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Relaxation oscillations governed by a van der Pol equation

with periodic forcing term

by
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ABSTRACT

Asymptotic approximations are given for the period of a periodic solu-
tion of the inhomogeneous Van der Pol equation with a large parameter.
The results are illustrated by many pictures and numerical integration

techniques are used in order to verify the asymptotic methods.:
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1. INTRODUCTION

We consider periodic solutions of the inhomogeneous Van der Pol equa-

tion
(1) 'dzx 2 dx
— +v(x"-1)== + x=b cos t
2 dt
dt
for large values of the parameter v. For b = 0 a periodic solution with’
period
- -1/3
(2) T0 = (3-2log2)v + 0(v )

exists, see BAVINCK & GRASMAN [2] and COLE [3]. For (2) we write

(3) TO = 2n(2n+1) + 28(v),

where §(v) = 0(1) and n is a large positive integer of 0(v). In this paper
we will construct matched local asymptotic approximations for a periodic
solution of (1) with period T = 2n(2n+1), for n = 2 see figure 1. Moreover,
necessary conditions will be given for the construction of such formal ap-
proximations. These conditions imposed on b and § can be considered as for-
mal conditions for synchronization. The method of matched asymptotic ap-
proximations we apply is related to a method of COLE [3] for solving the
autonomous equation, For b = 0 our solution will differ at some points.

However, these differences do not affect the solution of COLE quantitatively.

The local approximations mentioned above have different regions of
validity, see figure 2. In one region (region A) the method of two time-
scales is applied in order to obtain a solution that holds for large values
of t. For other examples of this method the reader is referred to
LAGERSTROM & CARSTEN [4]. For studying the local behavior of the solution
in the other regions formal approximations are constructed as follows.

The variables x and t are stretched according to a transformation of the

type
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(4) x + v %X(E,v), a

v
o
-

%0

(5) tg * v, B

ot
1]
v

o

Further (4) and (5) are substituted into equation (1), so that this equa-

tion transforms into

2

(6) v_a+28 é—§-+ vl_a+B -Kxo + v_ax)2 -1 dax + x,. + v X =
dt dg 0

=b cos(t0+v-B£).

Y

This equation in the local variables is multiplied with v ', where

max {-o+2B8, l-o+B, 0} for X, # 1,

<
]

max {-a+2B8, 1-2a+8, 0} for Xy = 1,

<2
]

then a so—-called limiting equation is obtained by letting v - <,

For revealing the local behavior of the solution of (1) a special choice
of a and B has to be made, which will be worked out in the following sec—
tions. The solution of the limiting equation represents a formal local ap-
proximation of which the integration constants are determined by matching

of two adjacent local approximations.

2, THE ASYMPTOTIC SOLUTION FOR REGION A

For region A we apply the method of two-time scales by introducing
another independent variable T = (t—to)/v. It is supposed that the follow-
ing expansion exists

(7) X = xo(t,r) + x](t,r)v_] + xz(t,T)\)_2 + ... .

Substituting this expansion into equation (1) and equating terms of 0(v)

we obtain the equation

axo -0
ot

(x2-1)



Hence the function Xo(t,T) will only depend on T Similarly from terms of

0(1) we get the equation

X 9xX
.2 1 0). _
(xo—l) (SE—-+ 5?—>-+x0 b cos t.

This equation contains a slowly varying part

X
2—]) 2—9-+ X

(%, T 0

i

EI(T)

which would produce a secular term in the rapidly varying part of X, as

. 6 (1)t
x, (t,7) = b sin t _ ; + Gy ().
x0 -1 XO -1

Consequently a](r) must be taken identically zero, so that

1,2 8 _
(8) log Xy~ E(xo—l) =1 DO’

where D0 denotes an integration constant. For x2(t,T) the following equa-

tion is found

2

9 X /3% ax 9x 9x
1 2 2 1 1. °%o _
2 ( ])(Bt Y ) * ZXOXI(Bt Y ) tx =0
which has a slowly varying part
aC 9xX
A _ .2 1 0
CZ(T) = (Xo ]) 51_— + ZXOCI -5T—+ C].

In order to remove secular terms in the rapidly varying part of Xy, We

also take 62(1) identically zero, so that

D%y
CI(T) = Cl[XO(T)] = ;ijr—; .
0
The constants DO’DI"" denote shifts in 1. This is also achieved by

writing



(9) eo= e Dy to(o) + to(l)\)_1 + t0(2)v—2 + e

and by setting D0 = D] = ... = 0, Substitution of (9) into (8) shows that
indeed these two solutions are equivalent. The functions xi(t,r), i=1,2,...

are singular in t = t,. When t approaches a neighborhood of ty of magnitude

0'
0(1) the first two terms behave as

x. S8 1 + {(to—t)/v}£, X~ 1 bsint {v/(to-t)}%

0

3. THE ASYMPTOTIC SOLUTION FOR REGION B

In region B, where t = ty * 0(1), the solution will be of the type

(10) x =1+ U(t,v)v-l/z.

Substituting (10) into equation (1) and letting v - « we obtain the limit-

ing equation
20, =— + 1 = b cos t.

Integration yields

(11) Ug(t) = Vb sint + (ty~t) + E, .

For ty~t >> 1 this solution is expanded as

b sin t + E

Uo(t) = /to-t + 0, cee s
2V to-t
so that it matches the solution of region A for E0 = 0.
4, THE ASYMPTOTIC SOLUTION FOR REGION C
- = (1) - (0
Let t = ty = tp v o+ to( ) + ... be the smallest root satisfying

the equation



(12) b sin t. + (t—to) =0,

0
In a neighborhood of this point, where x ~ 1, equation (1) exhibits a turn-
ing-point behavior. We introduce the local coordinate £ and the new depen-
dent variable V(E) by

t=1t, + &V and x =1 + v(g)v'2/3,

so that the corresponding limiting equation also will contain the term with
the second derivative. This equation is found from the limit process de-

scribed in section 1, it reads

v, v} _
5 +—+d =0, d=1-"> cos to,
dg dg

and it has a general solution of the form

Vo(8) = ¥'(E)/¥(E),

[3g4a7213)).

Y(E) A]Ai(—d]/3g+d_2/3u) + AzBi(-dl

The functions Ai(z) and Bi(z) denote so-called Airy functions, see

ABRAMOWITZ & STEGUN [1]. It appears that V(&) matches the solution of

. . - - 1o
region B only if A, = u =0 and d > 0, as Uo(t0+£v l/3) r (-dg) %y A
£E << -1,

5. ASYMPTOTIC SOLUTION FOR REGION D
The Airy function Ai(z) has its largest zero for z = —a with o =
= 2,338107, so in t = EO + gov_]/3 with go = ad_]/3 the asymptotic solu-

tion for region € will be singular; Vo(g) as(g—go) near that point. We

introduce a new local variable n according to the transformation
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-1/3 + nv—l,

(13) t=ty+ Eov
so that the first two terms of (1) become of a same order of magnitude.
Substitution in (1) and multiplication of this equation with v_z yield the

following limiting equation as v + «

2

d%w aw

s (wg—l) 5—9 = 0.
dn n

For matching the solution of region C we have the condition Wo(n) =1+ n“l

as n > —», This condition is satisfied by selecting solutions of the type

———l——-+ 1 log = -n+H
T = Tow-~ ~ .
WO 3 1 o 0
The constant H0 is found from matching Wo with higher order terms of the

asymptotic solution in region C. It turns out that H, should depend on log v.

0
However, we will not specify H0 here as we do not need this result for de-

scribing synchronization.

For n >> | we have the estimate

Wy(n) = =2 + o(e™3My,

6. MATCHING OF THE SOLUTIONS FOR THE REGIONS D AND A

In region A the solution is written as

x = %, (1) + x (e, v xz(t,¥>v'2 Faen s T= (Et/,

where EO(T) satisfies the equation

(14) log(-%y) - %(xg—l) - I.

while for Ei(t,;), i=1,2,..., a similar recurrent system of equations

holds as for terms xi(t,r) of region A. Let



(0)

/3
1 )s

+ 0(\)_1

then substitution of (13) and (15) into (14) yields the relation

-1 _ Eé-]) =3

Moreover, for §0 and §l we find

§] = % b sin EO + 0(v~1/3),

The matching condition is satisfied if

(17) t§0) = Eéo) + % b sin EO’

/

since x = Wb(n) + 0(\)-4 3) in region D, see COLE [3] (the influence of the

inhomogeneous term of (1) is O(v_z) in this region).

7. FORMAL CONDITIONS FOR SYNCHRONIZATION

Let for t = t the asymptotic solution for region B intersect with the

line x = -1, then similar to (12) the relation

(18) b sin El + (t-:]—t]) =0

holds. Moreover, in case of symmetric solutions the following periodicity

condition has to be satisfied

(19) t] = t0 + (2n+1)mw,

Using (2), (3), (9), (12) and (15-19) we obtain

Ci T = _ 28 -1/3
(20) sin t0 sin t] = 3 +0(v )



so that

t -F. =t -t =26+ 0(\:-1

/3,
1 "1 "0 0 3

Equation (20) can be solved, if
@y -z,
3 bt 7

This condition agrees with the idea we have about synchronization.

The amplitude of the forcing term gives an upper bound for the de=
tuning 6. For b > 1 the function Uo(t) of (11) may vanish for some EO with
EO_E—] < m(2n+1), so that the oscillator cannot complete its period T =
= 2m(2n+1). We therefore assume that for b > 1 the following condition is

satisfied

(22) arccos(l) + o+ arcsin(z §> + % s > Vbz -1,

b

P = arccos %

o =Vb2—l

Fig. 3



10

In figure 3 it is shown that this condition can be derived from the

limit case where a new zero of Uo(t) smaller that EO is about to arise.
The solutions of (20) are

T. = inf2 8 =1/3
(23) ty = (2k+1)mw + arc31n(3 b) + 0(v ),
(24) EO = 2kt - arcsin(§ g) + O(v_1/3), k=1,2,...

However, solution (24) does not satisfy the condition d > 0 of section 4.
In figure 4 we sketch the domain where b and 8(v) satisfy the conditions

(21) and (22). In this domain a synchronized periodic solution with period
T = 2n(2n+1), n = 0(v) is possible.
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8. SOME NUMERICAL RESULTS

A series of computer simulations has been made to compare the results
of this formal asymptotic method with numerical solutions of (1) for dif-
ferent values of b and v. Use has been made of a Runge-Kutta scheme (RKAna’
see ZONNEVELD [6]). For all simulations we took x(0) = 2 and x'(0) = O.
From other experiments we learned that in transition situations between the
shaded domains of figure 4 the period may depend on the starting value.
There also may arise periodic solutions with period T = 4mn, these are non-
symmetric solutions (see fig.5) which are not considered in the asymptotic
analysis.

We selected values around v = 25, For v < 10 the asymptotic solution
does not hold anymore as we can see from figure 6, Moreover, for large
values of b the computer results will differ from the asymptotic solutionm.
Here we enter a region where the solution already is described qualitatively

by topological-analytical methods, see LITTLEWOOD [5].

. Fig. 5
x+2
v = 14 S~
b =2
To = 25.282
1+ T = 87
0
=11
=27 x(0) = 2
x*(0) =0 >
70 85 _ 100
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