i-1 
\ 
L. 

j=O 
coeff, coeffb. . ) / coeffb0 J l-J 

The resulting coeffients coefL are stored in simplified form. 
l 

It should be remarked that the intermediate results e.g. 

S ( coeffa Ll-], coeffb [i]), are not erased. It is therefore worth while 

to use the procedure ERASE BUT RETAIN (section 10) for restoring the 

final re,ml t, in order to save space. 

If the coeff, = zero for all i > 0 then the result of the calculation 
l 

is not a polynomial but a formula defined by coerr0 • It is remarked 

that lowering the degree of the polynomial if the coeff, = zero for 
l 

all 1 ~ n > O, would lead to erroneous results, since then, for example, 

2 3 (b 0 + b 1x + b 2x + b 3x) - (c0 + c 1x + 

c2 and b 3 = c3 , 

would have the erroneous result: 

a 0 + b 0 - c 0 + (a 1 + b 1 - c 1 )x. 



34 

Notice also that it would be meaningless to get from the calculation: 

2 3 the result: a0 + d0 + (a 1 + d1 )x + a 2x + a 3x, 

since the polynomials are treated as truncated ~ower series, thus 

d2 and d3 will in general not be zero, they are ,uiknown however. 

In the above case d2 = b 2 - c2 and d3 = b3 - c3, thus they represent 

relevant coefficients, which just happen to be zero. 

VALUE OF NUM: the value of a number f is assigned to the real variables 

rand 1 (for the real and imaginary parts). No difference is made 

between integer, real or complex numbers. 

ARITHMETIC: becomes a number as the result of some calculation. 

ub 
Sum: becomes the formula \ 

I., 

i=lb 
fi. 

COMB: becomes equal to the value of the combinatorial coefficient: 

n nt 
( m ) = (n - m) t m! 

n 
REPEATED PRODUCT: becomes equal to the formula IT f. This procedure 

i=1 
* can only be used if f is a number or a polynomial. 

comm div: if there exists a common divisor of a and b, not equal to 

unity, then a and bare divided by this common divisor and they 

actually get other values. comm div becomes equal to f (which may 

depend on a and b ) • 

Next the procedures S, D, P, Q, POWER and INT POW are reproduced: 

£2!!1!:!lent Thls :i.s a part of the general system; 

integer procedure S(a,b),; ~ a,b; integer a 9b9 

begin integer taJa,ra,tb 9lb,rb; 

ta:"" TYPE(a,la 9ra); tb:= TYPE(b.lb,rb); 

S:== if a = zero then b else if b = zero then a else 

:!f. ta = number /\ tb = number then ARITHMETIC(sum 9a,b) else 

* The integer division symbol f is written as..:... 



35 

!£,expand~ 

(g_ ta = polynomial V tb = polynomial ~ 

OPER ON POL(sum,a11ta,la,b,tb 9lb) ~ 

!£ ta = quotient A tb = quotient ~ 

P( Q(one,ra) ,comm div(ra,rb ,Q(S(P(la,rb) ,P(lb ,ra)) ,rb))) else 

!.t ta = quotient ~ Q(S(la0P(b,ra)) 0ra) else 

!.t, tb = quotient ~ Q(S(P(a,rb),lb),rb) else 

STORE(a9sum,b)) 

~ STORE(a,sum,b) 

~S; 

integer procedure D(a,b); ~ a,b; integer a,b; 

D:= !f. (TYPE(a,di,d:i.) = number A TYPE(b,di,di) = number) V 

expand ~ S(a,P(m:i.none,b)) ~ STORE(a,difference,b); 

integer procedure P(a,b),; ~ a,b; integer a,b; 

begin integer ta,la,ra,tb,lb,rb; 

ta:::c: TYPE(a,la,ra); tb:= TYPE(b,lb,rb); 

P:= if a = zero V b == zero then zero else if a = one 

then b else if b = one then a else 
- - l:IIIIIZ-=l ~ -

!!. ta = number A tb = number ~ ARITHMETIC(product,a,b) else 

[_expand~ 

(!!,_ ta = polynomial V tb = polynomial ~ 

OPER ON POL(product,a,ta,la,b,tb,lb) ~ 

!!,_ ta = quotient,\ tb = quotient ~ 

comm div(la,rb,comm div(lb,ra,Q(P(la,lb) ,P(ra,rb)))) else 

if ta = quotient ~ comm div(ra,b,Q(P(la,b),ra)) else 

if tb = quotient ~ comm div(a,rb,Q(P(a,lb),rb)) else 

if ta = sum ~ S(P(la,b),P(ra,b)) else 

if tb = sum ~ S(P(a,lb),P(a,rb)) else 

STORE(a,product,b)) 

~ STORE(a,product,b) 

~ P; 



36 

integer procedure Q(a,b); ~ a,b; integer a 0b; 

begin integer ta,la,ra,tb,lb,rb,al; a:= al:= SIMPLIFY(a); 

b:= SIMPLIFY(b); ta:= TYPE(a,la,ra); tb:= TYPE(b,lb,rb); 

if ta = number /\ tb = number then 
~ -
begin Q:= ARITHMETIC(quotient,a,b); goto END end; 

Q:= !!'.., a = zero ~ zero ~ if b = one then a else 

[. tb = number ~ P(Q(one~b),a) ~ 

if.. expand ~ 

(![, ta = polynomial V tb = polynomial ~ 

OPER ON POL(quotient,a,taJa,b,tb,lb) else 
"""""'""" !!., ta = quotient /\ tb = quotient ~ 

comm div(la,lb,comm div(ra,rb 9Q(P(la,rb),P(lb,ra)))) else 

!i, ta = quotient ~ comm div(la,b,Q(la,P(ra,b))) _else 

!£ tb = quotient ~ comm div(a,lb,Q(P(a,rb),lb)) ~ 

comm div(a,b,[. a = al ~ STORE(a,quot:l.ent,b) ~ Q(a,b))) 

~ STORE(a 0quotient 0b), 

END:~ Q; 

integer procedure POWER(a,b); ~ a,b, integer a,b; 

POWER:== !!., (TYPE(a~di,di) = number /\ TYPE(b,di,d:iJ = number) V 

expand ~ EXP(P(b,LN(a))) ~ STORE(a 0powerj)b)., 

integer procedure INT POW(a,n); ~ a 9n; !E_teger a,n; 

begin giteger i,t 0lapra; t:= TYPE(apla,ra); 

INT POW:= if n = 0 then one else if n = 1 then a else 
= -- ---

if n < 0 then Q(onepINT POW(a,-n)) else 
= ~ -
if t = number then REPEATED PRODUCT(a,n) else - -- --
if expand~ 

(![_ t = polynomial ~ REPEATED PRODUCT(a,n) else 

!,Lt = sum ~ Sum(i,0,n,P(IN(COMB(n9i)), 

P(INT POW(la,n-i),INT POW(ra,i)))) ~ 

!f. t = product ~ P(INT POW(la,n) ,INT POW(ra,n)) else 

!£, t = quotient ~ Q(INT POW(la,n),INT POW(ra 0n)) else 

STORE(n,integral power ,a)) 

~ STORE(n,integral power 2a) 

end INT POW; 



37 

The construction of these procedures is in principle the same as the 

construction of the procedures Sand P of the simple system described 

in section 2. 

A complicating element in these procedures is the division, to which 

most of the following discussion is devoted. 

First, some trivial remarks: 

1. If the non-local Boolean variable expand= false, the formulae are 

stored as they are written, except for a trivial simplification with 

the unit- and the zero element one and zero (this is done in view 

of the differentiation procedure). 

2. If it is possible (in a trivial way) to carry out some numerical 

calculation, then it is done. 

Thus e.g. a+ (1 + 2) is stored as a+ 3, whereas (a+ 1) + 2 is 

stored as it stands. 

(A call for SIMPLIFY will deliver the result a+ 3 if expand= true). 

3. Due to the construction of IN, RN and CN and due to the treatment 

of numbers of the basic procedures as illustrated in the above remark 

and due to the construction of the procedures for storing functions, 

the result of storing, for example, the formula 

(i.,.. (1-i)/(1+i)) *a+ lnl1) * b, where i is the imaginary unit 

and a and b algebraic variables, is simply a. 

It should be noticed, however, that the above shown simplification 

is not exact, since the precision null could be chosen wrong. 

The simplification could be made exact by introducing also Gaussian 

integers. 

Then, however, there still remains the problem that e.g. exp(2ni) or 

ln(e) or (\,1'1) 3 should be recognized by the system equaling the unit 

element one. 

Thus the symbols n, e, ~'etc.should be adjungated to the field 

of complex numbers, and this would complicate the treatment of 

numbers severely. 



38 

4. In the following remarks it is assumed that expand= true. 

5. A difference is stored as a+ (-1) *b; 

a power is stored as exp(b * ln(a)). 

6. If one of the parameters a and b (or both) of the procedures 

S, D, P or Q is a polynomial then the result of the calculation 

will also be a polynomial. 

7. The above remark does not apply to the procedure POWER. 

8. The procedure INT POW delivers in case a is a number or a polynomial 

an efficiently formed repeated product. Thus, if a is a polynomial 

then the result of INT POW is a polynomial. 

If a is a sum, a product or a quotient then INT POW expands a. 

The consequences of introducing the division will now be investigated. 

Difficulties arise from the combination of division and simplification. 

Without division and without functions, simplification can easily be 

defined in the following way: 

Two formulae f and g are called equal if 

1. f and g are the same numbers, or 

2. f and g are the same algebraic variables, or 

3. the simplification of f-g equals O. 

Let n1 and n2 be numbers, let f and g be equal formulae, then the 

simplification of n1 ....- f + n2 * g is (n1 + n2 ) ..... f. 

Since the ultimate test for equality is a test on the elementary 

constituants of a formula, i.e. the algebraic variables and the numbers, 

simplification should be carried out on the expanded formulae, i.e. a 

sum of products of algebraic variables and numbers. 

For this expansion the ·procedure P defined at the end of section 2 

(point 4 of the remarks) can be very helpfull. 

It should be noticed that there exists no common agreement on the 

definition of simplification. 



39 

This is not surprisingly since simplification strongly depends on the 

specific formula manipulations one wants to do. 

A definition of simplification in a general system, with formulae of 

which nothing is known•,about the algebraic variables constituting the 

formula, does not leave much choice however. 

Factorization, for example, would be a nice facility and in some cases 

this can be done in an.elementary way, e.g. ax+ bx= (a+ b)x, in 

other cases, however, it can not be done in an elementary way e.g. 
2 2 

a - b • 

At the other hand, the user who knows the form of the formulae before­

hand, can build his own simplification procedure, which e.g. also 

factorizes. 

Extension of the field of formulae with exponential functions, offers 

no serious difficulties; it can easily be checked whether exp(f) equals 

exp(g), since this amounts in testing whether f equals g apart from 

a multiple of 2ni. 

Logarithmic functions, however, are troublesome, since it does not 

follow from f = g that ln(f) = ln(g). 

Logarithmic functions 1 1 and 12 will only be recognized as to be equal 

if 1 1 and 12 are physically the same (i.e. 1 1 and 12 refer to the same 

location in the storage space). 

The effect of the implementation of division in the system on simplifi­

cation will be studied next. 

Simplification will now be understood in the following sense: 

1. The simplification of a formula f is a quotient of a numerator n 

and a denominator d. 

2. n and dare formulae in which no division operator occurs and which 

are simplified according to the above definition. 

3, Moreover, n and d do not contain, apart from unities, common divisors, 

which can be found in an elementary way. 

The last sentence can be replaced by: 

. COMMON DIVISOR(n,d) = one. 



40 

Anticipating the description_ of the procedure COMMON DIVISOR in section 

11, a few remarks are made. 

COMMON DIVISOR calculates a common di visor of two formulae f and g. 

The calculation is never succesfull if for g contains exponential 

functions, in the sequel it will be assumed therefore that this is not 

the case, unless the contrary is stated. 

The calcul.ation is always succesfull if for g is a factor of g or f. 

The calculation is not successfull if f and g are of the form 

f = a* x + b * x and g = c ..,..,. x + d * x, where a, b, c, d and x are 

algebraic variables. 

This isaconsequence of the fact that the terms of f and the terms of g 

can not be divided by each other. 

If only one algebraic variable occurs in both f and g then the calcu­

lation will be successfull in all those cases where a greatest common 

divisor exists. 
2 Thus, COMMON DIVISOR will find out that for example x + 2 * x + 1 

2 and x - 1 have the common divisor 2x + 2, 

The second property of simplification requires procedures which not 

only apply the distributive law, but also rules of the following kind: 

1. a/b + c =(a+ b * c)/b 

2. a+ c/b =(a* b + c)/b 

3. a/b * c =(a* c)/b 

4. a* (b/c) =(a* b)/c 

5, (a/b)/c = a/(b * c) 

6. a/(b/c) =(a* c)/b 

It is evident ,however, that these rules can not be applied without 

precautions, since this may lead to a simplified formula which is more 

complicated than the original formula. 

Example: let a, band x be algebraic variables. 



The formulae: 

(a/x) + (b/x) 

(a/(b*x))*x 

( ( a * X ) /b ) / X 

41 

would then be stored as: 

(3. * x + b * x)/(x * x) 

(a* x)/(b * x) 

(a* x)/(b * x) 

Simplifying the right hand sides amounts to calculating the common 

divisor of the numerator and denominator. This calculation will, 

however, be unsuccessfull. 

Thus, within the procedures S, P and Q there is built in a test to 

prevent these situations. 

It is for this reason that the already discussed procedure comm div 

is introduced, which replaces, in the first example e.g., the second x 

by 1. 

The result of the calculation is 

(1/x) *(a+ b) 

which is transformed by the procedure P into (a+ b)/x. 

Notice that the distributive law is applied in P only in case the a 

and/orb are no quotients. Otherwise, P would transform (1/x) *(a+ b) 

into((1/x) *a+ (1/x) *b), which is transformed into a/x + b/x, which 

is transformed by S into ( 1 /x) * ( a + b), etc., etc. 

It is also for the reason,not to get a more complicated formula, that the 

parameters a and b of Qare simplified befor~hand which is not 

necessary for the parameters of Sand P. 

If there occur simultaneously exponential functions and divisions, 

no common divisors are extracted from the simplified numerators and 

denominators. 



42 

9. The fun ct ions 

The procedures EXP, LN, SIN, Cbs, ARCTAN and SQRT are now reproduced: 

£2!!1!!:lent. Thls is a part of the general system; 

integer ]2!'0cedure EXP(f); ~ f; integer f, 

begin integer t,a,b; t~= TYPE(f,a,b); 

if t = funct:ilon /\ a = Inf then EXP:= b else 

if t •cc: number then 

begin !:!&r,l; VALUE OF NUM(f,r,i); r:c:: exp(r); 

EXP: 0" CN(r >< cos(i),r X sin(i)) 

~ ~~ EXP::::; STORE(expf,functionS) 

~EXP, 

integer E!~ LN (f); ~ f; integer f; 

!;rngin integer t,a,b; t:,= TYPE(f 0a,b), 

if t = number then 

beg!~ ~& r ~i, VALUE OF NUM(f 0r ,i); 

LN:,,, if f == zero ~ RN(ln(null)) else CN(. 5 x ln(r x r + i >< O. 

(!f abs(r) :S, null ~ (2 - sign(i)) >< 1. 57079632679 ~ 

arctan(i/r) + (il r < 0 ~ 3.14159265359 ~ if. i < 0 then 

6.28318530718 else 0))) -
~ ~~ LN::c:: STORE(lnfgfunction,f) 

~ LN; 

integer J!E'Ocedure SIN(f); ~ f; integer f; 

SIN:= !L TYPE(f,di~di) = number V expand ~ 

P(CN(0 0 -. 5),D(EXP(P(im unit,f)),EXP(P(CN(0,-1),f)))) else 

STORE(sinf .function,f); 

integer Er'Ocedure COS(f); ~ f; integer f; 

COS:= !L TYPE(f,di~di) = number V expand ~ 

P(RN{. 5,},S(EXP(P(im unit,f))"EXP(P(CN(0,-1),f)))) else 

STORE(cosf gfunction,f), 



43 

integer 11rocedure ARCTAN{f); ~ f; integer fj 

ARCTAN~"' H TYPE(fpdl 0di) '"" number V expand then - -
P(CN(0 9-.5),LN(Q(S(one,P(im unU,f)),D(one~P(im unitpf))))) else 

STORE (arctanf Junct:iion 9f) $ 

integer ;erocedure SQRT(f); ~ f; integer f; 

SQRT~"' •~ TYPE(f,dl 0di) "' number V expand then 

EXP(P(RN(. 5) 9LN(f))) ~ 

STORE(sqrtf 0function 9f) 9 

A few remarks are made: 

1. If expand= false the procedures store the functions as they are 

written, if- expand =~the functions are transformed into 

exponential and logarithmic functions. 

2. If the para.meter f is a number, the result is another number. 

3, The standard -function arctan(x) delivers a result between +TT and -TT. 

4. The logarithm of a number will get an imaginary part y with 

0,;;,, y < 6,28378530718 (~2TT), 



44 

10. The simplification procedures 

Already in section 8 simplificatiGn was extensively discussed. This 

section is devoted, therefore, only to a discussion of the procedures 

to be reproduced. 

The internally represented formula is, due to the construction of S, P, 

Q and INT POW, represented- as a quotient of a numerator and a denomi­

nator, in which no quotients, occur anymore. 

The numerator and ,the. denominator are represented. as. a sum of terms, 

and each term is a product of factors, i.e •. integral powers of 

formulae which are neither a sum' nor a product, . nor a quotient • 

The simplifying process has theref'ore as objects formulae which have 

the structure as given above for the numerator and the denominator. 

The chosen tree· structure . for the internal representation of formulae 

is very convenient for storing and extracting formulae. 

It is ,however ,very inconvenient for the, simplification process, since 

in simplifying it will be used that the terms of a sum or the factors 

of a product can freely be permutated so as to compare the terms or 

the factors with each other. 

Another way of representing the formulae presents itself. Use is made 

of an integer array a [1: 10 , 0: 1 1 , 1: a], in which 10 is the number of 

terms and 1 1 the maximal number of factors of all terms. 

a I}, J, 1] is set equal to the factor, without the integral exponent; 

a I}, j, 2J is set equal to this exponent. 

The numbers occurring in the i-th term are combined to one number 

which is stored in a [i, o, 1]. 

Example: -.5 * X 
2 * 2i *Y .,...,i *X+ J. *Y *i *X 

2 is represented as: 

(a [i, J, 1], a [i, J ~ 2]) 

J. = j = 0 J = 1 j = 2 J = 3 

one (x,2) (y' 1 ) (x, 1 ) 

2 IN (-1) (y, 1) (x,2) 



45 

For convenience sake a [i, . 0, 2] is set equal to 1 • 

It is remarked that .not all entries of a have to be filled, which is 

a pity. Use of this feature is ,however ,made when the procedure 

SIMP1 2 REPR interchanges the rows of a. 

It is the task oi' the procedure CONVERT, which is now reproduced, 

to convert a formula from the tree structure representation into the 

direct representation using the arrays a and 1. 

If the actual value of the Boolean parameter 11bounds only" of CONVERT 

is true, only the array bounds of a and 1 are calculated which are 

stored in 1 [o] and 1 [1]. 
The actual parameter a of CONVERT should then be some three dimensional 

integer array, say, B [1 : 1, 1: 1, 1 : 1] ( see the procedure bodies of 

SIMPLIFY artd QUOTIENT). 

In the case that the actual value of "bounds only 11 is false the 

array elements of a are filled in, moreover,the array elements 

1[1], ... , 1[1[0}] are set equal to the lengths of the rows of a 

(in the above example 1[0] = 2, 1[1] = 3 and 1[2] = 2). 

£2!!1£1~ This is a part of the general system; 

procedm~ CONVERT(f,asL,bounds only); ~ f; integer f; 

integer array a,L; ~oolean bounds only; 

£E,gin integer :i.,Li ,Limax 9num; 

;eroce~ SUM(f); ~ f; integer f, 

~!2, ~nteger fl,f2; ![ TYPE(f~fl~f2) = sum then 

begi!!, SUM(fl); SUM(f2) ~ ~ 

begin U:= 0., num::::: one; i:= i + 1; PROD(f); 

if bounds only then Limax:::: if Limax < Li then Li else Limax 
ac:,i;o:; ~ ~ -

!::!se t!_eg_in a[i,0 91]::::: num; a[l,0~2]:= 1; L[i]:= Li end 

~end; 



46 

procedure PROD(f); ~ f; integer f; 

begin integer typeJl 9f2, type:= TYPE(f9f1 9f2); !£ type = product then 

begin PROD(fl)~ PROD(f2) ~ ~ 

:i.f type = number /\ 7 bounds only then num:::c: P(numgf) else 
= -
begin Li:= Li + 1; !L 7 bounds only ~ 

begin [. type "' integral power ~ 

begin a[i 0Li,lk= f2; a[igLi 92]:= fl ~ ~ 

begin a[i,Liplk"' f; a[i,Li 92]:= 1 end 

end end 

~ 
i:= Limax:= O; SUM(f); L[O]:= i; if bounds only ~ L[l]:= Limax 

~ CONVERT; 

The procedure SIMPL -2 REPR is· discussed now. 

It transf'orms a formula given . in the, arrays a and L. 

The result 01'· t-hii.s, transformatfrm-, which may be- called simplification, 

is another formula equal to the old one and· also represented in the 

arrays a and L. 

The form of the resulting formula is a standard form satisfying the 

following conditions: 

1. In each row a [i, 1, 1], a [i, 2, 1], ••• , at most one element may 

occur which is an exponential function. This element should be the 

last one, i.e. aQ., L[.1], 1]. 

2. The argument of the possibly occurring exponential function is 

simplified; no numbers occur as summand in the argument. 

In the· conditions 3-6 it will be assumed that the exponential function 

is temporarily removed by replacing L [i] by L [l] - 1, if a [i, L [i], 1] 
is an exponential function. 

3. The elements of each row aCT-, O, 1], a[i, 1, 1], a[i, 2, 1], •.• 

satisfy the conditions: aG-, 0, 1] -:/= zero and aI}, j, 1] > a[i, j+1, 1] 

for j = 1 , ••• , L [i] - 1. 



47 

4. Let for each row the intege:r lo be defined as the number of 
1 

elements a[i, j, 1], including, their- multiplicity a(}, j, 2]. 
Then li ~ li+i for i = 1, ••• , 1@] - 1. 

5. If 1. = L, then there--are two possibiliti~H, 0 for the elements 
1 1+ • 

a[i, ,j, 1] anda[i+1, j, 1], with 1 ~ j ~min{L[-i.], 1[i+1]) and 

i = 1 , ••• , 1to J - 1 : 

first: all elements are eq_ual, 

second: there exists a j 0 > 0 such that al}., J, 1] = a[i+1, J, 1] 

for O < j < J 0 

and 

a [i , J O , 1] > a [}. + 1 , j O , 1] . 

6. If li = li+l and for all j (1 ~ j ~ min(L[i], L[i+1])),a[i, j, 1] = 

= a[i+1, j, 1], then there are two possibilities: 

first: a[i, j, 2] = a[i+1, j, 2J for j = 1, ... , L[i] 

(Notice that in this case L [i] = L [:i.+1]). 

second: there exists a J 1 > 0 such that aQ.., J, 2] = al}+1, J, 2] 
for O < j < j 1 

and 

al}., J,1, 2] > a]}.+1, J 1 , 2]. 

7, If the first possibility of condition 6 occurs, then the original 

elements a[}, L[i], 1] and a[i+l, 11}+1], 1] (before replacing 

L [i] by L [i] - 1), are exponential functions whose arguments are 

uneq_ual, or one of these elements is an exponent-ial function. 

Examples of formulae written in standard form are: (let x > y > z) 

X * y *Z....-e 
x+y+z 

2 3 
X *Y -z 

z3 + y 
2 

+ X 

2 2 7· (1' • ) .5..,.,.. x y - ,5 * x z + 1 is the imaginary unit 

2 2 
x-y -,,,..z+x=y*Z 



48 

x+y+z -x-y-z 
X * y *"Z * -e + X * y * Z * e 

-x-y-z . x+y+z 
X*Y*Z*e +X*Y*Z*e 

The last four examples show that the ordering of terms in which 

exponential functions occur, does not need to be fixed if the non­

exponential parts are equal. 

The transformations carried.out,by the procedure SIMPL 2 REPR in order 

to get a standard form, can.easily be traced in the now reproduced 

procedure declaration: 

£2!!1!!1~ This is a part of the general system; 

procedure SIMPL2REPR(a,L); integer array a,L; 

begin integer k,i,j,U,p,q,r,b,c,sexp; integer array exp,length[l:L[O]], 

s[l:2><L[O]]; 

FIX; FIX; !2.!_ i:= 1 step 1 ~ L[O] ~ 

begin sexp:= zero; ~ j := 1 steE, 1 ~ L [i] !!2_ 
begin !!., TYPE(a[i 9j,1],b,c) = function /\ b = expf ~ 

begin sexp:= S(sexp,P(IN(a[i,j 92]),c)); a[i,j,1]:= -100 000 

~~ 
exp[i ]:= SIMPLIFY(sexp), if exp[i] + zero then . - -
begin !f.. TYPE(exp[i],q,r) = number ~ 

begin a[i,0,1]:= P(a[i,0,1],EXP(exp[i])); exp[i]:= zero end else 

if TYPE(exp[i],q,r) = sum then - -
begin !L TYPE(r,b,c) = number then 

begin a[i,0,1]:= P(a[i,0,1],EXP(r)); exp[i]:= q ~ 

~ ~ ~ !2E. i:= 1 step 1 ~L[O] 22_ 
begin p:= q:= 1; r:= L[i] - 1; 

A: f2!:. j:= p step q ~r ~ 



begin [. a[i,j 9l] = a[i,j+l,1] ~ 

begin a[i,j,2]:= a[i,j,2] + a[i,j+l,2]; a[i,j+l,1]:= -100 000; 

if q = -1 ~ begin il:= j + 1; goto B ~ 

~ ~ !!. a[i,j,1] < a[i,j+l,1] ~ 

begin k:== a[i,j,1 ]; a[i ,j ,1 ]:::a a[i,j+ 1,1 ]; a[i,j+ 1,1 ]:= k; 

k:= a[i,j,2]; a[i,j,2]:= a[i.j+l,21, a(i,j+lp2]:= k; 

!f. q = 1 ~ begin p:= j - 1; q::ca -1; r:= 1; il:= j + 1; goto A ~ 

~ ~ !!. q = -1 ~ goto B 

end; B: !!. q = -1 ~ begin p:= il; q:= 1; r:= L[i] - 1; goto A end; 

!2!:, j:= 1 step 1 ~L[i] 2.2, 
begin !!. a[i,j,1] = - 100 000 ~ goto C ~ 

goto D; C: L[i]:= j - 1; 

D: end; 

!.2.!_ i:= 1 step 1 ~L[0] - 1 22, !2E, j:= i + 1 step 1 ~L[0] 22, 
begin it a[i,0,1] = zero V a[j,0,1] = zero V L[i] + L[j] ~ goto EXIT; 

!2!. k:= 1 step 1 ~ L[i] ~ 

begin !£. a[i,k,1] f a[j,k,1] V a[i,k,2] f a[Lk,2] ~ goto EXIT end; 

!!_, 7 EQUAL(exp[i],exp[j]) ~ goto EXIT; 

a[i,0,1]:= S(a[i,0,1],a[j,0 01]); a[j,0,1]:= zero; 

EXIT: end; 

for i:= 1 step 1 ~ L[0] 2.2_ 

beg½!, s[i]:= i,; length[i]:= 0; !f. a[i,0,1] = zero ~ L[i]:= O; 

!2!. j:= 1 step 1 ~ L[i] 92. length[i]:= length[i] + a[i,j,2] 

end; 

p:= q:= 1; r:= L[0] - 1,; 

AA: !.2!. i:= p step q ~r 22, 
begin !f_length[s[i]] > length[s[i+l]] ~ goto OUT; 

!!., length[s[i]] < length[s[i+l]] ~ goto INTERCHANGE; 

j:= O; for j:= j + 1 while j < L[s[i]] A j < L[s[i+l ]] do 
- =-=~ - - -



50 

begin !,L a[s[:i.)pjpl] > a[s[i+lM,1] ~ goto OUT; 

!f. a[s[iMpl] < a[s[i+l],j,1] ~ goto INTERCHANGE; 

[. a[s[i]0j 92] > a[s[i+lLj,2] ~ goto OUT; 

![, a[s[iJojp2] < a[s[i+l],j,2] ~ goto INTERCHANGE 

~ !f. a[s[iL0,1] = zero I\ a[s[i+lL0,1] + zero ~ goto 

INTERCHANGE; goto OUT; 

INTERCHANGE: k:= s[i]; s[i]:= s[i+l]; s[i+l]:= k; !!_ q = 1 ~ 

begin p:= i - 1; r:= 1; q:= -1; il:= i + 1; goto AA end; 

goto CC; 

OUT: !!., q = -1 ~ goto BB; 

CC:~ BB: !!_,q = -1 ~ 

begin p:= il; q:= 1; r:= L[0] - 1; goto AA ~ 

f2!.. h= 1 step 1 ~L[0] 22, 
begin !£. exp[i] + zero I\ a[i,0,1] + zero ~ 

begin L[i]:= L[i] + 1; a[i,L[i],1]:= EXP(exp[i]); 

a[i,L [i ],2 ]:= 1 

~~ 
p:= 0,; !2E_ :i.:= 1 step 1 ~ L[0] 22, 
begin p:= i.; !£, s[i] + i I\ a[s[i],0,1] + zero ~ 

begin j:"" -1; !.2!: j:= j + 1 ~~ j ~ L[s[i]] I\ j -~ L[i] 22, 
begin U:= a[i,j,1]; k:= a[i,jp2]; a[i,j,1]:= a[s[i]0j 0l]Z 

a[i,j,2]:= a[s[iLj,2]; a[s[i],j,1]:= il; a[s[iM 02]::e, k 

~ ~ j:= L[s[i]] + 1 step 1 ~L[i] ~ 

begin a[s(i],j,1]:= a[i,j,1]; a[s[i],j,2]:= a[i,j,2] end; 

!'2!., j:= L[i] + 1 step 1 ~ L[s[i]] ~ 

begin a[:i.,j,1]:= a[s[i],j,1]; a[i,j,2]:= a[s[iLJ,2] ~~ 

k::c: L[i]; L[i]:= L[s[i]]; L[s[i]]:= k; 

!2£. j:= i + 1 step 1 ~L[0] 22, 
begin [. s [j] = i ~ begin s [j ]:= s [i ]; goto AB ~ ~} 

AB: s[i]:= i 



51 

~ ~ !f. a[s[iL0 9l] = zero ~ begin p:= p - 1; goto END ~ 

end; END: L[O]:= p; 

f2!:. h=• 1 step 1 ~p !!2_ 
begin s[i]:""' a[i,0 01]; s[i+p]:= !f. L[i] > 0 ~ a(i 9L[i]9l] ~ zero 

end; ERASE BUT RETAIN(i 9l 92 >< p,s[i]); 

!2!'.. h= 1 step 1 ~P ~ 

begin a[i 90,1]::: s[i]; !£. L[i] > 0 ~ a[i 0L[i],1]:= s[i+p] ~ 

~ SIMPL2REPR; 

Remarks: 

1. Two comparison tests are executed by SIMPL 2 REPR. These are 

constructed in such a wa;y that almost no superf'luous tests are 

carried out. 

/m awkward consequence, is their complicated structure. 

2. The procedure ERASE BUT RETAIN (see sections 7 and 12) is used 

to store the arguments 0£ the exponentials and the newly found 

numerical factors al}, O, 1], in an efficient way. 

3. Use is made of the fact that the procedure SIMPLIFY stores the 

simpli:f'ied f'ormula in a special form. 

I.e. if the formula f' is of the form g + n, where n is a n1¥11ber, 

then g does not contain a number as summand. 

This means that the· characterizing quantities lhs, type and rhs of 

fare equal tog, sum and n. 

With this knowledge, the exponential functions are treated. 

If f is of the form g + n, then ef is represented as en* eg. The 

numerical part en is combined with the number a U-, O, 1]. 
• o • x+2,r i , X 

A result of simplifying e is e as a consequence of the above 

illustrated built in facility. 

Next follows the reproduction of the procedure declarations of 

SIMPLIFY and EQUAL. Due to the construction of the procedure Q, 

SIMPLIFY does not have to simplify a quotient. 



52 

£2!!1!!1~ This is a part of the general system; 

integer procedure SIMPLIFY(f); ~ f; integer f; 

begin integer i,jpt 9a,b; integer array A[0:1],B[l:1 01:1 91:ll~ 

t:= TYPE(f,a,b); !!_ t = quotient V 7 expand V t = number V 

t = algebraic variable V t · = polynomial V (t = function A a + expf) 

~ begin SIMPLIFY:= f; goto END~ 

CONVERT(f,B,A9true); 

begin integer array s [1 :A[0 ],0 :A[l ],1 :2 ],L[0 :A[0 ]]; CONVERT(f 9s 0L ,false) z 

SIMPL2REPR(s,L); t:= zero; !2.!:_ i:= 1 step 1 ~L[O] ~ 

begin b:= s[i,0,1]; !2!_ j:= 1 step 1 ~ L[i] !!2_ 
b:= P(b 0JNT POW(s(i9j,l],s[i,j,2])); t:= S(tgb) 

end; SIMPLIFY:= t 

~ 
END: ~ SIMPLIFY; 

~oolean procedure EQUAL(f,g); ~ f,g; integer f 0g; 

!!.,f = g ~ EQUAL:= ~ ~ 

begin FIX; EQUAL:= SIMPLIFY(D(f,g)) = zero; ERASE 

~ EQUAL; 



53 

11. The procedures QUOTIENT·and.COMMON·DIVISOR 

In this section the (integral) division and the (greatest) common 

divisor algorithm are discussed. 

The procedure QUOTIENT calculates the integral quotient q and the rest 

r of two formulae g• and f according to the scheme: 

g = q * f + r. 

To the procedure identifier QUOT-TENT the value ofq is assigned. 

If there occur exponential functions in one or both formulae f and g 

then the division is not carried out. 

QUOTIENT gets the value zero, and rest the value g. 

The reproduction of the procedure declaration of QUOTIENT now follows: 

comment This is a part of the general system; ---
integer procedure QUOTIENT(g,f,rest); ~ g,f; 

integer g,f,rest; 

begin integer. f 5j1k,lf ,lgpquotient; ~oolean first; integer array A[0:1 ]. 

B[l:1 91:1 91:1]; FIX; FIX; CONVERT(f,B,A,true); 

begin integer arrav F[l:A[0]90:A[l],l:2LLF[0:A[0]l; 

procedure QUOT(g,factor); ~ g; integer g,factor; 

begin integer fl; CONVERT(g.B,A,~; 

begin integer array G[l:A[0],0:A[l],1:2LLG[0:A[0]],GG[l:A[l]]; 

CONVERT(g,G,LG,false); SIMPL2REPR(G,LG); 

!f_ LG[0] = 0 ~ goto ZERO; 

if first then - -
begin first:= false; £2!. i:= 1 step 1 ~LG[0] 22, 

begin !f. TYPE(G[i 9LG[i],1 ],j,k) = function /\ 

j == expf ~ goto UNDEFINED 

~end; lg:= 0; for i:= 1 step 1 ~LG[l] 2£. 
begin lg:= lg + G[l,i,21; GG[i]:= G[l.i,2] end; 

!£ lg < If ~ goto ZERO; lg:= If; k:= 1; 



54 

£2!_ i:= 1 step 1 ~LF[l] 2.2_ 
begin !2!, j:= k step 1 ~LG[l] !!2_ 

begin !f. F[l,i,1] = G[l 0j,l] ~ 

begin !f. F[l,i,2] ~ G[l,j,2] ~ 

begin GG[j]:= G[l,j,2] - F[l,i,2]; lg:= lg - F[l 9i,2] ~ 

~ goto ZERO; k:= j + 1., goto AA 

~ ~ !£ F[l,illl] > G[l,j,1] ~ goto ZERO 

~ 
AA: ~!£lg> 0 ~ goto ZERO; 

factor::: Q(G[1,o.1],F[1,o,1]); f2!. i:= 1 step 1 ~LG[l] ~ 

factor:= P(factor ,INT POW( G [1,i ,1 ],GG [i ])) ; 

goto NEXT STEP; 

ZERO: factor:= zero; rest:= zero; 

f2!. i:= 1 step 1 ~LG[0] ~ 

begin k:= G[i,0,1]; !2£. j:= 1 step 1 ~LG[i] 22, 
k:= P(k,lNT POW(G[i,j,1],G[i,j,2])); rest:= S(rest 0k) 

end; goto OUT 

~ 
NEXT STEP: QUOT(D(g,P(factor ,f)) ,fl); factor:= S(factor 0f1); 

OUT:~ QUOT, 

!f. 7 expand ~ goto UNDEFINED; 

CONVERT(f,F ?LF .~; SIMPL2REPR(F ,LF); 

!,LLF[0] = 0 ~ goto UNDEFINED; 

~ i:= 1 step 1 ~ LF[0] 22_ 
begin [_ TYPE(F[ipLF[i],1 ],j,k) = function /\ j = expf ~ 

goto UNDEFINED 

~ If:= o; !£!:_ i:= 1 step 1 ~LF[l] ~ If:= If + F[lti,2]z 

first:= ~ QUOT(g,quotient); A[0 ]:= quotient; A[l k= rest; 

ERASE BUT RETAIN(i,0,1,A[i]); QUOTIENT:= A[0]; rest:= A[l]; 

goto END; 

UNDEFINED: QUOTIENT:= zero; rest:= g; ERASE; LOWER lNDEX; 

END: end 
= 

~ QUOTIENT; 



55 

In the second block.a~ the proc€dure body of QUOTIENT, the arrays 

F and LF are declared~ They are used.for the second representation 

of the fo:nnula fin simplified form. Occurrence• of exponential functions 

leads automatically to an end and QUOTIENT and rest get the values zero 

and g. Assuming• that-.no exponential· functions occur, first the length 

lf of the leading term, of f is calculated; which is just equal to the 

number of multiplicants including their multiplicity.of the leading 

term. 

The Boolean variable first becomes true. 

Next follows a call for the procedure QUOT. 

In fact, QUOT calculates in a .recursive way the- quotient ,.q of g and f, 

according to the following scheme: 

ro = y = q1 * f + r1 

r1 = 42 * f + r2 

.................... 

in which qi is the quotient of the leading term of ri_ 1 and the leading 

term off. 

The process ends as soon as the leading term off is not contained in 

the leading term of r. n 
With this is meant: apart from a numerical factor, not all factors of 

the leading term of f are also factors of the leading term of r • 
n 

That this process always ends follows from a theorem proved later on. 

Evidently: 

n 
q = I 

i=1 
q. 

1 
and r = r • n 

Care has been taken of the following points: 

1. The original formula g should be examined as to whether there occur 

exponential functions in it. This is done the first time QUOT is 

called, then namely the Boolean variable first has the value true, 

in all subsequent calls first has the value false. 



2. The partial result-s-q-1, ,q2 ,, ••• , ~ should be traced. 

This is established by the statement: 

factor -: = S (factor, f 1 ) 

which in fact means: q := q + q,. 
J. 

3. The final-rest r should be extracted, which is done by assigning n 
to the· (with respect to- QUOT) non-local variable rest the value 

of the formula rn. 

This formula is already simplified. 

4. By means of a call for ERASE BUT RETAIN, the intermediate formulae 

are erased and the results q and r are stored in an- efficient way. 
n 

A call for QUOT is now described: 

The parameters g and factor refer to the above quantities r i and qi+ 1• 

1. g is represented in a simplified form in the arrays G and LG. 

2. If g turns out to be zero (LG '(9] = 0) then QUOT ends via the label 

ZERO. 

factor gets the· value zero and rest gets the value zero. 

3. If first=~' then-~irst is changed into false and it is tested 

whether there· occur exponential functions in g; if so,then QUOT 

terminates via the label UNDEFINED. 

4. It is examined whether the leading term o~ f is contained in the 

leading term of g, if this is not the case the process ends via 

the label ZERO, otherwise the process continues via the label 

NEXT STEP and by means of the procedure statement QUOT(D(g,P(factor, 

f) ) , f1 ) the quotient fl of g - factor * f is calculated. 

factor becomes equal to factor+ f1 and the process terminates. 

It should be noticed that QUOT is called recursively in a block in 

which the arrays G and LG do not exist any longer, if it was not 

arranged in this way then the arrays G and LG would exist simulta­

neously ~or- all ri' which would be wasting of storage space. 



57 

5. Execution of the statement following the label ZERO leads to 

assigning to the non-local variable rest, the simplified formula 

g (r in the above scheme). 
n 

It should be remarked that although QUOT may be recursively called 

hundreds of times, only the last time it will end via ZERO; all 

other times it ends directly via the label OUT. 

Theorem: The process as defined by the procedure QUOTIENT will ultima­

tely end. 

Remark: It can easily be seen that if no precautions were taken against 

exponential functions, the process does not need to end. One 
h ,o 2X 2y y X s ould try to divide e - e through e + e • 

Proof: Consider the above shown process: 

rn = ~+1 * f + rn+,' n = O, 1, 2, ••• and r 0 = g. 

Let the number of factors including the multiplicity, of the leading 

term of rn be ln. 

If the process would not end, it may be assumed that 1 remains 
n 

constant from a certain n0 ; since it is easily seen that the ln 

can not increase. 

Let w1, w2 , ••• , Wm denote the set of different factors, apart from 

the integral powers and apart from numbers, which occur in both f 

and g (i.e. the array elements a I}, j, 1] in section 10). 

Let this set be ordered according to Wi+ 1 < Wi• 

Let the maximal integral power of these multiplicants as they occur 

inf and g be p 1 , p2 , ••• , p. 
. m 

Let the maximum of all po be P. 
i 

Then the norm of a term t 

is defined as: 



Consider: 

Let 

k 
N(t) = l 

1=1 

58 

1/1. 
1. 

( 2P) 1 * p .• 
1.1 

+ ••• + (), *cf> ~ ••• 
P P, 1 * <I> • p,1. 

p 

"""'P -,(-•••*P • 
1,1 1,J, 

+ ••• +$ *P *•••*P. 
q q,1 q,Jq 

1.n which o. 1 , ••• , 

the cp and p n,m n,m 

o.P, s1, 

are the 

integral powers, which are 

X*X"'"'X*y*y). 

••• , S are numerical constants and in which 
q 

factors of the terms off and r , without 
no 

· ( 3 2 . written out x *Y 1.s represented as 

Assume the above representations are the result of the simplification 

process (apart from the integral powers) as defined by the procedure 

SIMPL 2 REPR. 

Then there are two possibilities for the f terms: 

which follows from the definition of standard form in section 10. 

In the same way there are two possibilities .for the r terms: 
no 

or J 1 > j 2, 

* ... * P . ) > N(p .,.. ••• * P2 . ). 
1,J, 2,1 ,J2 

Consider now rn +1: 
S O p1 1 * * P1,j 1 

(-1 ) ..... __ ' ------- * ( 0. * <I> a., <1>1,1 * ... * cp1,i1 2 2,1 
* ... + ••• 

+a. *<I> *•••*<I>. )+S *P *···*P. + ••• + p p,1 p,1.p 2 2,1 2,J2 

+13 *P *•••*P .• 
q q,1 q,Jq 



59 

There are two possibilities: 

1. The leading term of r +1 is after simplification: 
no 

132 * P2,1 * ••• * P2,j2• 

Since l_ +1 = j 2 and 1 
no no 

Thus N (leading term of 

= 1 +1' no 

r. +1 ) < N 
no 

it follows j 2 = j 1 • 

(leading term of r ). 
no 

2. The leading term of r 1 is a.fter simplification: 
no+ 

13 1 * a 2 P1,1 * * P1,j 1 
- (----) * --------- * cp * ... 

a1 cl>1,1· * * cp1 · 2 , 7 

Now 1 +1 no 

Moreover: 

= J 1 - :i. 1 + i 2 and 1 
n0+1 

'l. 1 

N(leading term of r +1 ) = N(p 1 1 * • • • 
no ' 

+ N(<P2,1 * ... 

and it follows that: 

* P . ) - N( cp 1 , 1 * • .. * <jJ • ) 1,J, 1,i, 

*<P2i.), 
' 2 

N(leading term of' r +l) < N(leading term of r ) • 
no no 

Concluding: the norm N of the leading terms of rn with n,;,, n0 diminishes. 

It is obvious that the process can not continue for ever, since the norm 

N can not diminish for ever. 

Next the procedure declaration of COMMON DIVISOR is reproduced. 

COMMON DIVISOR calculates the (greatest) common divisor of the formulae 

f and g. 

~!!!~~ This is a part of the general system; 

integer ;e_rocedure COMMON DIVISOR(fig); ~ f 9g; integer f,g; 

begin integer gcd~q1r; ~oolean s~sl; 

proced~ GCD(f1 0f2,f3); ~ flsf2; integer fl.f2,f3; 

begin integer f4; q~""' QUOTIENT(fl,f2,f3); s::=c q + zero; 



60 

!!_, 7 s1 /\ 7 s ~ goto UNDEFINED; 

if f3 = zero then 

begin gcd:= f2; goto if. TYPE(gcd,di,di) = number then 

UNDEFINED else OK 

end; s1:= s., GCD(f2,f3,f4) 
=-

end., 

FIX; FIX; s1:= true; GCD(f,g,r); 

OK: ERASE BUT RETAIN(q,1,1,gcd); COMMON DIVISOR:= gcd; goto END; 

UNDEFINED: COMMON DIVISOR:= one; ERASE; ERASE, 

END: ~ COMMON DIVISOR; 

The process for calculating. the (greatest) common. di visor of two 

formulae f and.g can- be- described as follows: 

Let f, 
1 

= f and f 2 be g: 

f1 = q, * f + f3 2 

f2 = ~ * f + f4 3 

and the (greatest) common divisor off and g is given by fn+ 1• 

The above process is executed by means of the procedure GCD declared 

in COMMON DIVISOR. Its para.meters f1, f2 and f3 have the meaning of 

fi+l' fi+2 and fi+3 (i = o, ... , n-1). 

By a call for QUOTIENT the rest of the division of f1 over f2 is assigned 

to f3. 

If this division was successfull i.e. q F O, then the Boolean variable 

s gets the value true. 

If f3 turns then out to be zero, the (greatest) common divisor is found 

(i.e. f2) and GCD comes directly to an end via the label OK or the label 

UNDEFINED depending on whether f2 is unequal or equal to a number. 



61 

If the di vision was success full, but f3 -is not eq_ual to zero then the 

process is repeated by a recursive call for GCD(f2, f3, f4). 

In cas-e the division was 1msuccessfull, this does not mean that there 

does not exist a (greatest) common divisor (one may have e.g. f1 = x+1 
2 

and f2 = x -1). 

However, if two successive divisions are unsuccessfull then the process 

is terminated via the label UNDEFINED. 

In order to test whether two successive divisions are unsuccessfull, 

the, with respect to GCD, non-local Boolean variables s1 ands are 

introduced. s1 has the value true or false depending on the success 

of the foregoing di vision, s has the value -true or false depending 

on the success of the division just executed, 

If both s 1 and s have the value false, GCD ends via the label UNDEFINED. 

That this test is sufficient in order to get a process which always 

terminates follows from the theorem to be stated after the following 

remarks. 

1. The result of the procedure CO!fil'IION DIVISOR is restored by a call 

for ERASE BUT RETAIN in order to erase possible intermediately 

formed but no more interesting formulae. 

2. The reason, for putting parentheses around the word "greatest" in 

"(greatest) common divisor", is that in a lot of cases the procedure 

COMMON DIVISOR will not find a common divisor, although it trivially 

exists. 

For example: the (greatest) common divisor of 
2 2 2 2 

x + 2xy + y and x - y 

is not found. It is easily seen why it lS not found: 

if f1 
2 

2xy 
2 

and f,.., 
2 2 = X + + y = X - y 

2 
then q_1 = 1 and L = 2xy + 2y 

j 
2 2 

q_2 = 0 and f = f2 = X - y 4 
2 

q_3 = 0 and f5 = f3 = 2xy + 2y 

and the process stops. 



62 

It could only be continued .if .• it. was-allowed to use as factor 1 /y in 
1 X 1 

order to find q4 = 2 y - 2 . 

Then f 6 would be zero and·,the doubtful (greatest-) common divisor would 
2 

be the formula· f 5 = 2xy + 2y. 

This, however, would be not as.bad as· the fact that, by allowing QUOTIENT 

to use f'actoTS· -o•f .this,. kind, the process as · defined by QUOTIENT would in 

general never end. 

A consequence o·f forbidding QUOTIENT to use factors of the kind 1 /y is 
2 2 2 2 

that the q;uotient (x + 2xy + y )/(x - y ) will not be simplified to, 

say, (x + y)/(x - y). 

These situations, however, only occur when the user gives explicitly 

the numerator and the denominator of the q;uotient the values of the 

above formulae. 

If the user had given his q;uotient in the following way 

(x + y) * (((x + y)/(x - y))/(x + y))· 

for example, then the procedures S, D and P automatically divide out 

the common factor x+y. 

Next follows the already mentioned 

Theorem: The process as defined by COMMON DIVISOR, always terminates. 

If the formulae f and g contain exponential functions, the theorem 

follows trivially, assume therefore that this is not the case. 

Proof: Let the lengths 1 of the leading term of f' be defined as 
n n 

in the proof -of the theorem about the procedure QUOTIENT. 

Assume the 1 do not decrease for n ~m (if this is not the case the n 
process has to terminate). 

Consider the step: 

fm-1 = ~-1 * fm + fm+1 

in which ~-1 and fm+ 1 are calculated by QUOTIENT according to the 

following scheme: 



r = q .,... f + rk+ 1 • k k+l m 

Dividing rk+,. through f turned out to be unsuccessfully thus, the 
m 

leading term of fm is not cont~,ined in the leading term of r k+ 1 • 

This means that the Leading term of f contains at least one factor 
m 

which is no factor in the leading term of rk+1 • 

Since rk+ 1 = fm+l, the same statement is true for the leading terms of 

* f and f + 1 .( ) • 
m m. 

The next step of COMMON DIVISOR is to calculate ~ and fm+2 from: 

f = a * f + f 2 • m ill m+l m+ 

Dividing fm through fm+ 1 will obviously turn out to be unsuccessfully; 

thus ~ =: 0 and fm+2 = fm, which follows from the facts : 

1 1 2. 1 and ('•") • 
m+ - m 

The following step is to divide fm+i through fm+ 2 which means dividing 

f 1 through f , which also will be unsuccessfully due to (~·°) and for 
m+ m 

a second time ~+l = 0. 

From this the theorem follows. 



64 

12. Storage allocation 

This section contains the procedure declarations of the procedures 

COPY and ERASE BUT RETAIN. 

Moreover,the consequence-s• of a-garbage co1.lection method are discussed. 

First the procedure, COPY is reproduced which becomes equal to a copy 

of the formula· .. f, in a possibly changed- f'orm·, depending on the actual 

parameter F SPECIAL. 

COPY is used within, ERASE BUT RETAIN, within CC the complex conjugating 

procedure and within SUBSTITUTE. 

It is possible to give• as. actual parameter for F SPECIAL a Boolean 

procedure· which., as a side eff~ct, changes the value of f in the proce­

dure body of' COPY (see CC· and SUBSTITUTE). 

The procedure COPY can also be used in case some formula should be 

simplified which is not stored in expanded•. form (i.e •. expand = false). 

One then should change the value· of expand into true and use as actual 

parameter the Boolean procedure· T_RUE declared by: 

Boolean procedure TRUE(f); integer f; TRUE:= true; 

Next follows the reproduction of COPY and ERASE BUT RETAIN, 

£2!!1!!1~ This is a part of the general system; 

integer procedure COPY(f~F SPECIAL); ~ f; integer f; 

~oolean procedure F SPECIAL; 

begin integer t,a,b; !£. F SPECIAL(f) ~ 

begin COPY:= f; goto END ~ t:= TYPE(f,a,b); 

!!_ t = sum V t = difference V t = product V t == quotient 

V t = power ~ 

begin a:= COPY(apF SPECIAL); b:= COPY(b,F SPECIAL); 

COPY:= if t = sum then S(a,b) else if t = difference 
..c- ~ --=-=----

then D(a,b) else if t = product then P(a,b) else 
~ ~~ ~ ----
!Lt = quotient ~ Q(a,b) ~ POWER(a 9b) 

end else if t = function V t = integral power then 
~ ~ - ---
begin b:= COPY(bpF SPECIAL); COPY:= !!_ t = integral power 



then INT POW(b,a) else if a ::c: expf then EXP(b) else 
~ ~ -=-==-: ~ ==--=--: 

if a = Inf then LN(b) else if a "" sinf then SIN(b) 
~ ~ ~~ ~ 

else if a = cosf then COS(b) else if a = arctanf 
~~ ~ ~':::a== 

~ ARCT AN(b) ~ SQRT(b) 

end else if t = number then 
~ ~ = 
begin ~r,i; VALUE OF NUM(f9r,i); COPY:= CN(r 9i) end 

else if t = polynomial then 
~= -
begin integer i,x; integer array co[0:a]; 

COEFFICIENT(f ,a,x,co); 

£2!. i:= 0 step 1 ~ a 92_ co[i]:= COPY(co[i],F SPECIAL); 

x:= COPY(x,F SPECIAL); COPY:= POL(ipa,x0co[i]) 

end ~ COPY:c: f; 

END~~ COPY; 

procedure ERASE BUT RETAIN(i,lb,ub,fi); integer i,lb,ub,fi; 

begin ~ i:= lb step 1 ~ ub 2£. fi:= COPY(fi,FIXED); 

ERASE; !.2!:, b= lb step 1 until ub do fi:= COPY(fi,FIXED); 

LOWER INDEX 

end ERASE BUT RETAIN; 

As was already said in section 7, a call for the--p:ro.cedure ERASE BUT 

REI'AIN should be preceded by two calls for FIX, then the formulae given 

by fi, i = lb, ••• , ub, which may be stored together with other formulae 

in the program after the two calls for FIX, are restored by COPY in such 

a way that they occupy the minimum a.mount of storage space; the other 

formulae are all erased. 

It should be noticed- that the Boolean- procedure FIXED is used to deter­

mine whether the formulae fi or constituants of ~i are stored before the 

two statements FIX were executed; in that case the copying process is 

terminated· and COPY becomes equal to the formula which it should copy. 



66 

One should be very carefull in using the procedures ERASE and ERASE 

BUT RETAIN. It is forbidden to use a formula which was erased by a 

call for ERASE or ERASE BUT RETAIN, otherwise it is very easy to get a 

catastrophe by obtaining e.g. the formula f = a + f. Ou1;putting this 

formula would result in: 

a+ a+ a+ a+ .••• 

Since the fi get in general other values by a call for ERASE BUT RETAIN, 

care should be taken not to get a situation exemplified by: 

FIX; FIX; S1; f .- g := S(a, P(b, c)); S2; ERASE BUT RETAIN~1, 1, , f); 

in which S1 and S2 are statements by which other formulae .:;hen f and g 

are stored. 

After execution of these statements f corresponds to the formula a + b ~ c, 

however, g does not need to correspond any longer to this formula •. 

In fact, these statements should be followed by the statement g := f. 

The above remarks show the dangers in using the erasing procedures. 

The consequences of using a garbage collection method, instead of the 

more easy but dangerous (with respect to erasing) method which is used 

in the general system, are now discussed. 

At a certain (but arbitrary) moment, during the execution of a formula 

manipulating program, there exist two sets of formulae, 

One set, called FIXED, consists of all those formulae which will be 

used later on; the other set consists of all those formulae which may 

be erased. 

Notice that all formulae which are stored to build up another formula f, 

e.g. the P(b, cJin f := S(a, P(b, c)), should also occur FIXED; aft,er 

their use they should be removed from FIXED, since then they are protect,ed 

from erasing through the appearance off in FIXED. 

At some moment it may turn out -chat not enough storage space in the 

computer is left ( this has to be,cl;lecked at several appropriate places 

e.g. in the storing procedures and in the procedure CONVERT). 

Then all formulae which may be erased should actually be erased, and the 

formulae in FIXED should be restored in order to get free storage space, 



67 

This means tbat the formulae in FIXED should be kept on a list (called 

LIST). 

One can choose for LIST the integer array LIST[1: 1000] (which of course 

can also lJe an own integer array). 

A formula of FIXED refers to some place i in LIST, while LIST[i.] refers 

to the internally represented formula. 

The following procedures can be used for storing and removing a 

formula· on- ,and- ·,.from LIST: 

integer procedure SOL( f); value f; integer f; 

begin comment pl is used as pointer for LIST; 

SOL : = pl : = pl + 1 ; LIST (pJJ . - f 

procedure RFL; pl := pl - 1; 

By means of SOL and RFL, the procedure S of section 2 may be changed 

into: 

integer procedure S(a, b); value a, b; integer a, b; 

begin integer a1, b1; a1 := LISTG1j; b1 := LISTI},]; 

RFL; RFL; 

end; 

S := SOL(if a·1 = LIST]j:ero]then bl else 

if b1 = LIST!j;ero]then a1 else 

STORE(al, sum, b1)) 

A piece of program might be: 

x .- SOL(STORE(O, algebraic variable, O)); 

y .- SOL(STORE(O, algebraic variable)); 

f .- S(x, y); 



68 

Execution of this piece of program would deliver a correct formula for 

f, however x and y are removed from LIST and they cannot be used any 

longer. 

Moreover, if the last statement was followed by: g := S(f,f), then f is 

removed from LIST and what is worse, pl is automatically decreased too 

much. 

Not automatically decreasing the pointer pl, however, would result in 

putting all formulae on LIST and the obtained system would be equivalent 

but more· complicated then the general system of this report. 

Another way of construction is to let the formula identifiers refer 

directly to the internal representation of the corresponding formulae. 

They should however be put on LIST. 

In this construction it is no longer possible to let the garbage col­

lection routine restore the formulae. Since then the value of the 

formula identifiers would no longer correspond to the corresponding 

formulae and it is impossible to change this value. 

The storage places containing formulae which may be erased can be flagged, 

in such a way that new formulae are stored in these flagged storage 

places. 

One would then have instead of the above piece of program: 

x := STORE(O, algebraic variable, O); SOL(x); 

y := STORE(O, algebraic variable, O); SOL(y); 

f := LIST[S(SOL(x), SOL(y-))]; RFL; SOL(f); 

g .- LIST(§(SOL(f), SOL(F))]; RFL; 

(Notice that in this construction the expression LISTfzero], occurring 

in the procedure body of S, has to be replaced by zero), 

Obviously this is an awkward construction. 

It should be remarked that choosing a method by which the formulae 

which may be erased appear on a list, is as bad as the above shown method. 

Since then one should also have a list of formulae which may not be 

erased. 



Example: f := P(zero, a) should be executed, such that a is placed on 

the list of eraseable formulae, however a may be a formula which still 

is needed later on. 

It seems likely that· introducing a garbage collection system in a process 

to be described in ALGOL 60, will lead to a similar construction as 

shown above. 

Concluding, if one takes for granted the way the formulae are erased 

as described in the first part of this section and in section 7, then 

the method by which formulae are treated by the general system is much 

easier to use than a garbage collection method. 

It is remarked that writing the general system in ALGOL 66, using the 

new concept: record, the above displayed difficulties in storage allo­

cation no longer exist, since the treatment of records themselves 

involves a garbage collection method. 



70 

13. Supplementary equipment 

First the procedure DER is reproduceQwhich calculates the derivative 

of a formula f with respect to the algebraic variable x (for x even 

an arbitrary formula may be substituted). 

The formula f may be· given in e*panded as well as in not-expanded form. 

The result of differentiating a polynomial is, when €Xpand = true, a 

simplified polynomial. 

£2.!!l!!?~ Thls is a part .of the general system; 

integer :e.rocedure DER(f0x); ~ f,x; integer f 0x; 

beg!g, integer t 9a,b; t:= TYPE(f,a,b); 

if f = x then DER:= one else --- - -!£. t = sum ~ DER:= S(DER(a0x) 0DER(b 0x)) else 

!!_ t = difference ~ DER:= D(DER(a9x),DER(b 0x)) else 

!L, t = product ~ DER:= S(P(DER(a,x) 0b),P(a9DER(b,x))) else 

!,Lt = quotient ~ DER:= Q(D(P(DER(a0x) 0b), 

P(a,DER(b,x))) 9P(b 0b)) else 

!!_ t = power ~ DER::; P(f,DER(P(b,LN(a)) 0x)) else 

!£. t = integral power ~ DER:= 

P(IN(a),P(INT POW(b,a-1),DER(b,x))) ~ 

!£ t = polynomial ~ 

begin integer i 9y; integer array coeff[0:a]; COEFFICIENT(f0a 0y 0coeff); 

DER:= S(POL(i ,0 ,a,DER(coeff [i Lx)), 

POL(i,0,a0if i = a then zero else P(IN(i+l) 9P(coeff[i+l].DER(y0x))))) - - -
end else 

if t ::: function then 

begin integer d; d:= DER(b,x); 

DER:= !f_, a = expf ~ P(f ,d) else 

!_La = Inf ~ P(INT POW(b,-l) 0d) else 



!£, a = sinf then P(COS(b),d) ~ 

!La = cosf ~ P(min one,P(SIN(b) ,d)) else 

!!., a = arctanf ~ P(Q(one,S(one,P(b,b))),d) else 

P(Q(RN(. 5),f),d) 

end else DER:= zero 

~DER,; 

The next procedure to be reproduced is CC which calculates the complex 

conjugate of a formula f. It is assumed that all algebraic variables 

are real algebraic variables. 

Thus the complex variable z, e.g. should be replaced by x + iy. 

If the algebraic variables are not real then the procedure CHANGE should 

appropriately being changed in such a way that it defines the complex 

conjugate of the algebraic variables. 

This, however, implies that there should exist besides the algebraic 

variables also their complex conjugates which may be given by the lhs 

or rhs quantities (see section 5). 

~!!,l~ This is a part of the general system,; 

integer procedure CC (f),; ~ f; integer f; 

begin ~oolean procedure CHANGE(g); integer g; 

begin integer a,b; !i TYPE(g,a,b) = number;\ a ;::: complex ~ 

begin~ r,i; VALUE OF NUM(g,r,i); g:= CN(r,-i); CHANGE:= true 

end else CHANGE:= false 

end; 

CC:= COPY(f,CHANGE) 

~CC; 

Now the procedure SUBSTITUTE is reproduced. SUBSTITUTE becomes equal to 

a formula fin which all constituants given by argument i (i = 1, ••• , n) 

are changed into the formulae value i (i = 1, ••• , n). 



72 

If, in particular, f happens to be a polynomial and the dependent 

variable x of f occurs as one of the arguments, then f is transformed 

into an extended sum in which the xis replaced by the value of the 

corresponding argument. 

£2.!!1!!1~ This is a part of the general system; 

integer procedure SUBSTITUTE(f,iJb9ub 9argument i,value i); 

~ f,lb,ub; integer f 9iJ_b 0ub 0argument i 0value i; 

begin integer array argument,value[lbmb]; 

~oolean procedure SUBST(g); integer g; 

begin integer a,b 0i,j; !!., TYPE(g9a,b) = polynomial then 

begin integer x; integer array coeff[0:a]; 

COEFFICIENT(f ,a9X9COeff) j 

f2!. i:= lb step 1 untg_ ub 2.2_ 
begin g'_ x = argument[i] ~ 

g:= Sum(j 90,a,P(SUBSTITUTE(coeff[j],b~lb,ub,argument[b], 

value[b]) 01NT POW(value[i],j))); 

SUBST:= ~ goto END 

~ end; ~ i:= lb step 1 ~ ub 2.2_ 
begin !!., g = argument[i] ~ 

begin g:= value[i]; SUBST:;:;;: ~ goto END ~ 

end; SUB ST:= false; - -
END:~ 

!2£_ i:"" lb step 1 ~ ub !:!2, 
begin argument[i]:= argument i; value[i]:= value i end; 

SUBSTITUTE:= COPY(f0SUBST) 

~ SUBSTITUTE; 



73 

Finally t.he procedure COEFF OF PRODUCTS is repToduced. Given a formula 

f and an array: product [i: nJ , by which n products are given, then the 

result Jf executing COEFF OF PRODUCTS is that the, variables coeff[i.], 

i = 1, ••• , n, become equal to the formulae defining the coefficients 

of the products inf. Thus, for example, if 

f = x * a * b + y * a * b + z + b * c + ex 

and product[!] = a * b, product [2] = c * ex then coeff [1] and coeff [?] 
will get the values of the formulae x + y and z * b respect.ively. 

It is required that: 

1 • expand = true, 

2. the products do not contain the operators+, - and/. 

22.!E!Y~ This is a part of the general system; 

proeed~ COEFF OF PRODUCTS(fpnpprod 9coeff); ~ fpn; 

integerr fgn; !Et~gf£_ array prod,coeff; 

'begill ~ kp!9jpqpr9pge; !!!~~!'.. ~!:& A[0:1]9B[l:1 91:1 91:1]3 

!t 7 expand ~ fr::, zero; CONVERT(f9B 0Alrue}; 

~i!!, integer ~~ a[l :A[O ],O: A[l ],1 :2 LL ~expp TF [O :A [O ]]; 

FIX~ FIX; CONVERT(f9a 9L,~~,; SIMPL2REPR(a~L); 

for i ~"" 1 steR 1 untn L [O] do 
= ~ = 
begin TF[ik0 a[ip0 0l], !f.. TYPE(a[l 9L[i]9l]9j,k) :::; function/\ 

j •·•ca expf ~ 

begill exp[l]::::o k; L[ik::c L[i] - 1 ~ else exp[i]:= zero., 

for j:c;:; 1 ~E, 1 ~ L[i] do 

TF[ik-~ P(TF[:i],INT POW(a[i 9 jp1]0a[i 0 j 92])) 

end, for k:"' 1 step 1 until n do 
~·~ = ~ 

pegh!, p:~ SIMPLIFY(prod[k]); e::" zero; 

!£ TYPE(p,%r) "'' function i'\ q "" expf ~ 

~in P~"' one; e~"" r ~ ~ 

if TYPE(p 9q,r) = product then 
~ . -
begin !!., (TYPE(r~i,j) ::c, function /\ i =: expf) then 



74 

begin p~= q; e~""' j end 
~ ~ 

~ coeff[kk=-' zero; f2E, 1:""' 1 step 1 ~L[O] ~ 

begin q:"" QUOTIENT(TF[i],p,r); 

!£, exp[:[] + zero V e + zero ~ 
q:cc: P(q9EXP(D(e:x-p[i],e))); 

coeff [k]::cs S(coeff [k] 9q) 

end 
~ 

end; ERASE BUT RETAIN(1,1 ,n,coeff[:i.]) 

~ ~ COEFF OF PRODUCTS; 



75 

14. Outputting 

By means of a simple, actual program the procedures OUTPUT and OUTPUT 

VARIABLE will be introduced. 

A set of not declared procedures is used, these are MC standard 

procedures; see I} 1]. The effect of execution of these procedures 

is first described: 

procedure NLCR; gives the printer a New, Line- Caa:-riage Return command. 

procedure ABSFIXT-~n,,~ m, x); value, ll",,-'-m, x; integer n, m; real x; 

prints the value of x without its sign in fixed point notation: 

n decimals before and m decimals behind the decimal point. 

In case m = 0 then the printing of the-decimal point is 

skipped. 

procedure FIXT{n, m, x); value n, m, x; integer n, m; real x; 

has the same effect as ABSFIXT, now however the sign of xis 

also printed. 

procedure FLOT(n, m, x); value n,m, x; integer n, m; real x; 

prints the value of x in floating point notation: n decimals 

of the mantissa and, m decimals of the exponent (with the base 

10). 

procedure PRINTTEXT(s); strings; 

prints the strings without the string quotes { and t. 

Now the actual program, which does some particular formula manipulation, 

in fact, polynomial manipulation, is reproduced, followed by the results. 



76 

JNITIALIZE; 

comment RPR 290466/06; ~=-~ . 

ACTUAL PROGRAM: 

begin 

£2!.!l!!l~ The following calculation originated from the 

Handbook of Mathematical Functions [12], page 15, 

formula 3. 6. 24: 

Let 

s[l] = POL(i 05,x9!!_i = 0 ~one~ a[i]) 

(in ordinary notation: . 

s[l] = 1 + a[l] X X + .. 0 + a[5] X X ;t,. 5 ), 

calculate then the c[i] in: 

s[3] = POL(i,5,x,c[i]), 

which is the truncated power series, in the variable x, for 

f(s[l]) = S(one,LN(s[l ]) 

(in ordinary notation: f(s[l]) = 1 + ln(s[l]) ). 

The calculation is performed along the following steps~ 

1. Calculate the first five derivatives d[l]~ •.• ,d[5] of f with 

respect to s [1 ]. 

2. Substitute s[l] = one in d[il. 

3. Calculate the coefficients b[i] in: 

g(y) = POL(i 95,y9b[i]), 

which is the truncated power series, in the variable y, for 

f(S(one,y)) (in ordinary notation: f(l + y)). 

4. Calculate the c[i] by substituting y = D(s[l ],one) 

On ordinary notation: y = s [1 ] - 1), in g(y). ; 

integer f,g 9x,y,i,j,fact; integer array a[l:5],b,d[0:5Ls[l:4]; 

procedure PR(s); string s; PRINTTEXT(s); 

procedure OUTPUT(f); ~ f; integer f; 

begin integer t 9a,b; t:= TYPE(f,a,b); !!_ 7 expand ~ PR({<::}); 



\ 

77 

if f = zero then PR(.j:0i,) else if f = one then PR(.j:tj.) else 
~ ~ ~i;a,i;;a: ~ .,.._ 

!!., t = sum V t = difference V t = product V t = quotient V 

t =power~ 

begin !f. t = quotient /\ expand ~ PR(.j:tj.); OUTPUT(a); 

if t = sum then PR({ + i,) else if t = difference then PR({ - :t) 
-=::a: ~ ~ ~ ~ 

else if t = product then PR({ >< :i> else if t = quotient then 
--=- ~ - ~ - ~ 

begin !i, expand ~ PR(.j:)/tj.) ~ PR({ / i,) ~ ~ 

PR({ ,t. i,); OUTPUT(b); !!_ t = quotient /\ expand ~ PR({):i) 

end else 

if t = function then - -
begin !f. a = expf ~ PR({exptj.) ~ !!., a = Inf ~ PR({lntj.) 

else if a = sinf then PR({sintj.) else if a = cosf then PR({costj.) 
~ - ~ - -- ----
~ !!.. a = arctanf ~ PR({arctantj.) ~ PR({sqrttj.); 

OUTPUT(b); PR(.j:}i-) 

end else 

[. t = integral power ~ 

begin PR(.j:tj.); OUTPUT(b); PR(.j:),1q,.); ABSFIXT(2,0,a) ~ ~ 

if t = number then. - -
begin integer i; ~ ra,ia; PR(.j:tj.); 

!£ a = integer ~ 

begin VALUE OF INT NUM(f,i); FIXT(entier(In(abs(i))/ 

2.30258509299 + 1.00001),0,i) 

end else 

if a = real then - -
begin VALUE OF REAL NUM(f,ra); FLOT(12,3,ra) ~ ~ 

begin VALUE OF COMPLEX NUM(f,ra,ia); FLOT(l2 93,ra); PR(.j:,i-); 

FLOT(12,3,ia) 

~ PR({):i) 

end else 

!,Lt = polynomial ~ 

begin integer i,x; integer array coeff[0:a]; 



78 

COEFFICIENT(f 9a 9x,coeff); [2!: i~= 0 steQ 1 ~ a ~ 

begi~ PR({{t); OUTPUT(coeff[i]); PR({:) x ct); OUTPUT(x)~ 

PR({:),~); ABSFIXT(2,0 9i); !f. i < a ~ PR({: + ::j,) 
end 

~~OUTPUT VARIABLE(f); 

!!_ 7 expand ~ PR{{:)i,) 

~ OUTPUT; 

I?rocedure OUTPUT VARIABLE(f), ~ f; integer f; 

2.£!!1!!1~~ The structure of the following procedure body could be 

made more simple, this structure, however 0 indicates how the 

lhs and rhs quantities of an algebraic variable can be used 

In a case where a large number of algebraic variables occur_; 

begin !E!_eger i,lhs 9rhs; ~~ CASE~"" XpY 9Sl~ 

E!:2,Cedure A(g 9s); !ntege::i: g; string s; 

if f "" 0 then 

begin :i.:""' i + l; g::::::: STORE(l,algebraic vadable 9:i) end 

else ~gin PR(s); goto END end; 

if f "" 0 then 

begin £2!, i::c; l 92,3A 95 do a[fkcc: STORE(2 0a1gebrafo variable~l)~ 

b=c: O; goto CASE[!] 

end else 

begin TYPE{f 0lhs,rhs); !£lhs :cc 1 ~ goto CASE[rhs] ~ 

begir~ PR({:af;t,); ABSFIXT(l 00 9rhs); PR({:l:j,); goto END ~ 

end; 

X: A(x 9{x:t); 

Y: A(y 9{y;\>), 
Sl: A{s[l],{s[ll:j,); 

END: end OUTPUT VARIABLE; 



79 

BEGIN OF CALCULATION: 

NLCR; PR({results of calculation RPR 290466/06i,); 

OUTPUT VARIABLE(0); FIX; 

STEP 1: NLCR; PR({s[l] = i,); 

FIX; OUTPUT(POL(i,5,x0!,f) = 0 ~ one ~ a[i])); ERASE; 

FIX; FIX; d[0k:c S(one,LN(s[l])); 

NLCR; PR({f(s[l]) = i,); OUTPUT(d[0]); 

f.2E. i:= 1,2i3,4,5 ~ d[i]:= DER(d[i-1],s[l]); 

STEP 2: f.2E. i:= 0,1,2,3,4,5 do d[i]:= SUBSTITUTE(d[il,j,1~1,s[l ]~one); 

STEP 3: fact:= 1; b[0]:= d[0]; b[l]:= d[l]; 

f2E. i:= 2i3,4,5 2.£, 
begi.n fact:= fact x i; b[i]:= Q(d[iLIN(fact)) end; 

ERASE BUT RETAIN(i,0,5,b[i]); 

FIX; g::= POL(i,5,y,b[i]); NLCR; PR({g(y) = i,); OUTPUT(g); 

s[l]:= POL(i,5,x,if i = 0 ~ one ~ a[i]); 

22£1!!1~2!.. The easiest way to perform step 4 would be to use the 

statement: s[3 ]:= SUBSTITUTE(g,i,1 ,1,y,D(s[l ],one)), 

the fallowing statements are, however, more efficient with 

respect to storage space. The first statement serves to erase 

the polynomials g and s[l ]; 

ERASE_; 

STEP 4: s[2h= POL(i,5,x,if i = 0 ~ zero ~ a[i]); 

s[4]:= one; s[3]:= b[0]; 

f.2E. i:= 1,2,3,4,5 22. 
begin FIX; FIX; s[4]:= P(s[4],s[2]); 

s[3]:•= S(s[3LP(b[i],s[4])); 



ERASE BUT RETAIN(j,3A~s[j]) 

~ 

80 

NLCR; PR({s[3] =: ;\,); OUTPUT(s[3]) 

end; 22!!1!!1~~ the next ~ corr€'sponds to the begin of the 

general system; 

end 

1Input tape for RPR 290466/06' 

5 ro-10 1 

The la.y-out of the following results is slightly modified by hand 9 

1n particular P the unsignificant zeros in numbers are removedo 

A complex number a + ib is pri.nted as (a~ b), 

results of calculation RPR 290466/06 

s[l] ::c (1) x (x),4, 0 + (a[ 1 ]) X (x)1~ 1 + (a[ 2 l) >< (x);},, 2 + 

(a[ 3 ]) >< (xli 3 + (a[ 4 ]) >< (x)1~ 4 + (a[ 5 ]) x (x);~ 5 

f(s[l]) •'-" 1 + ln(s[l]) 

g(y) ::, (1) X (y),~ 0 + (1) X (y)1~ 1 + ((-. 5 )) X (y),~ 2 + 

((+. 33333333333310- 0 )) X (y)1~ 3 + ((-. 25 )) X (y}it, 4 + 

( ( + 0 2 )) X (y }1~ 5 

s[3] "'~ (1) x (xl~ 0 + (a[ 1 ]) x (x),1- 1 + 

((-. 5 ) x (a( l ]).,~ 2 + a[ 2 ]) x (x)/~ 2 + 

((+. 33333333333310 - 0 ) x (a[ 1 ]),4, 3 + (-1 ) x a[ 2 ] x a[ 1 l + 

a[_ 3 ]) >< (xl4, 3 + 

((-. 25 ) x (a[ 1 ])~ 4 + a[ 2 ] x (a[ 1 ]),4, 2 + (-1 ) x a[ 3 J x 

a[ 1 ] + (-Q 5 ) x (a[ 2 ]),4, 2 + a[ 4 ]) x (x)1~ 4 + 

((+.2 ) x (a[ 1 ])~, 5 + (-1 ) >< a[ 2 ] x (a[ 1 ])/}, 3 + 

a[ 3 ] x (a[ 1 ]),1\ 2 + (a[ 2 ]),4, 2 x a[ 1 ] + (-1 ) >< a[ 4 J x 

a[ 1 ] + (-1 ) x a[ 3 ] x a[ 2 ] + a[ 5 ]) x (x)~ 5 



81 

15. Inputting 

In this section an· actual program-is described, which reads a so-called 

formula program from input tape. 

A user who· does not want· to·-build·.his own system and who does not want 

to go through the details·of the foregoing section can prepare an 

input tape, the form of·which is·described below, which activates the 

actual program to de manipulations with formulae. 

A disadvantage· of using- this· way· of· formula manipulation is that it 

is not possible to combine the formula manipulation with other capabili­

ties provided by· ALGOL 60; calculations with ordinary and complex 

numbers are, however, possible. This combination is of course very well 

possible if one makes a special actual program as exemplified in the 

foregoing section. 

In the sequel the meta-linguistic variable identifier will not only 

be used in the strict sense of the ALGOL 60 report, but also in a more 

general way, defined as follows: 

<identifier> : : = <letter> i<digit> I <identifier><letter> I 

<identifier><digit>I 

<identifier><lay out symbol>I 

<identifier> Gunsigned integer>] 

in which a lay-out symbol, as far as the Mathematical Centre equipment 

is concerned, may be a .space, a tabulator symbol, a new -line carriage 

return symbol and a point. 

Example: 

X 

x1 

Test program. 

INT POW 



82 

An algebraic variable and a formula designator, already defined in 

section 3, will now be redefined by: 

<algebraic variable> 

<formula designator> 

. ·= 

.. -
<identifier> 

<identifier> 

The input tape to be used .for the formula manipulation, should be 

prepared 1.n such a wa;y .. that the following numbers and instructions 

occur on it in the indicated ordering. 

1 • An integer (,;;. 0) defining the maximal degree of the to be used 

polynomials. 

2. A real number defining the absolute accuracy with which the computer 

has to execute the numerical calculations. (For the X8 Computer of the 

M h o ho -10) at emat1.cal Centre t 1.s accuracy can e.g. be set equal to 10 • 

3. An integer number which has to be 1 if the system has to expand the 

formulae in order to simplify them. 

If this number is not equal to 1, the system will handle the formulae 

as they are written, except for trivial simplification consisting of 

calculating numbers. (i.e. Q(CN(1,1), CN(1,-1)) is changed into 

CN ( 0, 1), or in ordering not at ion: (Hi)/ ( 1-i) is changed into i) • 

4. An integral number defining the number of to be used formulae desig­

nators and algebraic variables. 

5. An integral number defining the maximal number of characters by which 

the identifiers of the formula designators and algebraic variables 

are built up (including possible lay-out symbols which do not occur 

at the very beginning). 

6. The following special identifiers, separated by a comma and closed 

by a semicolon: 

OUTPUT, FIX, ERASE, ERB RET, NLCR, COEFF, END, 

one, zero, S, D, P, Q, POWER, INT POW, 

IN, RN, CN, POL, EXP, LN, SIN, COS, ARCTAN, SQRT, Sum, 

DER, SIMPLIFY, CC, SUBST, QUOTIENT, COMM DIV; 



83 

7. The formula man-ipu1a~ion,. instruct ions. 

The formula should be· put on tape in the form as de-fined in section 3, 

with the following restriction: 

the form of an extended· sum, a polynomial and a result of substitutions 

should be as syntactically defined below: 

<formula list> ::= <formula>l<formula list><sepa,rator><formula> 

<separator> : : = , I ; 
<extended sum>::= Sum~<integer><separator><formula list>) 

<polynomial> : : = POL( <integer><separator><algebraic variable><separator> 

<formula list>) 

<result of substitution> : : = SUBST{ <form-ula><separator><integer> 
f . . )*) <separator>< ormuJ..a,.11 st>< separator>< formula list> 

For convenience sake, the symbols S, D, P, Q and POWER mey be replaced 

by the symbols+,-,*, / and t; moreover·the corresponding brackets 

may be leaved out. 

Thus, S(a,b) may also be put on the tape as +a,b. 

Although it was necessary to introduce algebraic variables before they 

were used, in the actual program as described in section 14, it is no 

longer necessary here (it is even impossible). 

If the actual program encounters a new identifier in a formula then this 

identifier is automatically recognized to be an algebraic variable or 

a formula designator. 

The form of the formula manipulation instructions is the form of a 

formula program syntactically defined below: 

<formula program> : : = END; I <compound formula statement>; END; 

<compound formula statement> ::= <formula statement>! 

<compound 1'ormula statement>; <formula statement> 

<formula statement> : :~ FIXjERASEJNLCR I 
<formula assignment statement>! 

<calculation of coefficients statement> I 

*) The first formula list should be replaced, by formula designator list. 



84 

<erase but retain statement>! 

<output statement> 

<formula assignment statement> : := <formula designator> := <formula> 

<calculation of coefficients statement> : := COEFF( <formula><separator> 

<integer><separator><formula list><separator> 

<formula designator list>) 

<erase but retain statement> : : = ER B RET(<integer><separator> 

<formula designator list>) 

<output statement> ::= OUTPUT(<formula>) 

<formula designator list> ::= <formula designator>l<formula designator 

list> <separator> <formula designator> 

The form of a formula program, just defined, should satisfy the 

following conditions: 

1 • The formula lists and the formula designator lists should contain a 

number of respectively formulae and formulae designators, equal to 

the actual value ,of the integer occurring as a parameter in the 

formula program just before the occurrence of the lists; except in 

a polynomial, where the formula list should contain one extra formula 

than is defined by the integer. 

Example: 

Sum(5; one; x; INT POW(x,2); INT POW(x,3); INT POW(x,4)) 

and POL(3, x, c[o], c[1], c[.2], c[3]) 

2. Each formula statement ERASE should be preceded by a formula state­

ment FIX. 

With the exception of the very first one; in the actual program 

itself an initializing call for the procedure FIX, equivalent with 

the formula statement FIX, occurs. 

No reference to this exception is made furtheron. 

3. Each erase but retain statement should be preceded by two consecutive 

corresponding calls for the formula statement FIX. 



85 

4. The formula statements ERASE and erase but retain statements should 

occur in the formula program pairwise with corresponding formula 

statements FIX. 

The effect of the different formula statements are now briefly described 

(for a more detailed description, the reader, is referred to the corres­

ponding sections of this report). 

A formula assignment statement: The formula designator becomes a formula. 

Example: 

f := Sum(5; one; x; INT POW(x,2); INT POW(x,3); INT POW(x,4)) 

FIX: formulae built up (assigned to formula designators) before a call 

for FIX are protected against the erasing effect of a call for ERASE, 

or a call for an erase but retain statement, later on. 

ERASE: formulae built up after the last time FIX was called, are erased, 

moreover the effect of FIX is cancelled. 

It is remarked that possibly introduced algebraic variables and formula 

designators after the last call for FIX, remain in the identifier list, 
*) to be discussed further on, but loose their significance • Introducing 

these algebraic variables and formula designators again after the 

ERASE formula statement, leads to new significances. 

Example of a compound formula statement : 

FIX; f := +a,b; ERASE; FIX; f := -a,b; ERASE 

An erase but retain statement: The formulae built up after the last two 

consecutive calls for FIX are erased, except for the formulae with 

formula designators occurring in the formula designator list. The effect 

of the two calls for FIX is cancelled. 

Example of a compound formula statement: 

FIX; FIX; f .- +y,x; g := -a, b; h := ~,b; ER B RET ( 1 , g ) ; 

FIX; FIX; f .- /a,g; p := tb,g; h := EXP(p); ERB RET(1,p) 

*) . except for those -formula designators which refer to formulae which 

are not erased. 



86 

after execution of these statements only a, b, g and p have maintained 

their significance; x, y, f and h have loosed their significance and 

they do not refer anymore to formulae ( see the note on the preceding page). 

A calculation of coefficients statement: 

given some formula fas the first parameter of COEFF, given the integer 

n ( > 0) as the second parameter of COEFF, given n formulae p 1 , ••• , pn 

in the formula list as the third parameter of COEFF, which do not contain 

the operators+,-, /, given n formula designators c 1 , ••• , c in the , n 
formula designator list as the fourth parameter of COEFF, then the effect 

of this formula statement is: 

the formula designators c. ( i = 1 , ••• , n) become equal to formulae which 
l 

are just the coefficients of the formulae (in general products) p. inf. 
i 

Example: 

COEFF ( S (.,.. .,.... x , a, b , S ( * * y, a, b , * z * b .,... c , EXP ( x ) ) ) ; 

2; 

* a, b; * c, EXP(x); 

coeff [l]; coeff [2] ) 

has the effect that coeff [1] and coeff [2j become equal to the formulae 

+x,y and ....-z,b respectively. 

NLCR: a New Line Carriage Return command is given to the printer. 

An output statement: The formula occurring as the parameter is printed 

in ordinary notation. 

Example of a formula program: 

NLCR; OUTPU'r ( Test ) ;OUTPUT{program ) ;NLCR; 

f := Sum(3, one, x, INT POW(x,2)); 

OUTPUT(f); NLCR; OUTPUT(S(one, x)); NLCR; 

OUTPUT(end of ) ;OUTPUT(Test ) ;OUTPUT(program.) ;END; 

The printed result is: 

Test program 

+ X + X t 2 

+ X 

end of Test program. 



87 

Care shou1d be taken for the following points: 

1 •. The lay out symbo1s: space symbol, tabulator symbol, and nlcr 

symbol, occurring at the very beginning of·an identifier are skipped 

by the program. 

Within an identif'ier, they' have -the significance of an ordinary 

character. Therefore the spaces in ERB RETI should not be forgotten 

in using an erase but retain statement. 

2. Using the output statement for printing some text, as above, it is 

not allowed to'place, in°this text the following characters:+,-, 

*,/,=,ft.,,,:,;,(,), I (the last character is used·to form t 

by putting first I and then ·Aon input tape). 

Next follows the reproduction of the actual program: 

JNITIALIZ E; 

£2.!!1!!1~ Input program for GENERAL SYSTEM for FORMULA 

MANIPULATION RPR 290466/05; 

ACTUAL PROGRAM: 

begin integer idp0s,symbol,next symbol, numb of id 9length of id; 

numb of id~= read; length of id~= read; if length of id < 8 then - -
length of id:= 8; 

begin ~!.ts.h CASE:= OUTP9Fix9Erase,Erase but retain,Nlcr 9 

Coeff,END; 

integer array identifier list[l:numb of id + 32,-1:length of id]; 

procedure PR(s); string s; PRJNTTEXT(s); 

procedure OUTPUT(f); ~ f; integer f; 

£2!!1!!1~ at tlrls place the procedure body of the procedure 

OUTPUT declared in the before going section should be 

inserted; 

procedure OUTPUT VARIABLE(f); ~ f; integer f; 

begin integer i,j; TYPE(f,j,i); !f. j = 1 ~ 

begin f2!. j := 1 ste:e 1 ~ identifier list[i 90] 22, 
PRSYM (identifier list [i ~j ]) 

~ ~ OUTPUT VARIABLE; 



88 

integer :e.rocedu~ SYMBOL; 

begin symbol~""' next symbol; next symbol~"" RESYM_:; 

!f., symbol "" 64 ~ SYMBOL~"" 10 ~ 

!f, symbol ""' 65 then SYMBOL~"" 11 else 

!£, symbol ::c 66 then SYMBOL~''" 12 else 

:!_L symbol "' 67 then SYMBOL:'CC 13 else 

if symbol '°' 127 /\ next symbol "'' 80 then 
~ C, 

begh~ symbol:"' next syrribol; next symbol~"" RESYM.~ SYMBOL:"" 14 

end else 

!£, symbol :::c 98 V symbol :::: 99 V symbol "" 87 V symbol = 91 V 

symbol = 90 V symbol c::; 70 V symbol = 93 V symbol = 11.8 V 

symbol ,:-, 119 then SYMBOL:c::c SYMBOL else 
"- ~ ~ 

begin_ ~£ i~j,lengt:h; L!!!:,ege!: ~ray ldentlfler[l:length of id]; 

identifier[!]:"" symbol; i := length:~, U 

for i~'°' i + 1 while -~ 
next symbol f 64 /\ next: symbol f 65 /\ next symbol + 66 /\ 

next symbol + 67 /\ next symbol + 127 1\ next symbol 4 98 1\ 

next symbol f 99 l\ nexi symbol + 87 1\ next symbol { 91 /\ 

next symbol 1 90 do 

~~ sym1J01:"'" next symbol.; next symbol:= RESYM., 

length:= t; identif:ier[i symbol 

~} ~ i :::c 1 .~~ 1 ~ idp ~ 

begin tL identifier List[i 90.] 4 length ~ goto ENDj 

!£!:. j:"" 1 ~£ 1 ~length~ 

2.,eg_ln i.f [dentifier[jJ + identifier llst[f,j] then g_ot'2_ END end; 
~ - -

~£!2 SUCCESS; 

END~ end,; goto NEW IDENTIFIER.; 

SUCCESS~ SYMBOL:::c t; ~!£ OUT~ 

NEW IDENTIFIER: idp~"" ldp + 1~ f2!. 1:::cc 1 ste:e, 1 ~ length ~ 

Identifier list[ldp9i ]:"'' identifier[i 1; identifier Ust[idp 90 ]:= length.; 

identW.er Ust[ldpf-1]:" O; SYMBOL:== idp; 

OUT: end 

~ SY:r\1BOL; 



89 

integer procedure Read f; 

begin integer p 9s 9d; ~!!Sh CASE:= One9 Zero 9SUm,Difference0 

Product,Quotient,Power ,Int pow ,Integral number 0Real number 0 

Complex number 0Polynomial 0Exp9Ln,Sin,Cos,Arctan,Sqrt0 

SUMpDerivative 9Simpl,Complex conjugate 0Subst,Quot,Comm div; 

s:= SYMBOL; !f. s > 32 ~ goto Identifier ~ goto CASE[s-7]; 

One: Read f:= one; goto END; 

Zero: Read f:= zero; goto END; 

SUm: Read f:= S(Read f,Read f); goto END; 

Difference: Read f:= D(Read f,Read f); goto END; 

Product: Read f:= P(Read f,Read f); goto END; 

Quotient: Read f:= Q(Read f ,Read f); goto END; 

Power: Read f:= POWER(Read f,Read f); goto END; 

Int pow: Read f:= INT POW(Read f ,read); goto END; 

Derivative: Read f:= DER(Read f,Read f); goto END; 

Complex conjugate: Read f:= CC(Read f); goto END; 

Polynomial: d:= read; 

begin integer x,i; integer array coeff[0:d]; 

x:= Read f; !.2£. i:= 0 step 1 ~ d 22, 
coeff[i]:= Read f; Read f:= POL(i 0d,x,coeff[i]) 

~ goto END; 

Integral number: Read f:= IN(read); goto END; 

Real number: Read f:= RN(read); goto END; 

Complex number: Read f:= CN(read,read); goto END; 

Exp: Read f:= EXP(Read f); goto END; 

Ln: Read f:= LN(Read f); goto END; 

Sin: Read f := SIN(Read f); goto END; 

Cos: Read f := COS(Read f); goto END; 

Arctan: Read f := ARCT AN(Read f); goto END; 

Sqrt: Read f:= SQRT(Read f); goto END; 

SUM: d:= read; Read f:= Sum(s,1,d,Read f); goto END; 

Simpl: Read f:= SIMPLIFY(Read f); goto END; 

Sub st: s := Read f; p:= read; 



90 

begin integer 1!rr~ arg~val[l:p]; 

!£!. d:= 1 step_ 1 ~ p do arg[d]:=o Read f; 

:f.£E., d:=: 1 ste;e 1 ~ p ~ val[d]:= Read n 
Read fr= SUBSTITUTE(s,d,l 9ptarg[dLval[d]) 

~~ got2, END; 

Quot: p:= Read f; d:::c Read f; s:=" SYMBOL; 

Read fr00 QUOTIENT(p,d 0identifier list[s 0-l ]).; 

goto END; 

Comm div: Read f:"' COMMON DIVISOR(Read f~Read f); goto END_; 

Identifier: !f.. identifier list[s ,-1] + 0 i!!~ Read f := 

identifier list[s 0-l] ~ Read f~:::; identifier list[s~-1 ]:= 

STORE(l 9a1gebraic variable,s); 

END: ~ Read f; 

BEGlN OF INPUT PROGRAM: 

idp:"" O; next symbol:= RESYM; 

A: !f_ next symbol f 91 ~ begit!, SYMBOL; goto A ~ 

NEXT: s:= SYMBOL; !f.. s > 32 theg, ~ Store ~ g_,oto CASE[sl; 

Store: identifier Ust[s~-1 ]:::s Read f; g£!:_2, NEXT, 

OUTP: OUTPUT(Read f); goto NEXT; 

Fix: FIX; goto NEXT; 

Erase: £,~ s:"' 33 .ste:e. 1 :!:!E.t!!.. idp do 

begin Lt 7 FIXED(identifier Ust[s 9-l ]) ~ identifier list[s 1-l k=, 0 

end; ERASE; goto NEXT; 

Erase but retain: s:= read; 

begin :Integer i 9n; integer array g[l:s]; 

n::.:c: s; f2E., i:= 1 ste;e 1 until n do g[i]:~ SYMBOL; 

s:= IN(2); 

~i:= 1 ste2_l ~n ~identifier list[g[i],-1]:= 

COPY(identifier llst[g[i ]9-l ],FIXED)., 

for i:= 33 step_ 1 ~ idp ~ 



91 

begiE_, if 7 FIXED{identifier list[i,-1 ]) /\ identifier list[i 0-l] < s 

i.~ identifier list[i,-1 ]:~ 0 

end; ERASE; 

f2E., i:"" 1 ste;e 1 until n ~ identifier list[g[i]~-1 ]:= 

COPY(identifier list[g[i ],-1 ]vFIXED); 

LOWER JNDEX 

end; goto NEXT; 

Nlcr: NLCR; goto NEXT; 

Coeff: 

begin integer i 9f ,n; fr,, Read f; n:= read; 

begin integer array ppc[l:n]; 

!£E_ i:= 1 step 1 until n ~ p[i]:= Read f; 

COEFF OF PRODUCTS(f~n,p 9c),; 

f2E. i:= 1 step 1 ~n ~ 

begin s:= SYMBOL, identifier list[s,-1 k= c[i] end 

~ ~~ goto NEXT; 

END: end 

end; ~!!1~ the next ~ corresponds to the begin of the 

general system; 

end 

The action of this program is briefly described: 

1. The program builds up a list of identifiers by means of the integer 

array identifier list [1 : numb of id + 32, -1 : length of id]. 

The special identifiers: OUTPUT, ••• , COMM DIV occurring on the 

input tape just prior to the -formula program, are read from input 

tape in order to occupy the first 32 places in the identifier list. 

2. The identifiers are read by means of the integer procedure SYMBOL, 

which becomes equal to the index s indicating where the identifier is 

stored. in identifier list. 



92 

If the identifier was a new one, then identifier list~ ,-1] is set 

equal to O, in order to give the program the information that a new 

identifier was just read, 

In SYMBOL the non--local integer variables symbol and next symbol 

are used. 

The value of next symbol is the value of the internal representation 

of the ,just read character. 

The value of symbol is the value of the internal representation 

of the last but one read character. 

The characters are read with the aid of the integer procedure 

RESYM, which is an MC standard procedure for the X8 ( for a detailed 

descrip-r,ion see [11]). 
RESYM delivers the value of the internal representation of the 

read character. 

In order to facilitate the reading of the actual program, a table 

is given of the values of the internal representation of some 

relevant characters: 

64 + 91 

65 93 space symbol 

66 - 98 

67 I 99 

70 = 118 tabulator symbol 

80 I\ 119 new line carriage return symbol 

87 127 

90 

(the character is used to form the character t by putting consecutively 

and /\ on input tape). 

A number is read by the MC standard procedure read. 

3, The formulae are read by the integer procedure Read f. 

Read f interprets a new identifier as an algebraic variable. 

The value of Read f becomes the value of the location of the stored 

formula in the procedure body of INT REPR ( see sect ion 6). 



93 

4. The procedure OUTPUT prints a given formula. 

Use is made of the procedure OUTPUT VARIABLE, which prints a string 

of characters defined by the array elements of identifier list, of 

an algebraic variable. 

OUTPUT VARIABLE uses the MC standard procedure PRSYM(n), where n is 

the value of the internal representation of a character, which is 

printed by PRSYM. 

5. The effect of the statements of the- actual program, following the 

label BEGIN OF INPUT PROGRAM, is now -elucidated. The pointer of 

identifier list, the integer variable idp, gets its initial value: 

O; next symbol becomes the value of the internal representation 

of the first read character. 

The special identifiers are read in, until next symbol is the 

internal representation of ; ( = 91 ) • 

Depending on the next read identifier, the different formula state­

ments are executed. 

Remark: 

1. Inspecting the procedure SYMBOL, it can be seen, that other forms of 

formula programs may also be excepted by the actual program. 

For example: an input tape containing the following characters: 

f) ( ; S, a) b: OUTPUT : f = END, 

has the effect of printing a+b. 

Construction of such an input tape is, however, not recommended. 

2. Notice that the special identifiers OUTPUT, ••• , COMM DIV may be 

changed into other identifiers, if the corresponding special 

identifiers occurring in the formula program are also appropriately 

changed. 

The order of these special identifiers, may, however, not be changed; 

moreover they may not be built up with more than 8 characters. 



94 

3. If the formulae are expanded and simplified, then the ordering 

of the algebraic variables may be changed; for example, the formula 

program f := SIMPLIFY(+a,b); OUTPUT(f); END; has the effect of 

printing b+a. 

The reason for the interchange of a and b is that the algebraic 

variable a was stored earlier than b, and the value of the internal 

representation oi' a is therefore smaller than the corresponding 

value of b. 

The system, ~hen, orders a and b with respect to decreasing values 

of their internal representation; and the result is b+a. 

A way to preserve the original ordering is exemplified by the 

following formula program 

b := b; f := SIMPLIFY(+a,b); OUTPUT(f); END; 

which results in printing a+b. 

Next some particular input tapes are reproduced, containing formula 

programs, followed by their results on execution. 

It turned out that about 12000 words W6re needed 9 the space for 

ar:n:tys and stacks not included, to store the general system and 

the actual program in the XS computer of the Mathematical Centre" 

'Input tape 1 wUh formula program RPR 290466/05 

(The procedure read skips the i:exi betwe&n the symbols' ) 

The fo1,m1tla program on this input tape contains the following 

calculation~ described In a rather loose form: 

a: "" cos (pi/2 - x) - sin CxL 
fr,, :I/(x/~ + (J + 'lJ X X + j) + (2/(l + l)}/(Y.rµ - 1), 

where l is the Imaginary unlt. 

Real part of L 

Imaginary part of f. 



95 

g:= 1/f = Xi1'2 + (-1 + i) X X - i. 

h:"" gr comm div(g, ~ + 1) 9 thus h = c x (x + i), apart for 

the numerical constant c 9 which turns out to be (-1 + i). 

k:= integer quotient of g over h rendering the rest r, 

thus, k "" 1/c x (x - 1) = (-1/2 - 1/2 i) x (x - 1) and r = O. 

Execution of an erase but retain statement; 

it is demonstrated that g and h are retained. 

l :::a: integer quotient of g over x + 1 rendering the rest r, 

thus, l = x + (-2 + i) and r = (2 - 2i). 

f:= POL(3 9Xoaobocod). 

g:= a + b X x + c X ~ + d X ~3. 

By means of the auxiliary formula designator k 0 the coefficients 

c3 9 c2 and cl of x4,3 0 ~ and x in g are determined. 

h:= f - POL(3,x,zero,b 0c 9d) = a. 

k:= the formula g in which x, a, b 0 c and d are changed into 

y, d 0 c 9 b and a. 1 

3 

40 

,ro-10 

8 

1 

OUTPUT ,FIX,ERASE,ER B RET ,NLCR,COEFF ,END, 

one,zero 0S,D ,P ,Q,POWER,INT POW, 

IN ,RN ,CN ,POL ,EXP ,LN 0SIN ,COS,ARCT AN ,SQRT ,Sum 9 

DER,SIMPLIFY,CC 0SUBST ,QUOTIENT ,COMM DIV; 

NLCR; OUTPUT(tape 1); 

1:= one; 2:= IN(2); i:= CN(0,1); pi:= RN(3.14159265359); 

x2 := X x,x; FIX; 

a:= SIMPLIFY(- COS(- / pi 02, x) 0SIN(x)); NLCR; OUTPUT(a is ); 

OUTPUT(a); ERASE; 

FIX; FIX; f := S( Q(i ,S(x2 ,S(P(S(l ,i) ,x) ,i))), Q( Q(2 ,S(l ,i)) ,D(x2 ,1))); 

NLCR; OUTPUT(f is ); OUTPUT(f); FIX; 

NLCR; OUTPUT(real ); OUTPUT(part ); 



OUTPUT(of f is ); OUTPUT(+ f 0CC(f)); 

NLCR; OUTPUT(imag ); OUTPUT(part ); 

OUTPUT(of f is ); OUTPUT(Q(- f,CC(f),i)); ERASE; 

g:= Q(l 0f); NLCR; OUTPUT(g is ); OUTPUT(g); 

h:= COMM DIV(g9+ x2 9l); NLCR; OUTPUT(h is ); OUTPUT(h); 

k:= QUOTIENT(g,h9r); NLCR; OUTPUT(k is ); OUTPUT(k); 

NLCR; OUTPUT(r is); OUTPUT(r); 

ER B RET(2,g,h); 

NLCR; NLCR; OUTPUT(g is ); OUTPUT(g); 

NLCR; OUTPUT(h is ); OUTPUT(h); 

1:= QUOTIENT(g,+ x 9l,r); 

NLCR; OUTPUT(l is ); OUTPUT(!); 

NLCR; OUTPUT(r :i.s ); OUTPUT(r); 

a:= IN( 0th:i.s statement is inserted in order to get rid of the 

significance of a (= zero) 9 which would otherwise not be done 

by the ERASE staternent0 2); ERASE; FIX; NLCR; 

f:= POL(3 0x,a,b 0c,d); NLCR; OUTPUT(f is ); OUTPUT(f); If 

g:= SUBST(f;l;x;x); NLCR; OUTPUT(g is ); OUTPUT(g); 

COEFF(g;l;x x, x X11-X; c3); k:= SIMPLIFY(- g, x c3, x x, x xjx); 

NLCR; OUTPUT(k); 

COEFF(k9l 9 X x,x; c2); k:= SIMPLIFY(- k 9 X c2 9 X x,x); 

NLCR; OUTPUT(k); 

COEFF(k,1,x,cl); k:= SIMPLIFY(- k, x cl~x); 

NLCR; OUTPUT(k); 

h~= - f,POL(3,x,zero,cl,c2 0c3); 

NLCR; OUTPUT(h is ); OUTPUT(h); 

k:= SUBST(g;5;x;a;b;c;d; y;d;c;b;a); 

NLCR; OUTPUT(k is ); OUTPUT(k); 

END; 



97 

The lay-out of the following results is slightly modified by hand, 

in particular 9 the unsignificant zeros in numbers are removed. 

A complex number a + ib is printed as fa, b). 

tape 1 

a is 0 

f is ( 1 )/((x),4. 2 + (-.110+ 1 ,+.110+ 1 ) x x + (-. 0 ,-.110+ 1 )) 

real part of f is «-. 0 ,-.110+ 1 ) x x)/((-. 0 ,-. 5 ) x (x)~ 3 + 

(-. 0 ,+. 5 ) X (x)t}. 2 + (-. 0 ,-. 5 ) X X + (+. 0 ,+. 5 )) 

imag part of f is «-. 0 ,+.110+ 1 ))/((-. 0 p-• 5 ) x. (x)~ 3 + 

(-. 0 ,+a 5 ) X (x)t}. 2 + (-. 0 ,-. 5 ) X X + (+. 0 ,+. 5 )) 

g is (x),4. 2 + (-.110+ 1 9+. 110+ 1 ) X X + (-. 0 ,-.110+ 1 ) 

h is (-.110+ 1 ,+.110+ 1 ) x x + (-.110+ 1 ,-.110+ 1 ) 

k is (-.5 ,-.5) XX+ (+.5 ,+.5) 

r is 0 

g is (x),4. 2 + (-.110+ 1 ,+.110 + 1 ) x x + (-. 0 ,-.110+ 1 ) 

h is (-. 110+ 1 ,+.110+ 1 ) X X + (-.110+ 1 9-.110 + 1 ) 

1 is X + (-. 210+ 1 ,+.110+ 1 ) 

r is (+. 210+ 1 9-. 210+ 1 ) 

f is ( a ) x (x),4. 0 + (b) x (x)~ 1 + (c) x (x),4. 2 + (d) x (x)~ 3 

g is a + b x x + c x (x),4. 2 + d x (x)~ 3 

c x (x)~ 2 + b x x + a 

bx x + a 

a 

his a 

k is d + c x y + b x (y)t}. 2 + a x (y)~ 3 



98 

!Jnput tape 2 with formula program RPR 290466/05 

The following calculations originated from the Handbook for 

Mathematical Functions [12] page 72. 

The calculation is first performed without simplifying 9 

iae. expand = ~a 

In the next formula program expand = ~' 

0 10-10 0 

15 8 

OUTPUT ,FIX,ERASE,ER B RET ,NLCR,COEFF ,END 9 

one,zero,S9D,P 9Q,POWER,INT POW, 

IN ,RN ,CN ,POL,EXP ,LN ,SIN ,COS,ARCTAN ,SQRT ,Sum, 

DER,SIMPLIFY 9cc ,SUB ST ,QUOTIENT ,COMM DIV; 

NLCR; OUTPUT(tape 2); 

3:= IN(3); 4:= IN(4),; 8:= IN(8); FIX; 

fr= SIMPLIFY(- SIN(x 3 9z) 9 - x 3 9SIN(z), 

>< 4 9 INT POW(SIN(z),3)); 

NLCR; OUTPUT(formula ); OUTPUT(4.3.27 ); 

OUTPUT(f); ERASE; FIX; 

fr::, SIMPLIFY(+ COS(x 3,z), - x 3 9COS(z), x 4,INT POW(COS(z),3)); 

NLCR; OUTPUT(formula ); OUTPUT(4.3.28 )$ 

OUTPUT(f); ERASE; FIX; 

f:= SIMPLIFY(- SIN(>< 4 9z), - x 8, x INT POW(COS(z) 93) 9SJN(z) 9 

x 4, X COS(z),SIN(z)); 

NLCR; OUTPUT(formula ); OUTPUT(4.3.29 ); 

OUTPUT(f); ERASE; FIX; 

f~= SIMPLIFY(- COS( X 4,z), x 8 9 - INT POW(COS(z),4), 

INT POW(COS(z) 92)); 

NLCR; OUTPUT(formula ); OUTPUT(4. 3. 30 ); 

OUTPUT(f); 

END; 



99 

(tape 2) 

(formula )(4. 3. 27 )((sin((((+3 )) x (z)))) - ((((+3 )) x (sin((z)))) 

- (((+4 )) x (((sin({z)))),t. 3 )))) 

(formula )(4. 3. 28 )((cos((((+3 )) x (z)))) + ((((+3 )) x (cos((z)))) 

- (((+4 )) x (((cos((z))));}, 3 )))) 

(formula H4. 3. 29 )((sin((((+4 )) x (z)))) - ((((+8 )) x ((((cos((z))))~ 3 ) 

x (sin((z))))) - (((+4 )) x ((cos((z))) x (sin((z))))))) 

(formula )(4.3.30 )((cos((((+4 )) x (z)))) - (((+8 )) x ((((cos((z))))~ 4 ) 

- (((cos((z))))~ 2 )))) 

'Input tape 3 with formula program RPR 290466/05' 

0 ID-10 1 

15 8 

OUTPUT ,FIX,ERASE,ER B RET 0NLCR9COEFF ,END0 

one,zero0S,D0P ,Q,POWER,INT POW• 

IN ,RN ,CN ,POL,EXP 9LN ,SIN ,COS 0ARCTAN ,SQRT 0Sum, 

DER,SIMPLIFY 9cc ,SUB ST .QUOTIENT ,COMM DIV j 

NLCR; OUTPUT(tape 3); 

The rest of this formula program is identical to 

the above formula program, but for the first two 

formula statements. 

tape 3 

formula 4. 3. 27 0 

formula 4. 3. 28 0 

formula 4. 3. 29 0 

formula 4. 3. 30 1 



100 

References 

[i] J.W. Backus .et al.,. Revised report on the algo.rithmic language 

ALGOL 60, edited by P, Naur, 

Regnecentralen, Copenhagen, 1962. 

@] J.E. Sammet, Formula Manipulation by Computer, 

to appear in Advances· in Computers, Volume 8, McGraw Hill, 

Preliminary version as Technical Report TR00.1363, IBM 

Systems Development Division, 

Poughkeepsie, N,Y., November 965. 

IJ] J.E. Sammet, Survey of the Use of Computers for Doing Non-Numerical 

Mathematics, 

Technical Report TROO. ·1428, 

IBM Systems Development Division, 

Poughkeepsie, N.Y., March 1966. 

A shortened version is published as: Survey of Formula 

Manipulation, Comm. of the ACM 2 ('1966), 8, 555-569. 

~] J.E. Sammet, An Annotated Description Based Bibliography on the Use 

of Computers for Non-Numerical Mathematics, 

Technical Report TR00.1427, 

IBM Systems Development Division, 

Poughkeepsie, N.Y., March 1966. 

[?] E.R. Bond, History, Features and Commentary on FORMAC, 

Technical Report TROO. 1426, 

IBM Systems Development Division, 

Poughkeepsie, N, Y. , March 1966. 

(§] A.J. Perlis, R. Itturiaga, T,A. Standish, A Definition of Formula 

ALGOL, 

Carnegie Institute of Technology, Pittsburgh, P.A., 

March ·1 966. 



101 

IJJ R.P. van de Riet,.Algebraic Operations in ALGOL 60. A second 

order problem, 

Report TW 96, Mathematical Centre, Amsterdam, March 1965. 

@] R.P. van de Riet, Algebraic Operations in ALGOL 60. The Cauchy 

Problem I, 

Report TW 97, Mathematical Centre, Amsterdam, December 

1965. 

[9] S.J. Bijlsma, Algebraic Operations in ALGOL 60"' The Saddlepoint 

method, 

Report TN 45, Mathematical Centre, Amsterdam, May 1966. 

[,o] R.P. van de Riet, An application of a method for algebraic 

manipulation in ALGOL 60, 

Report TW 99, Mathematical Centre, Amsterdam, January 

1966. 

Q1] F.E.J. Kruseman Aretz, Het MC-ALGOL 60-systeem voor de X8. 

Voorlopige, programmeurshandleiding. 

Report MR 81, Mathematical Centre, Amsterdam, June 1966. 

[J 2] M. Abramowitz, I.A. Stegun, (editors), Handbook of Mathematical 

Functions, U.S. Department of Commerce, 

National Bureau of Standards, 

Applied Mathematics Series 55, Third printing, 

March 1965. 




