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Yet another proof of the addition formula for Jacobi polynomials

by
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ABSTRACT

Short proofs of the addition formulas for Gegenbauer polynomials and
for Jacobi polynomials are given. The properties of certain special ortho-

gonal polynomials in two, respectively three variables are used.
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polynomials in three variables orthogonal on a coni-
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1. INTRODUCTION

The addition formula for Jacobi polynomials was announced by the author
in [2]. Afterwards three different proofs were published, cf. 37, 47, I57.
A special case was earlier obtained by SAPIRO [67. The addition formula is
a central result in the theory of Jacobi polynomials which implies many
other important formulas. Therefore, it seems worthwhile to publish yet
another proof of this addition formula. Compared to the earlier proofs the
present proof is rather short and it does not involve many calculations.
However, it would not have been easy to obtain this proof without knowing
the addition formula already.

The idea of the proof is as follows. Consider the three—-dimensional
region bounded by the cone 22 - 2xy = 0 and by the plane x + y = 1. Let Hn
denote the class of all nth degree orthogonal polynomials on this region

—_R -1
a=g-1 2)8 2, Then an ex-

with respect to the weight function (I-x-y) (2xy-z
plicit orthogonal basis can be constructed for Hn in terms of products of
certain Jacobi polynomials. The region and the weight function are invari-
ant with respect to rotations around the axis of the cone. Therefore, the
reproducing kernel of Hn is invariant under such rotations. The addition
formula for Jacobi polynomials follows from this symmetry relation for the
reproducing kernel. There exists a similar proof of the addition formula
for Gegenbauer polynomials. It uses orthogonal polynomials in two variables
on the unit disk. ’

It is of interest to compare the present prodf of the addition formula
for Jacobi polynomials with two earlier proofs by group theoretic methods
(cf. [3]1, [4]). In these two references a much bigger symmetry group was
used than the one-parameter group considered in the present paper. Further-

more, a restriction to integer or half integer values of the parameters o

and B is not required here.

2. PRELIMINARIES

(a,8)
n
of degree n on the interval (-1,1) with respect to the weight function

For a,B > =1 Jacobi polynomials P (x) are orthogonal polynomials



(]—x)a(1+x)B and with the normalization Péa’B)(]) = (a+])n/n!. The quadra-
tic norm hia’e) of a Jacobi polynomial Pia’s)(x) is given by
] a+BR+1
2 I'(n+a+1)T(n+R+1)

(a,B) _ (a,B) 2, o B.. _
(2.1) hn - J (Pn (%))~ (1-x) "(1+x) "dx = (2n+a+R+1)n!Tr(n+ta+R+1)

-1

For o = B8 Jacobi polynomials are called Gegenbauer polvnomials. Note that
(a,a) ,_ y _ ,_\0 p(a,a)
Pn (=x) (-1) Pn (x).

Let R be a bounded region in the q-dimensional Euclidean space Eq and
let w(x) = w(x],xz,...,xq) be a positive continuous integrable function on
R. The class Hn of orthogonal polynomials of degree n on R with respect to
the weight function w(x) consists of all polynomials p(x],xz,...,xq) of de-

gree n such that

J p(x)q(x)w(x)dx = 0

R
if q is a polynomial of degree less than n. There are infinitely many ways
to choose an orthogonal basis of Hn' One possible method is to apply the

Gram—-Schmidt orthogonalization process to the monomials

n,-n, n

] T M7 n
]

3 1% 1
x4 Ix 4 (nIZn

X 2 P X q

X .anZO),

2.,
2
which are arranged by lexicographic ordering of the q-tuples (n],nz,...,nq).

Let P sPgse 5Py be an arbitrary orthogonal basis of Hn and let

2 2
"pk" = [ (pk(x)) w(x)dx.
R
The function

N

(2.2)  KGoy) = L Ip 72 p (0p, (9) (x,y € B)
k=1

is called the reproducing kernel of Hn' Note that K(x,y) is independent of

the choice of the orthogonal basis. In particular, if T is an isometric



mapping of Eq onto itself such that T(R) = R and w(Tx) = w(x) (xeR) then

(2.3) K(Tx,Ty) = K(x,y).

3. THE ADDITION FORMULA FOR GEGENBAUER POLYNOMIALS

Let o > =}. The formula

(3.1) Pia’a)(COS‘e cos T +sin 6 sin T cos ¢) =
v p(atk, atk)
= Z ci (sin 9) ak @ (cos 6) -
-1 —1

(sin T)k Pig;k’a+k)(cos T) Péa 2,0 2)(cos ¢),
where

(u+k)(n+2a+])k(2a+l)k(n—k)!
(3.2) c =

moK 2K (o) (@) (o)
is called the addition formula for Gegenbauer polynomials (cf. [1, 3.15(19)1).
For fixed 6 formula (3.1) can be considered as an expansion of the left
hand side in terms of the functions

(sin ) (a;k »d k)( 0s T) Péa—%’a_%)(cps 3).

Lemma 3.1 below states that these functions are orthogonal polynomials in
the two variables x = cos 7 and y = sin T cos ¢. A new short proof of (3.1)

then follows very easily.

LEMMA 3.1. Let Hn be the class of orthogonal polynomials of degree n on the
disk R =
(1—x2-y2) , & > —3. Then the functions

(x,y) l x2 + y2 < 1} with respect to the weight function

1 -1 =1 -1
(3:3) py Gy = B o ey B l0THET (1) T



(k=0,1,2,...,n) form an orthogonal basis of H, which is obtained by ortho-

gonalization of the sequence ],x,y,xz,xy,yz,x3,x2y,...

PROOF. Clearly, p (x,y) 1is a linear combination of the monomials
n,k
9

l,x,y,xz,xy,y ,...,xn,xn_]y,...,xn_kyk, and the coefficient of xn_kyk is

-1
non-zero. By substituting u = x, v = y(]-xz) ? and by using the orthogon-

ality properties of Jacobi polynomials it follows that

2 2.0~} _
[[ P oIy 1 o) 1Py iy -

R
- (a+k,0+k), (0-F,a-3)
B an,mdk,l n-k hk ' I

Next we prove (3.1). Any rotation T around the origin maps the disk R

. . . 2.0-% . .
onto itself and leaves the weight function (1—x2—y )a ? invariant. Let

n

-2
(3.4) K((x,y),(x',y')) = kzo "pn,k" Dn’k(x,y)Pn’k(X',Y')-

Hence, it follows from (2.3) that

(3.5) K((x,y),(cos B, sin 8))

= K((x cos 8 + y sin 6, -x sin 6 + y cos 6),(1,0)).

Subsitution of (3.3) and (3.4) in (3.5) gives

-2 P(OLQOL)(])P(O"OL)

(3.6) “pn,oﬂ a n (x cos & + y sin ) =
n - 1 N | -1
- z "pn k" 2 Pr(lgl':k,a"'k)(x)(l_xz)zk PIEOL 2,50 2)(y(]_x2) 2) R
k=0 ’
. plotk,a+k) . k (a-3,a-3)
Pn-k (cos 6)(sin 6) Pk (1).

Putting X = cos T, y = sin 1 cos 6 in (3.6) we obtain (3.1) with

upn,on2 p(e7h07h) ()
- 2 _(a,0)
12 p(%) )

n,k I
pn,k



. 2 +k,a+ -3,a-3% . .
By using that "pn k" = héfkk’a k)héa 2,0 2), a straightforward calculation
3

gives back (3.2).

4. THE ADDITION FORMULA FOR JACOBI POLYNOMIALS

Let oo > B > —-i. The formula

(4.1) Péa’S)(Z cos2 ] cos2 T + 2 sin2 ) sin2 T r2 +
n n
+ sin 26 sin 21 r cos ¢ -1) = z z c(aﬁei
k=0 1=0 ">
+ (sin 6)2k_1(cos 6)1 Pif;2k_1’8+1)(cos 26)
« (sin T)Zk_l(cos T)l PégEZk—l’B+l)(cos 21) -
-A— -1 a1
- Péfls 1,8+1) (5.2 1y Pis 22872 (o5 ),
where
-— — - ]
4.2) c(a,B) i (a+2k 1)(B+1)(n+a+8+l)k(8+n k+1+1)k_1(28+1)1(n k) !
) n,k,1 (u+k)(8+¥1)(B+1)k(8+%)1(a+k+l)n_l

is called the addition formula for Jacobi polynomials (cf. KOORNWINDER
[2, (3)]). It was pointed out in [5, §37] that for fixed 6 and v formula
(4.1) can be considered as an expansion of the left hand side in terms of

the functions

rl P(OL"B‘] ,B+1)

_1 a_l
-1 (2r2—1) PiB 258 2)(cos ¢),

which are orthogonal polynomials in the two variables r2 and r cos ¢. How-
ever, for fixed 6 formula (4.1) can also be considered as an expansion of
the left hand side in terms of functions in 1, r, ¢ which are orthogonal
polynomials in the three variables x = c052 T, v = r2 sin2 T,

z = 2-%r sin 2t cos ¢. This will be proved in Lemma 4.1 below. Then the

addition formula (4.1) follows in a similar way as the result in §3.



Figure 1

Let R be the three-dimensional region {(x,y,z) | 0 < x +y < 1,
z2 < 2xy}, which is bounded by the cone 22 = 2xy and by the plane x + y = 1
orthogonal to the axis of the cone (cf. Fig. 1). Let Hn be the class of
orthogonal polynomials of degree n on the region R with respect to the

weight function
—a- -1
(4.3) w(x,v,2) = (-x-y)* P (2xy-25P72, o > 5 > ).

LEMMA 4.1. The functions

1

(@ 2LED Grey (107

(4.4) pn,k,l(x’y’z) =P Kk

-g- - 1 -1 g-1 -1

. Pf? B 1,B+1)(X+Ez l)(xy)zl P(B 258 2)((2xy) Zz)
k-1 1-x 1

(n 2k 212 0) form an orthogonal basis of Hn, which 7s obtained by

orthogonalization of the sequence

2 2 2 3
1,3X,V,Z3X XY ,XZ,Y 3YZ52 43X 500

PROOF. Clearly, the function Py K 1(x,y,z) is a polynomial of degree n in
3 3

X,y,2, of degree k in y,z and of degree 1 in z. Hence, p (x,v,2z) is a
. o . mj-my my-m3 m3 n,k,1
linear combination of the monomials x z
n-k k-1 1
y z

with "highest" term
const. x . Let u=2x-1, v=(x+2y-1)/(1-x), w = z(2xy)-%. The
mapping (x,y,z) - (u,v,w) is a diffeomorphism from R onto the cubic region
{(u,v,w) I -l <u<l, -1 <v<l, -1 <wc< 1}, By making this substitution

and by using the orthogonality properties of Jacobi polynomials it follows



that
f[f pn’k,l(x,y,z)pn,’k,’1,(x,y,z)w(x,y,z)dxdydz =
R
_ -2a-2k-1-1 _ (a+2k-1,8+1)
= S0 %,k 81,10 2 b«
. hé§18_1’8+1)h§8_%’8—%)- 0
Next we prove the addition formula (4.1). Let
n n -9
(4.5) K((X,Y,Z),(X',Y',Z')) = Z z "P k 1" °
k=0 1=0

R ' ' '
pn,k’l(x,y,Z)pn,k,l(x »y's2').
It follows from (4.4) that P 1 1(1,0,0) = 0-if (n,k,1) # (n,0,0). Hence
9 3
_ -2 _(a,B) (asB) poo
(4.6) K((x,y,2),(1,0,0)) "Pn,o,o" Pn (l)Pn (2x-1).

Any rotation around the axis {(x,y,z) | x =y, z = 0} of the cone maps the
region R onto itself and leaves the weight function w(x,y,z) invariant. In
particular, consider a rotation of this type over an angle -26. It maps the
point (cos2 9, sin2 0, 2_% sin 26) onto (1,0,0) and the point (x,y,z) onto

a point (&£,n,z) where § = x_cos2 6 +y sin2 6 + 2_%2 sin 26. Hence, by (2,3),
(4.5), (4.6) and (4.4) we have

(4.7) "—2 Psu’s)(l)Pia’B)(Z(x cos2 6 +y sin2 0 + 2_%2 sin 26)-1) =

"pn,0,0

_1
K((x,y,z),(cos2 0, sin2 B, 2 % sin 20)) =

n k
=2 ;(a=B=1,8+1) - yp(B=2,8-2)
R (N RO D) DA G DI
n,k,1 k-1 1
k=0 1=0 7’

+2k-1,B8+1)

. 2k-1 1 (a
(sin 6) (cos 8) P

(cos 28) -

. (a+2k-1,B+1) _ _o k-1 (a=B-1,R+1) ,x+2y-1
Pn—k (2%x-1) (1-x) Pk_1 C—jj;;—)

1 -1 p_l -1
° (Xy)él P;B ;’8 2)((2xy) ZZ).



Nl

. . 2 . 2 . .
Substitution of x = cos T, y = r sin” T, z = 2 *r sin 2T cos ¢ gives (4.1)

with
2 _(a=B-1,B8+1) (B-3,B8-%)
(0,8) _ "pn,0,0" Pk—l (l)P1 (1)
C =
n,k,1

2 _(a,B)
Ip 1“2 "% (1)

n,k,1

Using the expression for Hpn X lﬂz at the end of the proof of Lemma 4.1
b 9

we get back formula (4.2).
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generalized to the case of order o > 0. The result is obtained as a limit

case of the addition formula for disk polynomials.
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1. INTRODUCTION

This note answers a question posed by ASKEY 2, p.837. An addition
formula for Laguerre polynomials Lz(x) (0>0) will be derived which reduces
to Bateman's addition formula [3, p.457] for a + 0 and which leads by in-
tegration to Watson's integral representation [15] for the product
Lz(x)Lz(y) of two Laguerre polynomials.

This addition formula turns out to be a limit case of the addition
formula for the so-called disk polynomials which are orthogonal polynomials
in two variables on the unit disk. If r, ¢ are polar coordinates on the
unit disk then the addition formula is an orthogonal expansion of

Lz(x2 + y2 - 2xy r cos ¥) exp(xyrelw)

in terms of disk polynomials of order o - | depending on r and V.

2. PRELIMINARIES

Let Jacobi polynomials Pia’s)(x), Laguerre polynomials Lz(x) and
Bessel functions Ja(x) be as defined in ERDELYI [6]. It will be convenient

(Q’B)(X),

to use the slightly different functions Rn

Lz(x) and Ja(x), respec-—

tively, which are defined by

R$8 o) = (08 qorpl®B

L0 = e 120 /140,

1 -Q
Ja(x) I'(o+1)(ix) Ja(x).
Laguerre polynomials are a confluent case of Jacobi polynomials by

the limit formula

1 -
(2.1) e 1%(x) = lim Rr(la’B)(l-ZB Y,

R0

FIATHEMATISCH CENTRUM
AMSTERDAM ———




which holds uniformly for x in bounded sets. The functions Lz(x) satisfy

the inequality
(2.2) [L2)] <1 (x20, x20),

cf. ERDELYI [6, 10.18(14) 7.
Let z = x + iy, z=x - iy, x,vy € R. For o > -1 and for nonnegative
integers m,n the so-called disk polynomials R; n(z) are defined in terms

9

of Jacobi polynomials by

Ria’m—n)(222~l)zm—n

if m >

v
j=]

a
(2.3) Rm,n(z) =

R{HP™ (9,7 1)zn ™

A
=}

if m <

It is easily proved that the polynomials Rz n(z) are orthogonal polvnomials
5

of degree m + n in x and y on the unit disk with respect to the weight

function (l—xz-yz)a. In fact, disk polynomials are characterized by the

following properties:

(i) Ri n(z) = const. z'z" + polynomial of degree less than m + n;
9
(ii) ff Ri n(x+iy) p(x,y) (l-xz-yz)adxdy = 0 for every polynomial
9
x2+y2<l

p(x,y) of degree less than m + n;
.. a _
(ii1) Rm,n(]) =1,
These polynomials were first studied by ZERNIKE & BRINKMAN [161. The
notation Ri n(z) was introduced by the author [7, p.187T.
3

It can be proved that !Rg n(z)l <1 1if o 2 0, |z]| < 1. However, we
9

shall only need the estimate
a n
(2.4) |Rm,n(z)| = 0(m") for m » =,

uniformly for |z] < 1, where @ > -1 and n are fixed. This estimate follows

from SZEGO (13, (7.32.2)7 by using (2.3).



3. THE ADDITION FORMULA FOR LAGUERRE POLYNOMIALS

Let o > 0. The formula

i id
a . .
(3.1) Rm,n(cos 8] e cos 62 e + sin e] sin 62 Te
Py e om0y
= )
k=0 1=0 +k+1 k71 (a+1)k(a+k)1

i,

(ot+m+])1

i¢
. k+1 _o+k+1 1
(sin 61) Rm—k,n—l(cos 81 e ) .

k+1 _a+k+1 0y - ivy

(sin 62) Rm—k,n—l(cos 82 e ) Rk,l(r e

is called the addition formula for disk polynomials, cf. SAPTRO riz2, (1,21)7
and KOORNWINDER [8, (5.4)]. For a = 1,2,3,... both authors independently ob-
tained this formula by interpreting disk polynomials Ri,n(z) as spherical
functions on the homogeneous space SU(a+2)/SU(a+1). Since both sides of
(3.1) are rational functions in o, the case of general a then follows by
analytic continuation.

By putting ¢] =9, = 0, x = sin 6], y = sin 6, in (3.1) and by substi-

2
tuting (2.3) in (3.1) we obtain form2n, o > 0, 0 < x <1, 0 <y < 1:

(3.2) Rﬁa’m—n)(Z(l—xz)(J—yz) v 2555202 4 hxy(1-xD)  (1-yD) tr cos y -1)

(=% 2 (1-yH)? + xyr )P0 2

m n (o+n+1). (o+m+1)
=1 1 o+ i + 1 (E)(?) (a+1)k(a+k) :
k=0 1=0 k 1
. k+1l (otk+1, [men-k+1]) . _, 2y . 2,3 |m-n-k+1]|
X R(m—k)A(n—l) (1-2x7) (1-x") 2
. Jk+l _(otk+l, |lmen-k+1]) . . 2. 2 3|m-n-k+1| _o-1 iy
R (m-k) A (n-1) (1=2y) (1=y")" ,a1(re )

Here m A n denotes the minimum of m and n. Both in (3.1) and (3.2) the
right hand side is an orthogonal expansion of the left hand side in terms
of disk polynomials Ri_](r elw).

»1 1

- -1
Let us next replace x by m ’x and y by m %y in (3.2). Denote this new



formula by (3.2)' and let m > «». First we calculate the formal limit case

of (3.2)' by taking termwise limits. Using (2.1) we obtain

(3.3) LZ(xz+y2—2xy r cos ¢¥) exp(ixy r sin ) =
) © o (n) (oc+n+1)k .
k=0 100 @ * k+ 1 17 ki(o+l), (a+k),
'k Lgt§+l(x2)yk+1 in§+1(y2)Rk:i(r ey,
where x 20, y 20, 0<r<1,0<v¢<2r,0>0,n=20,1,2,... . For fixed

X, ¥, @, n the convergence of the left hand side of (3.2)' to the left hand

side of (3.3) is uniform in r and Y. Denote the right hand side by

0] [o9]

-1 iy
Z Z c (X’Ysasn) ¢ (r e ),
Lo 1bo Skl Rt

where Ck,l = 0 if 1 > n. Then the coefficients ck’1 denote the Fourier co-
efficients of the left hand side with respect to the orthogonal functions
Ri:i(r eiw). We shall prove that this Fourier series uniformlv converges
in r and Y. Then the identity (3.3) actually holds.

Let o and n be fixed and let x and y be in bounded sets. Then, by (2.2)

and (2.4) there is a constant M > 0 such that
a-1 iy k,
lck’l(x,y,a,n)Rk’l(r e )| <M /k!,

uniformly in r and . Hence the Fourier series is uniformly convergent in
r and V.
Integration of (3.3) gives the product formula

2 2

1
(3.4) Li(xz)Lz(yz) = 20L1r--1 J Lz(x +y +2Xyr cos y) -
0

o O —— 3

« cos(xyr sin Y)r(l-r )a-]drdw (x,y 20, o > 0)

By putting r cos ¢ = cos 6, r sin ¥ = sin 6 cos ¢ in (3.4) and bv substi-

tuting Poisson's integral representation for Bessel functions we obtain



T
I'(a+1)

o, 2,,0, 2 o, 2. 2
. = T aI Tty J ¢
(3.5) Ln(x )Ln(y ) T+ DT (D f Ln(x +y +2xy cos 6)
0
. . 2a .
. Ja_l(xy sin 6)(sin 6)"d6(x,y =2 0, o > —-3).
2

The case -} < a < 0 follows by analytic continuation. This formula is due
to WATSON [15]. ASKEY [2, pp.82,831 applied this product formula to define
a convolution structure for Laguerre series, thus extending earlier results

of McCULLY [10] for the case o = 0. However, this convolution structure is

.. .. . 1 .
not positive and it is not defined for all L -functions.

If we put r = 1 in (3.3) and let a + 0 then we obtain the addition
formula
0,2 2 . .
(3.6) Ln(x +y =2xy cos y) exp(ixy sin ) =
_ z _JT (n+k)xk Lk(xz)yk Lk(yz) elkw +
k. k n n
k=0
n .
1 o 1,1 ,2.1,1 .2 -ily
* 121 i (P LGy L7 e 0

This formula was stated without proof by BATEMAN [37]. Later two different
proofs were given by BUCHHOLZ [4, p.l144] and by CARLITZ [57.

4. REMARKS
4,1, For x =y, r =1, y = 0 formula (3.3) implies the identity
© n (o+n+1)
k+l  a+k+l, 2..2
1= 7 7 2D ke G T G2,

1
k=0 1=0 © +k+1 1 k.(a+1)k(a+k)1

Inequality (2.2) is contained in this identity. Expressions for
Lz((x+y)2) and Lz((x—y)z) follow from (3.3) by putting r = 1 and

p =0 or m,

4.2. The addition formula (3.3) for Laguerre polynomials cannot be obtained
as a limit case of the addition formula for Jacobi polynomials, cf.

KOORNWINDER [9, §5, remark 8]. The addition formula (3.1) for disk



polynomials is a more general result which implies both the addition
formula for Jacobi polynomials (m=n) and for Laguerre polynomials

(m>o) .

4.3. The convolution structure for Laguerre series of order zero has a
group theoretic interpretation on the Heisenberg group, cf. PEETRE
[11]. Integration of (3.1) gives a product formula for disk polyno-
mials. This product formula implies a positive convolution structure
for disk polynomial expansions which has a group theoretic interpre-
tation on the homogeneous space SU(a+2)/SU(a+l), o = 1,2,3,... (cf.
ANNABTI & TRIMECHE [1], TRIMECHE [141). It would be of interest to
study the relation between both convolution structures.

REFERENCES

[1] ANNABI, H. & TRIMECHE, K., Convolution généralisée sur le disgue unité.
C.R. Acad. Sci. Paris Sér. A 278 (1974) 21-24.

[2] ASKEY, R., Orthogonal polynomials and positivity. Studies in Applied
Mathematics, Vol 6, pp.64-85, Society for Industrial and Applied
Mathematics, Philadelphia, 1970.

[3] BATEMAN, H., Partial differential equations of mathematical physics.
Cambridge University Press, 1932.

(4] BUCHHOLZ, H., Die konfluente hypergeometrische Funktion. Springer-—
Verlag, Berlin, 1953.

[5] CARLITZ, L., A formula of Bateman. Proc. Glasgow Math. Ass. 3 (1957),
99-101.

[6] ERDfILYI, A., MAGNUS, W., OBERHETTINGER, F. & TRICOMI, F.G., Higher
Transcendental Functions, Vol. II. McGraw-Hill, New York, 1953.

[7] KOORNWINDER, T.H., The addition formula for Jacobi polynomials, II.

The Laplace type integral representation and the product formula.
Math. Centrum Amsterdam Report TW 133 (1972).



(81

(91

[10]
(111

[12]

[131]

[14]

[15]

[16]

KOORNWINDER, T.H., The addition formula for Jacobi polynomials, III.
Completion of the proof. Math. Centrum Amsterdam Report TW 135
(1972).

KOORNWINDER, T.H., Jacobi polynomials, III. An analytic proof of the
addition formula. SIAM J. Math. Anal. 6 (1975) 533-543.

McCULLY, J., The Laguerre transform. SIAM Review 2 (1960) 185-191.

PEETRE, J., The Weyl transform and Laguerre polynomials. Le Matematiche
27 (1972) 301-323.

v

SAPIRO, R.L., Special functions related to representations of the
group SU(n), of class I with respect to SU(n-1) (n23) (Russian).
Izv. VysS. UCeb. Zaved. Matematika (1968), no. 4 (71), pp.97-107.

SZEGO, G., Orthogonal polynomials. Amer. Math. Soc. Colloquium Publi-
cations, American Mathematical Society, Providence (R.I.),

Third edition, 1967.

TRIMECHE, K., Convolution généralisée sur le disque unité. Thése,

Université de Tunis, 1974,

WATSON, G.N., Another note in Laguerre polynomials, J. London Math.
Soc. 14 (1939) 19-22.

ZERNIKE, F. & BRINKMAN, H.C., Hypersphdrische Funktionen und die in
sphdrischen Bereichen orthogonalen Polynome. Proc. Kon. Akad.
v. Wet., Amsterdam 38 (1935) 161-170.






e e . . . . . *
New proof of the positivity of generalized translation for Jacobi series

by

T.H. Koornwinder

ABSTRACT

Weinberger's maximum theorem for hyperbolic differential equations is
applied to obtain a new proof of Gasper's result concerning the positivity

of generalized translation for Jacobi series.

KEY WORDS & PHRASES: Positivity of generalized translation for Jacobi
series, Weinberger's maximum theorem for huperbolic

differential equations.

*) AMS (MOS) subject classification scheme (1970): 42 A56.






1. INTRODUCTION

Let o,B > —-1. Jacobi polynomials Réa’s)(x) are orthogonal polynomials
of degree n on the interval (-1,1) with respect to the weight function
(l—x)a(1+x)B and with the normalization Réa’B)(l) = 1.

Let us consider functions u defined on [0,n/21 x [0,7/27 of the form

(

(a’B)(cos 2s) Rku’B)(cos 2t),

°k Ry

(1.1) u(s,t) =

W o~>8

k=0

where n = 0,1,2,... and CO’CI""’Cn are arbitrary real constants. The func-
tion u(.,t) is called the generalized translate of the function u(.,0). The
purpose of the present paper is to give a new proof of the following theo-

rem of GASPER [5], [61].

THEOREM 1.1. Let o 2 B = -§. If u(s,t) has the form (1.1) and if u(s,0) =2 0
for each s € [0,m/2] then u(s,t) 2 0 for each s,t ¢ [0,n/2].

We mention three possible approaches to prove Theorem 1.1.

A. BOCHNER [2] pointed out that in the case a = B > -} the positivity result
follows from the product formula for Gegenbauer polynomials. The product
formula for Jacobi polynomials (cf. KOORNWINDER [71) has a similar corol-
lary in the case o 2 B = -},

B. GASPER [5], [6] explicitiy calculated the kernel of generalized transla-
tion and he expressed the kernel in terms of hypérgeometric functions.
This enabled him to prove that generalized translation for Jacobi series
is positive if and only if o 2 B = -} or o > |B], B > -1.

C. Functions of the form (1.1) are solutions of a hyperbolic differential
equation. A maximum property of such solutions implies that if
a>2B>-1,a+B+12>0 and if u(s,0) > 0 for each s ¢ [0,7/27 then
u(s,t) >0 for 0 < t < s < n/2 - t. This result is due to WEINBERGER
[8] in the case o = B = -} and to ASKEY [I, p.81] in the general case.

If o = B = -} then the positivity of generalized translation follows
from the case 0 < t < s < /2 - t by the identities u(s,t) = u(t,s) and
u(s,t) = u(n/2-s,n/2-t). However, if o > B then this method fails since

the second identity no longer holds.



In the present note we shall prove Theorem 1.l by using the approach
described in C. The proof is a refinement of Askey's argument used in
(1, p.81].

It is of interest to compare these results with the corresponding case
of Jacobi functions ¢§a’8)(t). FLENSTED-JENSEN & KOORNWINDER [41 proved
that the generalized translation for Jacobi function expansions is positive
in the case o > B > -} by using approach A. CHEBLI [3] independently ob-
tained the positivity result for o 2 B 2 -0 - | by using approach C. In
the case of Jacobi functions one needs only to consider the region

{(s,t) | 0 <t < s}. Hence, Chébli could obtain his result without using

the more intricate argument we shall need.

Nl

2. THE POSITIVITY OF GENERALIZED TRANSLATION FOR a =2 B = -

Let us write

+1 )28+l

w(s) = v, B(s) = (sin S)Za (cos s (0 < s < 1w/2)

and

a(s,t) = aa,B(S’t) = wu,B(s)wa B(t).

b

Jacobi polynomials satisfy the differential equation

-1 d d ,(a,8) N
(WG,B(S)) EE—{WQ’B(S) EE—RH (cos 23)] =

= —4n(n+a+p+1) Ria’g)(cos 2s).

Hence, any function u of the form (1.1) is a solution of the hyperbolic

differential equation
(2.1) (a uS)S - (a ut)t = 0.

Using Bateman's integral for Jacobi polynomials ASKEY [1, p.821 proved:



LEMMA 2.1. Let o 2 B > -1 and let u(s,t) have the form (1.1). If u(s,0) =20
for each s € [0,1/2] then u(n/2,t) 2 0 for each t ¢ [0,n/2].
Using approach C we shall prove:

LEMMA 2.2. Let o =2 B = -} and let u(s,t) have the form (1.1). If u(s,0) > 0
for each s e [0,7/21 and if u(n/2,t) > 0 for each t e [0,7/2] then
u(s,t) > 0 for each (s,t) such that 0 < t < s < 7/2.

Lemma 2.1 and Lemma 2.2 together imply theorem 1.1.

PROOF OF LEMMA 2.2. Let O = (0,0), C = (w/2,0), D = (n/2,7/2), E = (0,n/2).

Choose a point P in the closed triangular region OCD and let A and B be
points on AC or CD such that the slopes of AP and BP are 1 and -1, respec-
tively.

E D E D E D

P P/
AN

% Y B

0O A B C 0 A C 0 C

Figure 1 Figure 2 Figure 3

For any possible contour ABP (cf. figure 1,2,3) we have by (2.1) and by

Gauss's theorem:

o
I

J[ [(a us)S - (a ut)tT ds dt
ABP

+ § (a u dt + a u, ds) = ¥ ( f + J) a du.
ABPA AP BP

If u is positive on OC and CD then a(A)u(A) + a(B)u(B) > 0. Hence, integra-

tion by parts gives

(2.2) 2a(P)u(P) = J u(as+at)dt + .[ u(—as+at) dt.
AP BP



It follows by a simple calculation that

ias(s,t) + at(s,t) = a(s,t)(cotg t * cotg s) -

+1

+ ((2a+1) (2B+1)tgs tgt).

Hence, -a_ +oa > 0 if 0 < t < s < w/2. Let T denote the curve

{(s,t) | 20 + 1 - (2B+1)tgs tgt = 0}, cf. figure 2.

Figure 2

Any line inside OCDE with slope | intersects I' in one and only one point.

The curve I' separates the region OCDE in two connected regions Q] and‘Q2

on which a  + a, is positive, respectively negative. Suppose now that u is
positive on OC and CD but that u(s,t) < 0 for some (s,t), 0 < t < s < w/2.
Then, by continuity, there is a line A]A2 (A] on OC and A2 on CD) with slope
1 and there are points Pl and P2 on A]A2 (cf. figure 2) such that u(P]) =
=0 = u(P2) and u(s,t) > 0 on the open region AICA2 and on the open line
segments A]P] and A2P2. Let Bi (i=1,2) be on OC or CD such that PiBi has
slope -1. In at least one of the two cases i = 1,2 the open line segment
AiPi is contained in the region Qi. For this choice of Ai’ Bi’ Pi formula

(2.2) gives a contradiction. [J
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