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1 . Introduction 

In this paper we have studied one-step difference methods for equat­

ions of the type 
,.J 

( 1 • 1) 
dU ,., 
dt =DU+ F, 

.., . 

where U and Fare (vector) functions of the variable t, and Dis a matrix 

with constant entries. We shall denote functions of the continuous variable 

t by capitals and the corresponding discretized functions, i.e. the funct­

ions which arise from restricting t to a discrete set of points, by the 

corresponding lower cases. 

When F(t) and U(O) are given the function U(t) is uniquely defined by 

equation (1.1). In particular, we are interested in initial value problems 

of type (1.1) which arise from linear partial differential equations when 

the space variables are discretized. In such cases the matrix D usually 

is of very large order (100 or 1000). The study of difference methods for 

linear equations is also useful to attack non-linear differential equat­

ions of the type 
.J 

( 1.2) 
dU ,., 
dt = H(t,U) , 

since such equations locally have the form (1.1). This immediately follows 

from the TS¥lor expansion of H(t,O(t)) in a point t =-t0 : 

( 1. 3) 

Here, D(t0 ) is the matrix (d .. ), 
1J 

d .. 
1J 

a (i) 
= ~{j) H (t0 , u(t0 )) , 

au 

to= to+ e., U(to) = eu(to+T) + (1-e) U(to), 0 ~ e ~ 1, and u(j), H(i) 

are the j-th and i-th component of the vector functions U and H, respec­

tively. 
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From (1.3) it follows that in the neighbourhood oft= t 0 equation (1.2) 

behaves like 

(1.2') 

which is of type (1.1). 

The one-step methods for solving numerically (1.1), which are most 

widely used, are of the Runge-Kutta type. However, when these methods 

are applied to systems arising from partial differential equations it 

turns out that the (time) step T = ~t prescribed by accuracy considerat­

ions is considerably larger than the step prescribed by stability con­

siderations. 

The same situation is met when Runge-Kutta methods are applied to systems 

describing circuit simulations. 

This may be explained as follows. The Runge-Kutta methods are based on 

the Taylor series approximation in T = 0 of the operator exp(T D). Let 
the approximating polynomial be ~ ( T D) , thus 

( 1.4) ( ) 1 22 1 pp A TD = 1 +TD+ TD + .•. + -, TD. 
p 2 ! p. 

Then this approximation becomes better as the value of Tis smaller. In part­

icular the effect of the operators exp(T D) and A (TD) on eigenfunctions ' p 
of D corresponding to eigenvalues with a large modulus is completely 

different, unless Tis relatively small. In the case of systems arising 

from partial differential equations or circuit simulations the eigen­

functions in the analytical solution corresponding to large modulus 

eigenvalues vanish rapidly. In actual computation, however, they are 

introduced at each step by round-off errors. This forces us to take small 

time steps in order to avoid instabilities. 

In order to overcome these difficulties we have constructed polynomial 

approximations of exp(T D) which are more accurate for larger values of T, 

We have distinguished the case where D has real eigenvalues and the 

case where D has imaginary eigenvalues. In the latter case the optimal 

polynomial approximations are hardly better than the Runge-Kutta methods. 

In the first case, however, a considerable improvement can be obtained 

by using Chebyshev polynomials. In principle, this fact is well-known 

and was first used by Franklin in 1958 (cf. reference [4] ) . 



4 

A disadvantage of the Chebyshev polynomial method is that it is only 

first order exact. Therefore, it is desirable to construct polynomial 

approximations which are accurate and stable as well. A method is given 

to construct such polynomials. In the second order case these polynomials 

are derived explicitly. When polynomials of sufficiently high degree 

are used the difference scheme is nearly six times cheaper than the 

second order Runge-Kutta method. 

In references [6J and [7], which will appear in the near future, 

applications to stiff equations and numerical examples will be given. 

Finally, the author wishes to acknowledge the work done by 

Mr. IJsselstein who programmed the plotting-program by which the figures 

3.1, 4.1 and 5.1 were obtained. 
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2. The error of the difference scheme 

2.1 Construction of the difference scheme 

Suppose it is required to find the solution of the initial value 

problem 

( 2. 1 ) 

"' dU ~ - = DU + F, t _> 0, dt 

u = uo, t = o, 

where ff0 is a given initial function. Assuming that U(t) has continuous 

derivatives of up to order p + 1 we may write 

Here, t denotes a point in the interval [t, t+.J • 

It is convenient to introduce the operator 

(2.3) 
j-1 d dj-1 dj 

E. = DJ + D dt + • • • + D . + --. ~ E0 = 1 • 
J dtJ- 1 dtJ 

We may then write by virtue of the differential equation 

(2.4) j ~ D U + E. F. 
J-1 

Equations (2.2)-(2.4) suggest the following difference scheme for an 

approximate difference solution u of the initial value problem (2.1): 

(2.5) 1 + ••• + -, p. 1, 2, ••• , 
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In these formulae~ denotes the difference solution at t = tk = kT and 

Ej-l fk is defined as Ej- l F( t) I t=t • 
k 

Scheme (2.5) defines ~+las a sum of corrections of increasing order 

of T. Each correction term can be derived from the preceding one by a 

recurrence relation. To see this we observe that the operators E. satisfy 
J 

the recurrence relation 

(2.6) 
dJ 

E. = D E. 1 + --.• 
J J- dtJ 

Hence 

(2.7) (j+1) 
= Dj+1 

~+ E. fk = ck J 

Dj+1 J 
= 11ic+ D E. 1 fk +~f = 

J- dtJ k 

D C ( j ) dJ 
= + --. fk, k dtJ 

dJ 
where--. f 

dtJ k 

dJ 
denotes --. F ( t) I t=t • From this re;i.ation it can be deduced 

dtJ k 

that ( 2. 5) is equivalent to 

~ 
uo = uo, 

~ + TC~ 1) +l 2 (2) 1 TpC(p) k 0,1,2, ••. , ~+1 = T ck + ••• + -, = 2! p. k , 

( 1 ) 
ck = ~+ fk, 

(2.8) (2) D (1) d 
ck = ck + dt fk' 

( ) ( ) p-1 
c p = De p-l + d f 

k k dtp-1 k 0 

In this form the difference scheme is more appropriate in actual computation. 

For theoretical considerations we shall employ another form of the 

difference scheme. It is easily verified that (2,5) can be written as 
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IV 

uo = uo, 

1\_+ 1 = Ap(TD) 1\_ + Tg~p), k = 0, 1, 2, ... , 

(2.9) 
A (TD) = 1 + TD 1 2D2 1 TPDP + 2! T + ... + -, p p. ' 

(p) 
[Eo 

1 
TE1 + ••. +l p-1 ] gk = + 2! T E 1 fk. p! p-

In connection with this representation of the difference scheme we 

remark that the analytical solution U(t) satisfies a similar relation, i.e. 

. r+T 
(2.10) U( t+T) = eDT U(t) + eD(t+T) e-De F(e) d8. 

t 

Here the operator 
DT defined by e l.S 

(2.11) 
DT 1 + 1 (TD)2 A (TD). e = TD+ - + ..• = 2! 00 

Thus in (2. 9) the polynomial operator AP (TD) is in fact an approximation 

of order p to the exponential operator exp( TD). This suggests that other 

approximations of exp(TD) may be used. For instance 

where B (TD) is a polynomial operator of degree q in TD. It will turn out 
q 

that it is advantageous to employ approximations of this type. 

For future :reference we give the corresponding difference schemes in the 

form (2.8) and (2.9), respectively: 

(2.8' 
D (1) d f 

= ck + dt k' 

( 1) d n-1 = De n- + ---- fk, n = p + q + 1, 
k dtn-1 



(2.9') 
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uo = uo, 

~+1 
= Pn(TD) ~ + Tg~n), k = o, 1, 2, ••.• 

P (TD)= A (TD)+ (TD)p+ 1 B (TD), n = p + q + 1, 
n p q 

B (TD) 
q 

(n) 
gk = 

1 1 p-1 p n-1 J + -2 ., TE 1+ ... + -, T E 1+ 8 1T E + ... + 8 T E 1 fk. p. p+ p+ p n n-

The parameters 8 1 , .•. , 8 are real parameters to be determined later. 
p+ n ( ) 

In formulae (2!.8') and (2,9') it is assumed that F n- 1 exists. 

2.2 The discretization error 

We now discuss the error which is introduced in t~-1e k-th time step, 

i.e. the local. discretization error pk ( T). Let U' denote the solution of 

the initial va~ue problem (see figure 2.1) 

,.., 
dU' ,., 

= DU' + F, t > t , 
dt - k 

(2.12) 
.., 
U' = ~· t = tk 

~ .., 
Uk+1 Uk 

..J 

u 

I 
1~• 
iUk+1 u' Ek 
I 

u 
I 

1~+1 
I 

I ..., 

I U' = ~: I k 
I I 

I 

I 

I 

t 
k 

fig. 2.1 Local discretization error in a scalar case 
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Then the local discretization error is defined by 

(2.13) 
,., 

pk(T) = uk+1 - ~+1· 

By applying scheme (2.8') to (2.12) we find 

(2.14) ( ) ( 1 _ 0 ) p+1 (p+1) 
pk T ~ (p+1)! pp+1 T ck as T ~ o. 

The difference method is said to have an accuracy of order pas T ~ O. 

The next step is to consider the development of the local discretization 

errors. These errors together, produce,the total discretization error £k 

which is defined by 

(2. 15) 

From (2.2), (2.4) and (2.9')it follows that £k satisfies the difference 

scheme 

(2. 16) 

Beforethis scheme is studied we consider another source of errors which 

may influence the difference solution, i.e. the effect of round-off errors. 

2.3 The numerical error 

In actual computation, we cannot obtain the solution of the difference 

scheme exactly, as one is faced with the phenomenon of round-off errors 

which give rise to a numerical solution u* instead of the difference 

solution u. Suppose that u * is the solution of the scheme 

(2.17) * * (n) * 
~+1 = Pn(TD) '1t + T~ - pk, k = O, 1, 2, ••• , 

where p; is the local numerical error generated in the k-th time step. 

Then the (total) numerical error 
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(2.18) 

satisfies the difference scheme 

(2.19) 

From (2.16) and (2.19) it follows that the total error 

(2.20) 

satisfies the difference scheme 

(2.21) 

where rk is the sum of the local discretization error and the local 

numerical error. 

2.4 Convergence and stability 

In the preceding sections the difference scheme is derived which 

determines the error propagation in actual computation. In this section 

conditions will be given to co~trol the accumulation of errors. 

Let I I I 12 denote the Euclidean norm in the space_ of level functions. 

With respect to this norm the following theorem holds: 

Theorem 2.1 

The error ek satisfies the inequality 

[ 
k-1 .] 

11 ek I I 2 ~ 1 + C ( T ) _l j y- l [o ( P n (TD) )] J ~ 
J=1 O<J<k-1 

(2.22) 

where C(T) is an uniformly bounded function as T + O, o(P (TD)) is the n 
spectral radius of Pn(TD), and y is the largest order of all diagonal sub-

matrices Jm of the Jordan normal form J of P (.D) with o(J) = o(P (TD)). n m n 
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Proof. See reference [4 J, p. 57. 

The sum corresponding in (2.22) may be estimated by the integral 

Jk xy- 1 [o(P (TD)}]xdx. 
0 n 

A simple calculation yields 

(2.23) 

where o denotes o(P (TD)). n 
For large values of k and o + 1 this expression reduces essentially to 

(2.23') 
k( )y-1 ( )y-1 { ) I lekl 12 ~ {1+C(T) 0 klno - -y-1 !} Max I lrJ.11 2 

lnyo O<j<k-1 

For o = 1 we have 

(2.23") 

In the following the cases o > 1, o = 1 and o < 1 will be discussed 

separately. 

Case I: o > 1. From (2.23') it follows that the error ek may increase 

exponentially with k. Even when round-off errors are neglected, so that the 
. p+1 . 

local error rk tends to zero like T as T ➔ O, we have an~exponential 

increase, because the total number of steps in a given interval of integration 

@,f] is T/T. The local errors do not vanish rapidly enough to compensate for 

the factor [o]T/T. Therefore, we may not expect convergence to the analytical 

solution. Further, the round-off errors may increase exponentially destroying 

the solution completely. This latter phenomenon is called instability. 
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Case II: o = 1. Here we use inequality (2.23"). Neglecting round-off errors 

we see that 

determines the convergence of the difference solutions as T ➔ O. Therefore, 

the condition 

(2.24) p > y - 1 

is a sufficient condition for convergence in the case o = 1. 
. ~ 

For small values of T, however, the numerical error pk cannot be neglected 

with respect to pk' so that ek behaves like .-Y as T ➔ O. Such a behaviour 

of the error is called stable by Forsythe and Wasow [ 1 J , p. 32, but unstable 

by Rjabenki and Filippov [3], p. 15. In most practical cases this behaviour 

is acceptable. 

Case III: a< 1. Again we use inequality (2.23'}. As T ➔ 0 we have 

Max 
O<j<k-1 

Evidently, the scheme is convergent and stable as well. 

Our final conclusion is that a necessary condition for convergence is 

(2.25) o(P (.D)) < 1. 
n -

Further, this condition guarantees a certain insensitivety for round-off 

errors. In literature, condition (2.25} is called the stability condition 

of the difference scheme. 

In fact, (2.25} is a condition for the time step •• To see this we define 

the numbers .(j} as the non-zero solutions of the ~quations IP (.o.)I = 1, 
n J 

where o. represent the eigenvalues of the operator D (see figure 2.2}. The 

minimumJ of all numbers T (j) obviously is an upper bound for T, i.e. 

(2.25') T < Minimum T (j}. 

IP (T(j)o.)l=1 
n J 



fig. 2.2 
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y 

0. 
J 

stability region 

Stability region of the polynomial operator P (TD) 
n 

in the (z=x+iy)-plane. 

X 

A simple but rather rough stability condition can be obtained as follows. 

Let S ( n) be that point at the curve IP ( z) I = 1 which is nearest to the n 
origin and which lies in the sector in which all eigenvalues o. are 

J 
situated. Then (2.25) is satisfied when 

(2.25") S(n) 
T 2- o(D)' 

Conditions (21.25') and (2.25") are identical when the eigenvalues o. are 
J 

situated at two lines which are conjugate complex; for instance, when the 

o. are real or purely imaginary. 
J 

It may be remarked that in many important applications the bound 

S(n) / o(D) is considerably smaller than the time step prescribed by 

accuracy considerations. In such cases one should construct difference 

schemes for which the number S(n) is as great as possible. In view of this 

requirement we have introduced the polynomial operator B (TD) in section 2.1. 
q 
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2.5 Step-size control 

Condition (2.25) controls the accumulation of the local errors rk. 

The next step is to control the local errors itself. In this section the 

discretization error pk is discussed. In section 2.6 the numerical error 
* . . pk is considered. 

Suppose that it is required that pk is bounded by some quantity nk, 

i.e. 

where I I I I denotes some norm in the space of level functions. Then we 

derive from (2.14) the inequality 

(2.26) T < 1-
-~ 1 

(p+1)! nk 

This condition prescribes at each level a new maximal time step, contrary 

to condition (2.25) which yields a uniform upperbound for T. In fact, 

the right hand side in (2.26) may vary considerably with k. This will be 

illustrated by the following example. Given the homogeneous equation 

d ,J ,.J 

dt U = DU, 

where D has negative eigenvalues o., o < o 1 < ••• < o1 < 0 with nor­
J m m-

malized eigenfunctions E .• Let the initial condition be 
J 

m 
u = I 

j=1 
E. t = o. 

J 

Then the analytical solution of the differential equation is given by 

so that 

m 
u = I 

j=1 
exp(o .t)E. , 

J J 

(p+1) 
ck 

m 
= nP+1u. ~ l 0~+1 exp(o.tk)E. 

K j=1 J J J 
as T -+ 0 

For small values of tk the terms with large values of lo• I are dominating, for 
J 

large values of tk the terms with small lojl 

let us take the special case in which o1 = -1 

11 c ~ p+ 1 ) 11 ~ 1 oooP+ 1 for tk ,-v o, 

are dominatin& To be more specific, 

and o2 = -1000 (m=2). Then we have 

11 c~p+1} I I ~ 1 for tk ,-J 1. 
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This means that for constant nk the maximal allowed time step changes 

a factor 1000 over the interval O < t < 1. 

This example shows that it is desirable to employ a variable step 

Tk which satisfies both (2.25) and (2.26), particularly when we deal with 

ill-conditioned matrices D, i.e. lo 1 l / loml << 1. 

2.6 Numerical stability 

The e~ror ~*k arises in the calculation of the successive correction 

terms Bj TJ ck(J). Suppose that instead of calculating ck(j) recursively 

we calculate the correction term itself by a recurrence formula. Let 

, j=1, ••• ,n. 

( . ) 
Then it follows from the recurrence relation for c J that 

k 

(j+1) 8 ·+1 (") ·+1 dj 
v = .....J.!..!. T D v J +. B • TJ --. Fk, j = 0, 1 , ••• , n-1 , 

k Sj k J+1 k dtJ 
(2.27) 

where vk(O) =~and 80 = 1. 

From the arguments in section 2.4 it follows that a necessary condition 

for the stability of this process is 

(2.28) j = O, 2, ••• , n-1. 

When this condition is satisfied the local error p*k will be small in ge­

neral. For large values of nit is important to satisfy (2.28). We shall 

* call the process numerically stable when pk is small. 

It may be remarked that the calculation of the c~j) according to 

scheme (2.8') may be very dangerous for large values of n. 

3. Runge-Kut ta methods 

In this section we study difference schemes of the type 

( 3. 1) 
,.., 

u0 = U0 , 1\_+1 = Ap(TkD)'\_ + Tk g~P), k = O, 1, 2, ••• , 
.,,p 
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where the polynomial A {z) and g{p) are defined as in {2.9). 
p k . 

This scheme is related to the Runge-Kutta method of order p. We will 

show this relation for the case p = 2. 

The second order Runge-Kutta Method {or Heun's method) for linear 

equations of type {2.1) is defined by {compare [2], p. 896) 

'\.+ 1 = '\. + ~{c1+c2), k = O, 1, 2, ••• , 

{3.2) 

By substituting c1 and c2 this scheme reduces to 

.,J 

uo = uo , 

°l\+1 = (1 + TkD + ~T2k D2)'\_ + Tk{~{fk + fk+1) + ~TkD fk). 

{ ( 1 d , 2 d2 {-) 
= A2 TkD)°l\ + Tk fk + i!Tk(D + dt)fk + JiTk. dt2 F tk 

= A2{ TkD)'\ + Tk ~ {2) + h~ d2 2 F(tk) , 
dt 

where tk = tk + 0T k, O ~ e ~ 1 • 

This scheme resembles {3.1). However, it has a different local dis­

cretization error, namely 

1 3 [d3 ,., 
pk(Tk).., 3! Tk dt3 U{tk) - - - F(t ) 3 d

2 J 2 dt2 k 

For numerical calculations they are, of course, equivalent, as both schemes 

have a local discretization error of order Tk 3. 
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3. 1 Regions of sta.bili ty 

The stability regions of the opera.tor AP(.kD) a.re defined by the 

curves IA (z)I = 1. In figure 3.1 these curves a.re given for p = 1, 2, 3 
p 

and 4. Since IA (z)I = IA (z)I, the lower pa.rt of the curve IA (z)I = 1 p p p 
is omitted. 

This figure shows that we should require that the eigenvalues o. of 
J 

D have non-positive real parts. This requirement is related to a. similar 

condition one has to impose upon the ordinary differential equation (2.1) 

in order to guarantee stability in the sense of Lyapunov. In this and 

subsequent sections we shall assume that Re o. < 0. 
J -

From figure 3.1 the following table is derived. 

Table 3.1 Approximate values of B(p) in the stability condition 

"k 2., : ~ii~ of the polynomials AP (.kD) 

p arbitrary o. real 0. imaginary 0. 
J J J 

B(p) 8eff(p) a(p) Bef/p) B(p) 8eff(p) 
1 0 0 2 2 0 0 

2 0 0 2 1 0 0 

3 1.72 0.57 2.54 0.85 1.72 0.57 

4 2.63 0.67 2.78 0.70 2.82 0.71 

In this table the values of Beff(p) = B(p)/p have been added. These values 

take into account that a scheme of order p requires p times as much 

work per time step as a scheme with p = 1. Therefore, the effective 

time step "eff' defined by "eff = ./p,satisfies the condition 

(3.3) • < eff - = B(p) 

p o(D) 
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fig. 3. 1 

3 

t 
p=4 

r y 

X 

-2 -1 0 

Stability regions of the polynomials A (z) for p = 1, 2, 3, 4. p 

..... 
O> 
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We are now in a position to evaluate the merits of the Runge-Kutta 

methods of order 1 to 4. In general, the first and second order methods 

(method of Euler and Heun, respectively) are not recommended, as their 

stability, although the differential equation itself is supposed to be 

stable, is not guaranteed for any time step. Moreover, the accuracy is 

considerably less than the accuracy of the third and fourth order method. 

Only when the solution is slowly varying Euler's and Heun's method mccy be 

advantageous (see the numerical examples in [7]). In practice, the 

fourth order method is most widely used. 

4. The use of Chebyshev polynomials 

The examples in [7] show that in the asymptotic region of the 

solution the time step is not prescribed by accuracy requirements but by 

stability requirements. Therefore, in this part of the integration inter­

val it suffices to employ first order schemes like Euler's scheme. 

However, it is possible to construct first order schemes which have 

considerably less stringent stability conditions than Euler's scheme. 

In this section a class of first order schemes is considered which is 

appropriate in cases where the matrix D has real or "almost real" eigen­

values. 

4. 1 Construction of the difference scheme 

The first order schemes which arise from (2.9') for p = 1 are of 

the type 

uo = uo, 

'\+1 = ~,(,kD) 

( 4. 1) 

=~ 

k = O, 1, 2, ..•. 
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For a given polynomial P (x), the number S(n), as defined in section 2.4, n 
is the largest number such that P (x) = A1(x) + x2 B 2(x) has values in n n-
the interval f=1, TI for -B(n) ~ x ~ O. Thus, we are lead to the problem 

to construct a polynomial P (x) for which this number S(n) is maximal. 
n 

Theorem 4.1 

Of all polynomials P (x) of the degree n in x, which satisfy the con­
n 

ditions 

P (0) = 1, 
n 

P'(o) = 1, 
n 

the polynomials T ( 1 + n - 2x) = cos ~arc cos ( 1 + n - 2xI] has the largest 
n 2 

value for S(n). This value equals 2n. 

Proof See reference [4 J , p. 38. 

From this theorem it follows that the scheme 

(4.2) 
~+1 = T(1 + n-2 TkD)~ + Tk ~(n) , k = o, 1, 2, ••• 

is the scheme we are looking for. The first four polynomials together 

with their S(n) values are given by 

P1(x) = 1 + x, S(1) = 2, 

P2(x) 1 1 2 S(2) = 8, = + X + B X , 

(4.3) P3(x) 1 4 2 4 3 
S(3) = 18, = + X + 27 X + 729 X' 

P4(x) 1 5 2 1 3 1 4 32. = + X + 32 X + 128 X + 8192 X, S(4) = 
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4,2 Regions of stability 

In the case of real eigenvalues we have from theorem 4.1 the stabi­

lity condition 

2n (4.4) a1D). 

Comparing this condition with table 3. 1 we see that in the real case 

the use of Ghebyshev polynomials allows us to taken times larger steps 

than Euler's scheme. 

For complex eigenvalues Chebyshev polynomials are appropriate in those 

cases where the eigenvalues are within the stability regions of the 

polynomials T (1 + n-2z). 
n 

In figure 4 .. 1 the curves IT (1 + n-2z)I = 1 are given. From these curves 
n 

it may be concluded that stability is expected if the eigenvalues are 

"almost real", i.e. if they are situated in a small strip along the 

(negative) real axis. In such cases it is recommended to use polynomials 

of different degree in succession. Then, for those points ,koj which 

are outside the stability region of P (z), we may hope that the points 
nk 

'k+1oJ. are within the stability region of P 
°k+1 

(z). In this manner the 

instabilities introduced in :the k-th step are reduced in the (k+1 )-st 

step. 

5, The case of purely imaginary eigenvalues 

We now consider schemes of type (4.1) in which Dis an operator 

with purely imaginary eigenvalues o = iy. The number B(n) is now defined 

as the largest number such that P (iy) = A1 (iy) + ( iy )2 8 2 (iy) has 
n n-

values on or within the unit circle I z I = 1 • Again we are faced with the 

problem to c:onstruct a polynomial P (iy) for which this number B(n) is 
n 

maximal. 
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5.1 A polynomial problem 

For n = 2, 3, 4 the optimal polynomial P ( z) was derived in [4 J , p. 45 
n 

For odd values of n a general expression of P (z) is given in [5]. For 
n 

future reference the first four polynomials and the general expression 

for odd values of n are given, together with the corresponding values 

of B ( n) . 

P 1(z) = + z, B ( 1) = O, 

P2(z) = + z + z 2 B(2) 1 , = , 

P3(z) = 
( 5. 1 

P4(z) = 

1 2 1 3 B(3) = 2, + z + -z + 4Z , 
2 

2 v-;, 1 2 + l z3 1 4 s(4) + z + -z + - z , = 2 6 24 

P ( z) 
n = T cn-1? + 2~ z 

n-1 (n-1)2 
2 

+ 2z 2 2 t 2 (n-1) + z U (n-1) + 2 

(n-1 )3 n-3 (n-1 )2 
2 

B(n) = n-1, n = 1, 3, 5, .... 

Here U (y) denotes the Chebyshev polynomial of the second kind, i.e. 
m 

( 5. 2) u (y) 
m 

= sin[1m+1) arccos iJ 
sin arccos y 

5,2 Regions of stability 

In figure 5,1 the curves IP (z)I = 1, P (z) defined by (5.1), are 
n n 

given. 

For n = 2 we have stability if 

(5,3) < 1 
Tk - cr(D) 

(T ) < ,5 
k eff - a(D) 
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This condition does not hold only in the imaginary case, but for any set of 

eigenvalues with Re o. < 0. Therefore, with respect to stability the 
2J D2 . t . . operator 1 + TkD +. k is the bes possible one of degree 2 in those cases 

where the only information about the eigenvalues of Dis that they are 

in the non-positive half-plane. As regards the accuracy, however, we 

observe that P2 (.kD) has only first order accuracy. 

The polynomial P3(.kD) is second order exact and satisfies the 

condition 

(5.4) 

which is a slightly better than the third order Runge-Kutta process. 

For n = 4 the polynomial P4(z) coincides with the polynomial A4(z). 
We recall (see table 3.1) that .k must satisfy the condition 

(5.5) 2¥2 
T < --

k - o(D) 
( ) ·.1.L_ 
Tk eff ~ -;(D) • 

The next polynomials P5(z), P7(z), ..• yield second order exact 

schemes with a slowly increasing upper bound for the effective time step, 

i.e. 

(5.6) n-1 
T < 

k - o(D) 
( ) ,_1/n 

T k e ff ~ O' ( D) , n = 1 , 3 , 5 , 7 , • • • • 

' Thus P4 ( TkD) already has 70% of the maximal attainable stability, and 

it is therefore that we recommend the fourth order exact Runge-Kutta 

method in the case of imaginary eigenvalues. 
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6. Stabilization of higher order schemes 

In the preceding sections the problem is discussed to maximize the 

number S(n) associated to polynomials of the type 

2 P (z) = A1(z) + z B 2(z), 
n n-

where z was real and imaginary, respectively. In the imaginary case, 

only a small improvement was obtained in comparison with the fourth 

order Runge-Kutta process. In the real case, a considerable improvement 

was obtained; however, these methods are only first order exact. There­

fore, it is natural to try to maximize the number S(n) associated with 

polynomials of the type 

(6.1) P (x) = A (z) + xp+1B (x), p + q + 1 = n, p > 1. 
n p q 

Thus, instead of stabilizing first order schemes we now try to stabilize 

a p-th order scheme. 

6.1 Properties of the polynomial B (x) 

Let P {x) have values between -1 and +1 for - S(n) ~x ~ O, then n 
B (x) satisfies the inequalities 

q 

- x-P- 1(1 + A (x)) 
p < B (x) 

- q 

(6.2) 

x-p- 1 ( 1 - A ( X) ) 
p < B (x) 

- q 

< x-P-1(1 - A (x)), - p 

p odd, -S(n) ~ X ~ 0, 

< -x-p-1(1 + A (x)), 
p 

p even, -S(n) < X < 0. 

Let 1 (x) and r (x) denote the left and right hand side of (6.2), res-
p p 

pectively. 

Then we have 
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Theorem 6.1 

Of all polynomials of degree q in x the polynomial B (x) yields the 
q 

largest num1>er B(n) if it has at least q + 1 alternating tangent points 

with the bo\mdary curves 1 (x) and r (x). 
p p 

Proof 

The maximizELtion of 8 (n) means that the curve y = B (x) remains as long 
q 

as possible in the region bounded by the curves y = 1 (x), y = r (x) 
p p 

and x = 0. In figure 6.1 the behaviour of the boundary curves y = 1 (x) 
p 

and y = r (:x) is illustrated. For x-+ 0 they tend to - 00 and +00 , respect­p 
ively, for x-+ - 00 they both converge to zero. 

-81(n) -B(n) -8(p+1) X 
p 

l (x) 
p 

fig. 6. 1 The polynomial B (x) for q = 0 and q = 6. 
q 

y 

B' (x) 
q 
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Suppose that there exists a polynomial B (x) with q + 1 different tangent 
q 

points with 1 (x) and r (x), and a polynomial B' (x) which satisfies 
p p q 

inequality (6.2) over an interval [-B'(n),o] where B'{n) > B(n). Then 

the curve y := B' (x) intersects the curve y = B (x) at least at q + 1 
q q 

points. Hence the polynomial B' (x) - B {x), which is atm.ost of degree 
q q 

q in x, has at least q + 1 zeroes. 

This contradiction proves the theorem. 

Although this theorem does not guarantee the existence of a poly­

nomial B (x) with q + 1 tangent points, it may guide us in constructing 
q 

the "best" polynomial. 

6. 2 Introduction of a single stability term 

We consider the case q = O, i.e. 

From theorem 6.1 it follows that the line y = (3p+ 1 which touches the 

curve y = lp(x) defines the optimal value of (3p+ 1 (see figure 6.1). 

Obviously, the tangent point _is the point where lp(x) reaches its 

maximum. Let x = x be this point, then the following relations hold: 
p 

B~(x) = (3 +1 = 1 (x) , 
i_., p p p p 

(6.4) r (- S(n)) = 1 (x ) 
p p p 

n = p + 1. 

In table 6.1 the values of xp, /3p+ 1 , S(n) = S(p+1) and /3eff(p+1) are 

listed for p = 1, 2, 3 and 4. 
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Table 6. 1 Parameter values for polynomials of the type 

p (x) = A (x) xP+1 
+ sp+1 . n p 

p X sp+1 S(p+1) 8eff(p+1) p 

- 4.00 . 1250000 8.00 4.00 

2 - 4.00 • 0625000 6.27 2.09 

3 - 4,39 • 0184557 6.oo 1.50 

4 - 4.69 • 0040869 6.05 1.21 

The corresponding polynomials are given by 

P2 (x) 1 + X + .125 2 = X , 

P3(x) 1 + X + .5 
2 + .0625 3 = X X , 

(6.5) 2 x3 + 4 P4(x) = 1 + X + ,5 X + . 1666667 ,0184557 X, 

P5(x) 1 + X + ,5 2 + . 1666667 x3 + .0416667 x4 + .0040869 x5 • = X 

By comparing the stability P.roperties of these polynomials and the Ri.mge­

Kutta formulae for real eigenvalues (see table 3.1) it m.a;y be concluded 

that the introduction of just one stability term allows us to employ 

70% larger time steps in the fourth order case. 

6. 3 The ca:se of two stability terms 

For q •= 1 we have 

(6.6) 

From figure 6.2 it is clear that there actually.exists a polynomial 

B1(x) which touches both 1 (x) and r (x). 
p p 
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y 

fig. 6 .2 

Let the line y = B1(x) touchy= l (x) and y = r (x) in x = t 2 and 
1 p p 

x = t 1 respectively. Then the following equations hold for t 1 and t 2 : 

r ' ( t 1 ) = l , ( t2) , p . p 

(6.7) 

When these equations are solved for t 1 and t 2 the line y = B1(x) is 
defined by 

(6.8) 

thus 

( 6.9) 
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Further, S(n) = S(p+2) is defined by the equation 

(6.10) lp(- S(p+2))= B1(- S(p+2)). 

We now solve the equations (6.7) for p = 2. From the definition of 

r2 (x) and 12(x) it follows that (6.7) may be written as 

= 12 t-4 
1 , 

(6.7') 
-1 _ t-1 ( -2 -2) t2 1 + 3 t2 - t1 = 

or equivalently 

(6. 7") 
-2 -1 -1 ( -2 1 

3 t2 + t2 - t1 8 t1 + 3 t~ + 1) = 0 • 

Elimination of t 2 yields the following equation for t 1 

(3t~1 + 2)2 (96t~3 + 36t~2 + 12t~1 + 1) - (384t~3 + 126t~2 + 33t;1 + 2)2 = o. 

A numerical calculation reveals that t 1~ - 10 is an approximate zero 

of this equation. A corresponding value of t 2 is given by t 2 "' - 4.8. 

By formulae (6.8) - (6.10) we finally obtain 

(6.11) 2 3 4 P4(x) = 1 + X + .5 X + .078 X + .0036 X , 8(4) "-' 12 • 

Hence we have gained a factor 3 over Heun's method (see table 3.1). 
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6.4 Polynomials B (x) of higher degree 

Analogous to the considerations in the preceding section polynomi­

als B (x) of higher degree can be constructed by setting up the equations q . 
for the tangent points x = t., j = 1, 2, ••• , q+1. This leads to q+1 

J 
non-linear equations for q+1 unknowns. The solution of these equations 

is difficult to find, even when numerical methods are employed. There­

fore, we look for other methods to construct B (x). In the following, 
q 

a method will be described which approximately determines the coefficients 

of Bq(x). This method is based on the Taylor-expansion of the function 

(6.13) 1 a (x) = -2(r (x) - 1 (x)) p p p 

for large negative values of x (see figure 6.3). 

-· 
-B -b 1 (x) 

p 

fig. 6.3 Taylor-expansion of a (x) 
p 

We shall give the analysis for the case p = 2. 

y 

a (x) 
p 

B (x) 
q 

X 

Let x = -b be a point at the negative axis. Then the TBiYlor-expansion of 
a2{x) at x =-bis given by 

(6.14) = 
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We now derine the polynomial B (x) by 
q 

(6.15) B (x) = 
q r 

j=O 

b2 - 2(j+1) b + (j+1)(j+2) 

2 b 3 

The parameter bin this expression is determined by the condition 

that for -b < x < 0 the remainder R +1(x) = a2(x) - B (x) does not 
- - q q 

exceed in absolute value the "distance" between a2(x) and r 2(x) or 

12 (x). Thus we require 

(6.16) = l-1 I , 
x3 

-b < X < o. 

The remainder Rq+ 1 (x) may be written as 

(6. 17) ( ) = __l_ (X + b)q+1 
Rq+1 x 2 b3 b 

I [!>2-2(q+2+j)b+(q+2+j)(q+3+j)] (1t~b~j. 
j=O \ ) 

An upper bound for Rq+1(x), -b ~ x ~ O, is easily seen to be 

__l_ (~ + Q\q+1 (!.,2 - 2(q+2)b + (q+2)(q+3t). p_ • 
2 b3 \ b / . -x 

For small values of q (q = 1, 2, 3) this bound is rather rough, get­

ting closer to the true value of Rq+l (x) for larger values of q. 

By using this majorizing function for Rq+ 1(x) condition (6.16) becomes 

(6.16') x2 lx+bjq+1 
2 bq+3 

< 
b2 - 2(q+2)b + (q+2}(q+3) , 

-b < X < 0 • 

The maximal value of the left hand side 1n the interval [-b, o] is 

reached at x = -2b/(q+3). Hence, the maximal value of b satisfies the 

equation 

(6. 18) 
2 

b - 2(q+2)b + (q+2)(q+3) 
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From this equation it follows that 

(6.19) b = q+2 + 
1 
2 

(q+3)q+3 
- - ( q+2) . 

(q+1)q+1 

The corresponding value of 8 is determined by the equation 

(6.20) 

For x < -b the remainder Rq+ 1 (x) satisfies the condition 

b2 _ 2(g+2)b + (g+2)(g+3) Ix: blq+1 • 
jRq+1 (x) I 2. 2 b3 

Using this upper bound for Rq+ 1 (x) at x = -8 we obtain from (6 .18) and 

(6.20) the relation 

(6.21) 8 = b '1 + ~ (q+1 )q+1 b3) q:1 •] . L \ (q+3)q+3 83 

In table 6.2 numerical values of b, 8/b, a, aeff are listed. 

Tabel 6. 2 Parameter values for polynomials of the type 

Pn(x) = A2 (x) + x3 Bq(x). 

n = q+3 b(n) 8 (n) / b(n) 8(n) 8eff(n) 

3 5. 391 1.109 5.979 1 .993 
4 8.385 1. 192 9.995 2.499 

5 11.339 1.259 14.276 2.855 
6 14.280 1.314 18.764 3.127 

7 17 .215 1. 360 23.412 3.345 

8 20. 145 1. 399 28. 183 3,523 

9 23.074 1,434 33.088 3,676 

10 26.001 1.464 38.065 3.807 

n~ 2.922 n 2 5,844 n 5,844 
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The results for n ➔ m needs some explanation. From (6.19) we derive 

b ,.., q+2 + ~ ( q+3) e v-;. as q ➔ m , 

where e ~ 2.7182. Substitution of this numerical value of e and q = n-3 

yields the result given above. The result 8(m)/b(m) = 2 follows directly 

from ( 6 • 21 ) • 

Our conclusion from table 6.2 is that, although the polynomials 

constructed above are not optimal, the effect for q = 0,1 is only slightly 

less than the corresponding optimal polynomials derived in the preceding 

sections. Hence, we may expect that the higher degree polynomials B (:x:) q 
q > 1, which are even better approximations, are nearly as good as the 

optimal ones. 

Finally, we give in table 6.3 the coefficients 83, 84, ••• , 87 of 

the resulting polynomials. 

Table 6.3 Coefficients 83 , ••• , 87 of the approximating_ 

polynomials P (x) = A2(x) + x3 B (x) n q 

n = q + 3 109 8 
3 

1010 84 10 11 8 
5 

1012 8 
6 1014 8 

7 

3 64720219 

4 83375271 43257975 

5 92476529 70859328 19346763 

6 97883479 89253815 38670047 6466748 

7 101469351 102270702 55104889 15282050 17209475 
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