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Yet another proof of the addition formula for Jacobi polynomials *) 

by 

T.H. Koornwinder 

ABSTRACT 

Short proofs of the addition formulas for Gegenbauer polynomials and 

for Jacobi polynomials are given. The properties of certain special ortho­

gonal polynomials in two, respectively three variables are used. 

KEY WORDS & PHRASES addition forrrrula for Gegenba:uer polynomials, 

addition forrrrula for Jacobi polynomials, 

polynomials in two variables orthogonal on the disk, 

polynomials in three variables orthogonal on a coni-

cal region. 

*) AMS(MOS) subject classification scheme (1970): 33A65 





1 . INTRODUCTION 

The addition formula for Jacobi polynomials was announced by the author 

1.n [2]. Afterwards three different proofs were published, cf. 137, 141, 151. 

A special case was earlier obtained by SAPIRO 16 7 • The addition formula is 

a central result in the theory of Jacobi polynomials which implies many 

other important formulas. Therefore, it seems worthwhile to publish yet 

another proof of this addition formula. Compared to the earlier proofs the 

present proof is rather short and it does not involve many calculations. 

However, it would not have been easy to obtain this proof without knowing 

the addition formula already. 

The idea of the proof is as follows. Consider the three-dimensional 
2 

region bounded by the cone z - 2xy = 0 and by the 11lane x + y = 1. Let H 
n 

denote the class of all nth degree orthogonal polynomials on this region 
a-(3-1 2 s-1 

with respect to the weight function ( 1-x-y) (2xy-z ) 2 • Then an ex-

plicit orthogonal basis can be constructed for H in terms of nroducts of 
n 

certain Jacobi polynomials. The region and the weight function are invari-

ant with respect to rotations around the axis of the cone. Therefore, the 

reproducing kernel of H is invariant under such rotations. The addition 
n 

formula for Jacobi polynomials follows from this symmetry relation for the 

reproducing kernel. There exists a similar proof of the addition formula 

for Gegenbauer polynomials. It uses orthogonal polynomials in two variables 

on the unit disk. 

It is of interest to compare the present proof of the addition formula 

for Jacobi polynomials with two earlier proofs by group theoretic methods 

(cf. [3], [4]). In these two references a much bigger symmetry group was 

used than the one-parameter group considered in the present paper. Further­

more, a restriction to integer or half integer values of the parameters a 

and Sis not required here. 

2. PRELIMINARIES 

For a,B > -1 Jacobi polynomials P(a,B)(x) are orthogonal polynomials 
n 

of degree non the interval (-1 ,I) with respect to the weight function 
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(1-x)a(l+x)B and with the normalization P~a,B)(I) = (a+l) /n!. The quadra­
n 

tic norm h(a,B) of a Jacobi polynomial P(a,B)(x) is given by 
n n 

( 2. I) 

I 

= J 
a+B+I 2 r(n+a+l)r(n+S+I) 

= (2n+a+S+l)n!r(n+a+S+I) · 
-I 

For a= S Jacobi polynomials are called Gegenbauer polynomials; Note that 

pi(a,a)(-x) 
11 

Let R be a bounded region in the q-dimensional Euclidean space E and 
q 

let w(x) = wi(x 1 ,x2 , ... ,xq) be a positive continuous integrable function on 

R. The class H of orthogonal polynomials of degree non R with respect to 
n 

the weight function w(x) consists of all polynomials p(x 1 ,x2 , ... ,xq) of de-

green such that 

f p(x)q(x)w(x)dx = 0 
R 

if q is a polynomial of degree less than n. There are infinitely many ways 

to choose an orthogonal basis of H. One possible method is to apoly the 
n 

Gram-Schmidt orthogonalization process to the monomials 

which are arranged by lexicographic ordering of the q-tuples (n 1 ,n2 , ... ,nq). 

Let p 1,p2 , ... ,pN be an arbitrary orthogonal basis of Hn and let 

The function 

(2.2) Ki(x,y) = 

2 
(pk(x)) w(x)dx. 

(x,y ER) 

is called the reproducing kernel of H. Note that K(x,y) is independent of 
n 

the choice of the orthogonal basis. In particular, if Tis an isometric 



mapping of E onto itself such that T(R) =Rand w(Tx) = w(x) (xi::R) then 
q 

(2.3) K(Tx,Ty) = K(x,y). 

3. THE ADDITION FORMULA FOR GEGENBAUER POLYNOMIALS 

(3. I) 

where 

(3. 2) 

Let a>-½, The formula 

P (a,a)( 8 cos cos T + sin 8 sin T cos ¢) = 
n 

n 

= I ca (sin 8)k P(a+k,a+k)(cos 8) • 
k=O n,k n-k 

C = n,k 

(a+k)(n+2a+l)k(2a+l)k(n-k)! 

2k 
2 (a+½k)(a+½)k(a+l)n 

3 

1.s called the addition formula for Gegenbauer polynomials (cf. 11, 3.15(19)7). 

For fixed 8 formula (3.1) can be considered as an expansion of the left 

hand side 1.n terms of the functions 

( . )k p(a+k,d+k)( T) p(a-½,a-½)( ) sin T n-k cos k cos¢ . 

Lemma 3.1 below states that these functions are orthogonal polynomials in 

the two variables x = cos Tandy= sin T cos¢. A new short proof of (3.1) 

then follows very easily. 

LEMMA 3.1. Let H 
n 

disk R = {(x,y) I 
2 2 o·- 1 

( I -x -y ) . 2 , a > 

(3.3) 

be the class 
2 2 

X +y <l} 

Then the _1 
2 • 

of orthogonal polynomials of degree non the 

with respect to the weight function 

functions 
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(k=O,1,2, .•• ,n) form an orthogonal basis of Hn which is obtained by ortho-
2 2 3 2 gonaZization of the sequence l,x,y,x ,xy,y ,x ,x y, •.•• 

PROOF. Clearly, pn k(x,y) is a linear combination of the monomials 
2 2 ' n n-1 n-k k . . n-k k . l,x,y,x ,xy,y , ••• ,x ,x y, ••• ,x y, and the coefficient of x y is 

2 -1 
non-zero. By substituting u = x, v = y(l-x) 2 and by using the orthogon-

ality properties of Jacobi polynomials it follows that 

R 
= 0 0 h (a+k,a+k\ (a-! ,a-!). 

n,m k,l n-k k n 

Next we prove (3.1). Any rotation T around the origin maps the disk R 
2 2 a- 1 

onto itself and leaves the weight function (1-x -y) 2 invariant. Let 

(3 .4) K((x,y),(x',y')) = 
n 
\ 11 P kn - 2 c ) c , , ) l pn k x,y Pn k x ,y • 

k=O n, ' ' 

Hence, it follows from (2.3) that 

(3.5) K((x,y),(cos e, sin 8)) 

= K((x cos e + y sine, -x sine+ y cos e),(1,O)). 

Subsitution of (3.3) and (3.4) in (3.5) gives 

(3.6) Hp Ou-2 P(a,a)(l)P(a,a)(x cos e + y sin 8) = 
n, n n 

= 

P(a+k,a+k)( • cos 
n-k 

Putting x = cos T, y = sin T cos e in (3.6) we obtain (3.1) with 

Up 02 P(a-1,a-!)(l) 
ca = __ n~,_O __ k--,.---,----
n,k U 02 P(a,a)(l) 

Pn,k n 
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By using that Up kU 2 
n, 

(a+k a+k) (a-½ a-½) . . 
= hn-k' ~ ' , a straightforward calculation 

gives back (3.2). 

4. THE ADDITION FORMULA FOR JACOBI POLYNOMIALS 

( 4. I) 

where 

(4.2) 

Let a> S >-½.The formula 

p(a,8)( 2 2 8 2 2 sin 2 8 sin 2 2 cos cos T + T r + 
n 

n n 
c(a,S) + sin 28 sin 2T r cos <I> - I) = I I 

k=O 1=0 n,k,l 

. (sin 8)Zk-l(cos 8)1 P(a+2k-l,S+l)( 28) . k cos n-

• (sin T)Zk-l(cos T) 1 P~~:2k-l,S+l)(cos 2T) • 

• rl P~~~S-l,S+l)( 2r2-I) p~S-½,S-!)(cos </>), 

/a,S) = 
n,k,1 

(a+2k-l)(S+l)(n+a+S+l)k(S+n-k+l+l)k-l(2S+l) 1(n-k)! 

(a+k)(s+il)(S+l)k(S+~) 1(a+k+l)n-l 

is called the addition formula for Jacobi polynomials (cf. KOORNWINDER 

[2, (3)]). It was pointed oµt in [5, §3] that for fixed 8 and T formula 

(4.1) can be considered as an expansion of the left hand side in terms of 

the functions 

which are orthogonal polynomials in the two variables r 2 and r cos q,. How­

ever, for fixed 8 formula (4.1) can also be considered as an expansion of 

the left hand side in terms of functions in T, r, <I> which are orthogonal 

polynomials in the three variables x = cos 2 T, y = r 2 sin2 T, 

z = 2-½r sin 2T cos</>, This will be proved in Lennna 4.1 below. Then the 

addition formula (4.1) follows in a similar way as the result in §3. 
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t y 

X 

(1,0,0) ➔ 

Figure I 

Let R be the three-dimensional region {(x,y,z) I O < x + y < I, 
2 2 

z < 2xy}, which is bounded by the cone z = 2xy and by the plane x + y = 

orthogonal to the axis of the cone (cf. Fig. I). Let H be the class of 
n 

orthogonal polynomials of degree non the region R with respect to the 

weight function 

(4.3) w(x,y,z) a-B-1 2 B-1 
= (1-x-y) (2xy-z) 2 , a> B > -!, 

LEMMA 4.1. The functions 

(4.4) ( ) = P(a+2k-l,B+l)(Z -l)(I- )k-1 • P k 1 x,y,z -k x x n, , n 

(n ~ k ~ 1 ~ 0) foPm an orthogonal basis of H, whicn is obtained by n 
orthogonalization of the sequence 

2 2 2 3 
I ,x,y,z,x ,xy,xz,y ,yz,z ,x , •••• 

PROOF. Clearly, the function p k 1(x,y,z) is a polynomial of degree n in 
n, ' 

x,y,z, of degree kin y,z and of degree 1 in z. Hence, p k 1(x,y,z) is a 
m1-m2 mz-m3 m3 n, ' 

linear combination 
n-k k-1 1 const. x y z • 

of the monomials x y z with "highest" term 
-1 

Let u = 2x - I, v = (x+2y-l)/(1-x), w = z(2xy) 2 • The 

mapping (x,y,z) ➔ (u,v,w) is a diffeomorphism from R onto the cubic re~ion 

{(u,v,w) I -I < u < I, -I < v < I, -I < w < I}. By making this substitution 

and by using the orthogonality properties of Jacobi polynomials it follows 



that 

(4.5) 

JJJ Pn,k,l(x,y,z)pn' ,k', 1 ,(x,y,z)w(x,y,z)dxdydz = 

R 
= 2-2a-2k-1-1 h(a+2k-l,8+1) • 

0n,n' 0k,k' 01,l' n-k 

• h!a-8-l,8+l)h(8-½,8-½) 
-l<-1 1 • O 

Next we prove the addition formula (4.1). Let 

K((x,y,z),(x',y',z')) = 
n n _2 
I I II p k 111 • 

k=0 1=0 n, ' 

• p k l(x,y,z)p k l(x',y',z'). n, , n, , 

It follows from (4.4) that p k 1(1,0,0) = 0-if (n,k,1) # (n,0,0). Hence 
n, ' 

(4.6) K((x,y,z),(1,0,0)) = llp 0 011-2 P(a,8)(1)P(a,8)(2x-l). 
n, , n n 

7 

Any rotation around the axis {(x,y,z) I x = y, z = 0} of the cone maps the 

region R onto itself and leaves the weight function w(x,y,z) invariant. In 

particular, consider a rotation of this type over an angle -28. It maps the 
. ( 2 . 2 point cos 8, sin 8, 

-1 
2 2 sin 28) onto (1,0,0) and the point (x,y,z) onto 

2 
a point (~,n,s) where~= x.cos . 2 -½ 8 + y sin 8 + 2 z sin 28. Hence, by (2,3), 

(4.5), (4.6) and (4.4) we have 

(4. 7) 

2 2 -1 
= K((x,y,z),(cos 8, sin 8, 2 2 sin 28)) = 

n k 
= I I 

k=0 1=0 

llp 11 -2 P(a-e-1,e+1)C 1)Pce-½,e-½)c 1) • 
n,k,1 k-1 1 

• (sin 8) 2k-l(cos 8) 1 P~~:2k-l,B+l)(cos 28) • 

• p(a+2k-l,8+1)( 2x-l)(l-x)k-1 p(a-8-l,8+l)(x+2y-l) • 
n-k k-1 1-x 

• (xy)½l Pie-½,B-½)((2xy)-½z). 
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-1 
Substitution of x 

with 

= cos 
2 . 2 

T, y = r sin T, Z = 2 2 r sin 2T cos i gives (4.1) 

Up 11 2 P(a-S-1,S+1)( 1)P(S-½,S-6)( 1) 
(a,S) n,0,0 k-1 1 

C =---<--'----------------n,k,l llp 11 2 P(a,8)( 1) 
~n,k,l n 

2 
Using the expression for llp k 111 at the end of the proof of Lennna 4.1 

n, ' 
we get back formula (4.2). 
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The addition formula for Laguerre polynomials*) 

by 

T.H. Koornwinder 

ABSTRACT 

Bateman's addition formula for Laguerre polynomials of order zero is 

generalized to the case of order a> O. The result is obtained as a limit 

case of the addition formula for disk polynomials. 

KEY WORDS & PHRASES: Addition formula for disk polynomials, addition 

forrrrula for Laguerre polynomials. 
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I. INTRODUCTION 

This note answers a question posed by ASKEY rz, p.837. An addition 

formula for Laguerre polynomials La(x) (a>O) will be derived which reduces 
n 

to Bateman's addition formula [3, p.457] for a+ 0 and which leads by in-

tegration to Watson's integral representation r1sJ for the product 

La(x)La(y) of two Laguerre polynomials. 
n n 

This addition formula turns out to be a limit case of the addition 

formula for the so-called disk polynomials which are orthogonal polynomials 

in two variables on the unit disk. If r, ~ are polar coordinates on the 

unit disk then the addition formula is an orthogonal expansion of 

in terms of disk polynomials of order a - I depending on rand~-

2. PRELIMINARIES 

Let Jacobi polynomials P(a,B)(x), Laguerre polynomials La(x) and 
n n 

Bessel functions J (x) be as defined in ERDELYI [6]. It will be convenient 
a 

to use the slightly different functions Rn(a,B)(x), La(x) and J (x), respec-
n a 

tively, which are defined by 

J (x) = r(a+l)(~x)-a J (x). 
a a 

Laguerre polynomials are a confluent case of Jacobi polynomials by 

the limit formula 

( 2. I) 

BlB<'Ti!-'.EEK r.~ATHEMATISCH CENTRU~ 
~~ .. --AMSTERDAM--
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which holds uniformly for x in bounded sets. The functions La(x) satisfy 
n 

the inequality 

(2.2) 

~ 

cf. ERDELYI [ 6 , 1 0 • 1 8 ( 1 4) ] . 

Let z = x + iy, z = x - iy, x,y € lR. For a> -1 and for nonnegative 

integers m,n the so-called disk polynomials Ra (z) are defined in terms m,n 
of Jacobi polynomials by 

R(a,m-n)(2zi-l)zm-n if m ~ n, n 

(2.3) Ra (z) = m,n 
R(a,n-m)(2zi-l)in-m if m $ n. m 

It is easily proved that the oolynomials Ra (z) are orthogonal polynomials 
~ m,n 

of degree m + n in x and yon the unit disk with resnect to the weight 

function (l-x2-y2)a. In fact, disk polynomials are characterized by the 

following properties: 

(i) 

(ii) 

(iii) 

Ra (z) Ill-n l ' l f d 1 h = const. z z + po ynomia o egree ess tan m + n; m,n 

ff 
2 2 

X +y <l 

a . --- 2 2a Rm n(x+iy) p(x,y) (1-x -y) dxdy = 0 for every polynomial , 

p(x,y) of degree less than m + n; 

Ra ( 1) = 1 • 
m,n 

These polynomials were first studied by ZERNIKE & BRINKMAN fl6l. The 

notation Ra (z) was introduced by the author f7, p.187. 
m,n a 

It can be proved that IR (z) I ::;; 1 if a~ O, lzl ::;; 1. However, we m,n 
shall only need the estimate 

(2.4) 

uniformly for lzl ::;; 1, where a> -1 and n are fixed. This estimate follows 

from SZEGO [13, (7.32.2)1 by using (2.3). 
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3. THE ADDITION FORMULA FOR LAGUERRE POLYNOMIALS 

Let a> O. The formula 

(3. 1) 

m n 
I I 

k=O l=O 

k 1 k 1 i¢2 1 • 
( . ) + a+ + ( 82 e ) R.a-,l(r e1.ijJ) • sin 02 Rm-k,n-l cos k 

v 
1.s called the addition formula for disk polynomials, cf. SAPIRO [12, (1,21)1 

and KOORNWINDER [8, (5.4)]. For a= 1,2,3, ... both authors independently ob­

tained this formula by interpreting disk polynomials Ra (z) as spherical m,n ·· 
functions on the homogeneous space SU(a+2)/SU(a+l). Since both sides of 

(3.1) are rational functions 1.n a, the case of general a then follows by 

analytic continuation. 

By putting ¢1 = ¢2 = 0, x = sin e 1 , y = sin e 2 in (3ol) and by substi­

tuting (2.3) in (3.1) we obtain form~ n, a> O, 0 ~ x ~ I, 0 ~ y ~ I: 

(3. 2) 
(am n) 2 2 2 2 2 2 1 2 1 

R ' - (2(1-x )(1-y) + 2x yr + 4xy(1-x ) 2 (1-y ) 2 r cos ijJ -1) 
n 

m n 
= I I 

k=O 1=0 

a m n (a+n+1\(a+m+1) 1 
a+ k + 1 (k)(l) (a+l)k(a+k) 1 

• xk+l R(a+k+l, lm-n-k+ll)(l-2x2)(l-x2)½1m-n-k+ll 
(m-k)A(n-1) 

• yk+l R(a+k+l,lm-n-k+ll)(l-2 2)(l- 2)½1m-n-k+l! R.a-,ll(r eii)J). 
(m-k)A(n-1) Y Y k 

Herem An denotes the minimum of m and n. Both in (3.1) and (3.2) the 

right hand side is an orthogonal expansion of the left hand side in terms 

of disk polynomials ~~~(r eiijJ)~ 1 _ 1 

Let us next replace x by m 2 x and y by m 2 y in (3.2). Denote this new 
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formula by (3.2)' and let m ➔ 00 • First we calculate the formal limit case 

of (3.2)' by taking termwise limits. Using (2.1) we obtain 

(3. 3) 
Ct 2 2 

L (x +y -2xy r cos¢) exp(ixy r sin¢)= 
n 

00 n (a+n+I \ 
I I a n -- a+ k + 1 (1) k ! (a+l\ (a+k) l k=0 1=0 

k+l La+k+l(x2) k+l L:~1+1(y2)~-~(r • X n-1 y 
' 

iw) e . 
' 

where· x :2: 0, y :2: 0, 0 ::; r ::; I , 0 ::; 1/J < 21r, a > 0, n = 0, I , 2,.. . . For fixed 

x, y, a, n the convergence of the left hand side of (3.2)' to the left hand 

side of (3.3) is uniform in rand 1/J. Denote the right hand side by 

00 00 

I l ck 1(x,y,a,n)~-~(r 
k=0 l=0 ' ' 

iiµ) 
e ' 

where ck,l = 0 if 1 > n. Then the coefficients ck,l denote the Fourier co­

efficients of the left hand side with resoect to the orthogonal functions 

~~~(r eit). We shall prove that this Fourier series uniformly converges 

in rand 1/J. Then the identity (3.3) actually holds. 

Let a and n be fixed and let x and y be in bounded sets. Then, by (2.2) 

and (2.4) there is a constant M > 0 such that 

a-I eiw) I lck,l(x,y,a,n)~,l(r ::; 

uniformly in rand 1/J. Hence the Fourier series is uniformly convergent in 

r and 1/J. 

(3 .4) 

Integration of (3.3) gives the product formula 

I TI 

-I 
2a1r f f 

0 0 

a 2 2 
L (x +y +2xyr cos¢) • 

n 

2 a-I 
• cos(xyr sin 1/))r(l-r) drdiµ (x,y :2: 0, a> 0) 

By putting r cos 1/J = cos 8, r sin 1/J = sin 8 cos¢ in (3.4) and by substi­

tuting Poisson's integral representation for Bessel functions we obtain 



(3.5) 

1T 

r (a+ I) f 
= r(a+Dr(D 

0 

a 2 2 L (x +y +2xv cos e) • n J 

• Ja-!(xy sin 0)(sin e) 2ad0(x,y ~ O, ~ > -!). 

The case-~ <a~ 0 follows by analytic continuation. This formula is due 

5 

'to WATSON [15]. ASKEY [2, pp.82,83] applied this product formula to define 

a convolution structure for Laguerre series, thus extending earlier results 

of McCULLY [10] for the case a= 0. However, this convolution structure is 

not positive and it is not defined for all L1-functions. 

If we put r = I in (3.3) and let a~ 0 then we obtain the addition 

formula 

(3.6) 

ikiµ 
e + 

-iliµ 
e • 

This formula was stated without proof by BATEMAN !31. Later two different 

proofs were given by BUCHHOLZ f4, p.1441 and by CARLITZ rsJ. 

4. REMARKS 

4. I. For x = y, r = I ' 1/i = 0 formula (3.3) implies the identity 

00 n (a+n+I\ 
I I a n (xk+l = 

k=O 1=0 a + k + 1 (1) k! (a+l\ (a+k) l 
L~~~+l(x2))2. 

Inequality 

La((x+y)2) 
n 

iµ = 0 or 1r. 

(2.2) is contained in this identity. Expressions for 

and La((x-y) 2) follow from (3.3) by putting r = I and 
n 

4.2. The addition formula (3.3) for Laguerre polynomials cannot be obtained 

as a limit case of the addition formula for Jacobi polynomials, cf. 

KOORNWINDER r9, §5, remark 8]. The addition formula (3.1) for disk 
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polynomials is a more general result which implies both the addition 

formula for Jacobi polynomials (m=n) and for Laguerre polynomials 

(m+ro) • 

4.3. The convolution structure for Laguerre series of order zero has a 

group theoretic interpretation on the Heisenberg group, cf. PEETRE 

[II]. Integration of (3.1) gives a product formula for disk polyno­

mials. 1Chis product formula implies a positive convolution structure 

for disk polynomial expansions which has a group theoretic interpre­

tation on the homogeneous space SU(a+2)/SU(a+I), a = 1,2,3, ... (cf. 
- -ANNABI l~ TRIMECHE [I], TRIMECHE [147). It would be of interest to 

study the relation between both convolution structures. 
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I • INTRODUCTION 

Let a,8 > -1. Jacobi polynomials R~a,S)(x) are orthogonal polynomials 

of degree non the interval (-1,1) with respect to the weight function 

(1-x)a(l+x) 8 and with the normalization R(a,S)(I) = I. 
n 

Let us consider functions u defined on ro,TT/21 x ro,TT/27 of the form 

(I.I) 
n 

u(s,t) = I c R.(a,S)(cos 2s) R.(a,S)(cos 2t), 
k=O k -1c -1c 

where n = 0,1,2, •.• and c0 ,c 1, ••• ,cn are arbitrary real constants. The func­

tion u(.,t) is called the generalized translate of the function u(.,O). The 

purpose of the present paper is to give a new proof of the following theo­

rem of GASPER [SJ, [6J. 

THEOREM I.I. Let a~ 8 ~-!.If u(s,t) has the form (I.I) and if u(s,O) ~ 0 

for each s E [0,TT/2J then u(s,t) ~ O for each s,t E ro,TT/2]. 

We mention three possible approaches to prove Theorem I.I. 

A. BOCHNER [21 pointed out that in the case a= S ~ -~ the positivity result 

follows from the product formula for Gegenbauer polynomials. The product 

formula for Jacobi polynomials (cf. KOORNWINDER r7l) has a similar corol­

lary in the case a~ 8 ~ -!. 
B. GASPER [SJ, [6] explicitly calculated the kernel of generalized transla­

tion and he expressed the kernel in terms of hypergeometric functions. 

This enabled him to prove that generalized translation for Jacobi series 

is positive if and only if a~ 8 ~-½or a~ Isl, S > -1. 

C. Functions of the form (I.I) are solutions of a hyperbolic differential 

equation. A maximum property of such solutions implies that if 

a~ S > -1, a+ 8 + I ~ 0 and if u(s,O) ~ O for each s E ro,TT/21 then 

u(s,t) ~ 0 for O $ t $ s $ TT/2 - t. This result is due to WEINBERGER 

[SJ in the case a= 8 ~-½and to ASKEY [I, p.811 in the general case. 

If a= 8 ~ -! then the positivity of generalized translation follows 

from the case O $ t $ s $ TT/2 - t by the identities u(s,t) = u(t,s) and 

u(s,t) = u(TT/2-s,TT/2-t). However, if a> S then this method fails since 

the second identity no longer holds. 



2 

In the present note we shall prove Theorem I.I by using the approach 

described in C. The proof is a refinement of Askey's argument used in 

[I, p.81]. 

It is of interest to compare these results with the corresponding case 

of Jacobi functions ¢~a,S)(t). FLENSTED-JENSEN & KOORNWINDER 14] proved 

that the generalized translation for Jacobi function expansions is positive 

in the case a 2': B 2': -! by using approach A. CHEBLI 137 independently ob­

tained the positivity result for a 2': B 2': -a - I by using anproach C. In 

the case of Jacobi functions one needs only to consider the region 

{(s,t) j O ~ t ~ s}. Hence, Chebli could obtain his result without using 

the more intricate argument we shall need. 

2. THE POSITIVITY OF GENERALIZED TRANSLATION FOR a 2': B 2': -! 

Let us write 

w(s) W B(s) ( . )2a+l( )28+1 = sins cos s 
a, 

(O < s < rr/2) 

and 

a(s,t) = a 0 (s,t) = w 0 (s)w 0 (t). a,µ a,µ a,µ 

Jacobi polynomials satisfy the differential equation 

(w 0 (s))-l dd [w 0 (s) dd R(a,B)(cos 2s)] = 
a,µ s _ a,µ s n 

- -4n(n+a+B+I) R(a,B)(cos 2s). 
n 

Hence, any function u of the form (I .I) is a solution of the hyperbolic 

differential equation 

( 2. I) 

Using Bateman's integral for Jacobi polynomials ASKEY 11, p.827 proved: 
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LEMMA 2.1. Let a~ B > -1 and let u(s,t) have the foY'/11 (1 .1). If u(s,O) ~ 0 

for each s E [O,n/2] then u(n/2,t) ~ 0 for each t E ro,n/2]. 

Using approach C we shall prove: 

LEMMA 2.2. Let a~ B ~-½and let u(s,t) have the foY'/11 (1 .1). If u(s,O) > 0 

for each s E [O,n/27 and if u(n/2,t) > O for e'ach t E ro,n/2~ then 

u(s,t) > 0 for each (s,t) such that O ~ t ~ s ~ n/2. 

Lemma 2. 1 and Lennna 2.2 together imply theorem I.I. 

PROOF OF LEMMA 2.2. Let 0 = (0,0), C = (n/2,0), D = (n/2,n/2), E = (O,n/2). 

Choose a point Pin the closed triangular region OCD and let A and B be 

points on AC or CD such that the slopes of AP and BP are 1 and -1 , respec-

tively. 

E D E D E D 

A 
p p 

/p / 

// B B 

0 A B C 0 A C 0 C 

Figure Figure 2 Figure 3 

For any possible contour ABP (cf. figure 1,2,3) we have by (2. 1) and by 

Gauss's theorem: 

0 = II [ (a u ) 
s s - (a ut)tl ds dt 

ABP 

= ± f (a u dt + a ut ds) + ( I + I) a du. s 
ABPA AP BP 

If u is positive on OC and CD then a(A)u(A) + a(B)u(B) ~ 0. Hence, integra­

tion by parts gives 

(2.2) 2a(P)u(P) ~ f 
AP 

u(a +a ) dt + J s t 
BP 

u(-a +a) dt. 
s t 
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It follows by a simple calculation that 

±as(s,t) + at(s,t) = a(s,t)(cotg t ± cotg s) • 

• ((2a+I) + (2B+l)tgs tgt). 

Hence, -a + a > 0 if O < t < s < n/2. Let r denote the curve 
s t 

{(s,t) I 2a + I - (2B+l)tgs tgt = O}, cf. figure 2. 

E D 

r 

Figure 2 

Any line inside OCDE with slope I intersects r in one and only one point. 

The curve r separates the region OCDE in two connected regions n1 and ·n2 
on which as+ at is positive, respectively negative. Suppose now that u is 

positive on OC and CD but that u(s,t) s O for some (s,t), 0 <ts s < n/2. 

Then, by continuity, there is a line A1A2 (A 1 on OC and A2 on CD) with slope 

and there are points P1 and P2 on A1A2 (cf. figure 2) such that u(P 1) = 

= 0 = u(P2) and u(s,t) > 0 on the open region A1cA2 and on the open line 

segments A1P1 and A2P2• Let Bi (i=l,2) be on OC or CD such that PiBi has 

slope -1. In at least one of the two cases i = 1,2 the open line segment 

A.P. is contained in the region Q •• For this choice of A., B., P. formula 
]. ]. ]. ]. ]. ]. 

(2.2) gives a contradiction. D 
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