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Synchronization of weakly coupled relaxation oscillators 

by 

*) M.J.W. Jansen 

ABSTRACT 

Existence and approximation problems for periodic solutions of a system 

of weakly coupled relaxation oscillators are reduced to an algebraic problem. 

The starting point is a theorem by Mishchenko on periodic solutions of 

certain singularly perturbed ordinary differential equations. In this report 

we prove some theorems stated in MC report .TW 178/78. 

KEY wORDS & PHRASES: rela:x;ation oscillators~ singular perturbations~ 

periodic solutions of differential equations. 
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I . INTRODUCTION 

In this report we treat the following system of ordinary differential 

equations: 

e:u. = v. - F(u.) 
1 1 1 

(1. I) (i = I , 2, ... , n) , 

v. = -u. + ohi(uI,u2, ••• ,un,vI,v2, ..• ,vn) 
1 1 

where u. (t) and V. (t) are real valued functions of the time t E [O,oo)' 
1 1 

= d/dt, and where e: and 0 are small parameters: E E (O,e:O)' 0 E [o,o0). 

The real valued functions F and h. have continuous (mixed) derivatives of 
1 

all orders. 

In section 2 we briefly discuss the behaviour of the solutions of (I.I) 

for o = 0. In that case (I.I) reduces ton identical equations of the form 

EX= y - F(x) 

( I • 2) 

y = -x 

The function F satisfies conditions ensuring that (1.2) has an asymptotically 

stable periodic solution fore:> 0. For small values of e: periodic solutions 

of (1.2) are called relaxation oscillations. 

In section 3 equation (I.I) is investigated; this equation may be 

considered as a system of n coupled relaxation oscillators in which the func­

tions h. represent the coupling. 
1 

Equation (I.I) contains two small parameters. First we investigate the 

singular perturbation problem e: + 0, o fixed. In that case the solutions of 

(I.I) will tend (in a certain sense) to so called singular or discontinuous 

solutions. Suppose that (I.I) has a periodic singular solution satisfying 

certain stability requirements. Then by a theorem of MISHCHENKO [7] a posi­

tive~ exists such that (I.I) has a periodic solution for O < e: ~ ~-

Thus we may restrict our attention to singular solutions of (I.I). It 

will be seen that an invariant torus exists with respect to these solutions. 

This torus is then-fold cartesian product of the singular limit cycle of 
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(1.2). We define a parametrisation of this torus which satisfies a regular 

perturbation problem for o ➔ 0. 

"Stable" periodic singular solutions of (I.I) are detected with a 

Poincare map which can be approximated for small values of o. 
Finally we prove a theorem reducing problems of existence and approxi­

mation of periodic solutions of (I.I) to an algebraic problem. 

The motivation for this report largely came from a paper by WINFREE 

[13] on hypothetical oscillators. These oscillators were substantialized by 

Grasman in a study on two coupled relaxation oscillators [11; vol. 2, Ch. I]. 

In GRASMAN & JANSEN [2] the theory of weakly coupled relaxation oscillators 

is further developed and many special cases of (I.I) are studied as analogues 

of oscillating systems in biology. 

2. ONE RELAXATION OSCILLATOR 

In this section we shall briefly discuss the behaviour of one isolated 

relaxation oscillator. This will serve as an introduction to section 3, 

where the behaviour of coupled oscillators is discussed. 

One oscillator shall be described by a system of two first order equa­

tions for the real-valued functions x(t) and y(t) (t real): 

i::x = y - F(x), 

(2. I) 

y = ..:.x, 

where i:: is a small positive parameter and where 

F: JR ➔ IR we assume that 

(2.2.a) 

F(x) = -F(-x), 

F E CI (IR), 

F (x) ➔ +00 , 

(X E JR), 

(x ➔ +oo) • 

= d/dt. With respect to 

Moreover, a positive number m should exist such that the derivative of F, 

denoted by f, satisfies 



f(x) < 0, x E (O,m), 

(2.2.b) 

f(x) > 0, X (m,oo). 

THEOREM 2.1. Under conditions (2.2.a) and (2.2.b) equatfon (2. I) ha..s a 

unique periodic solution which is asymptotically stable. 

PROOF. See HALE [3]. 

For weaker conditions on the function F see LASALLE [6]. 

In the rest of this report, we shall assume that the following two 

extra conditions are satisfied: 

f I (m) 'f O, 

(2.2.c) 
00 

F E C (IR). 

3 

The classical example of an equation of type (2.1) satisfying conditions 

(2. 2) is the Van der Pol equation in which F (x) = x3 /3 - x (see for instance 

[2] or [3]). 

In order to approximate_the solutions of (2.1) we introduce the 

reduced system: 

(2. 3. a) y = F(x), 

(2.3.b) y = -x, 

which is obatined from (2.1) by substituting E = 0. It follows from (2.3.a) 

and (2.3.b) that 

(2.3.c) f(x)i + x = O, (f(x) ,f. O). 

We also introduce the fast equation 

(2.4) EX= y - F(x), (y constant), 



4 

in which the constant y is considered as parameter. 

With the aid of (2.3) and (2.4) we can define the singuZar or discon­

tinuous solution of (2.1), which approximates the solution of (2.1) in a 

sense that will be precised later. Let the singular solution start at time 

zero in the point (~,y). If y f F(~) the singular solution makes an instant­

aneous jump along the trajectory of the fast equation until a stable equili­

brium (x ,y), with F(x) = y and f(x) > 0, is reached. Such a point will s s s 
be called a Zanding point. From then on the singular solution satisfies the 

reduced equation (2.3). This part of the singular solution is called reguZar. 

Along the regular part the absolute value of x decreases until x attains a 

local extremum of F(x) (x = ±m, f(x) = O). At that moment y = F(x) ceases 

to be a stable equilibrium of (2.4). The point where this happens is called 

a' Zeaving point. It follows from the conditions (2.2) that equation (2.4) 

has only one trajectory departing from a leaving point. The singular solu­

tion makes an instantaneous jump along this trajectory until a new landing 

point is reached, after which the reduced equation is satisfied again. Thus 

the singular solution is described alternately by instantaneous jumps along 

trajectories of the fast equation and by regular parts satisfying the re­

duced equation. 

THEOREM 2.2. Let~£ and ~O denote the trajectories of a soZution respeet­

iveZy a singuZar soZution of (2.1) that start in the same point of lR~ Then 

~£ + ~O for£+ O. The convergence is uniform on parts of~£ corresponding 

to bounded time intervaZs. 

PROOF. See MISHCHENKO & ROZOV [9]. 

The approximation near the regular parts and the jump parts has been 

studied by TIKHONOV [12] (see also HOPPENSTEADT [5]). The approximation 

near the leaving points has been studied by MISHCHENKO and PONTRYAGIN [8], 

[10]. A general survey of the theory is given by MISHCHENKO and ROZOV [9]. 

From the conditions (2.2) it follows (as illustrated in figure 2.1) 

that equation (2.1) has a unique periodic singular solution, which we shall 

indicate by (x0 (t), yO(t)). The closed trajectory x0 of this solution pro­

ceeds along ABCD as sketched in figure 2.1. The arcs AB and CD represent 

the regular parts; BC and DA represent the jumps. 
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Let the ]Periodic singular solution (x0 (t), yO(t)) start at t = O 1.n 

the point A (figure 2.1). In order to calculate the period T0 of this solu­

tion we remark that on the regular part AB, where x decreases from, say, M 

tom, the time t 1.s given according to (2.3.c) by 

X 

(2.5) t = - J f ~F,) dF,. 

M 

This means th.at the solution runs through AB 1.n the time 

M I f~x) dx. 

m 

Because of the symmetry of F (2.2) the part CD takes the same time, whereas 

BC and DA represent instantaneous jumps. Consequently the period of the 

singular solution 1.s given by 

(2.6) 

M 

TO = 2 J f ~x) dx. 

rn 

Fig. 2.1. State space of singular solutions 
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t 
y 

Fig. 2.2. The periodic singular solution 

In figure 2. 1 the state spac.e of the singular solutions of (2 .1) is drawn. 

The arrows indicate the change of state; horizontal.arrows indicate instant­

aneous changes. The closed trajectory x0 = ABCD represents the periodic 

singular solution. On this trajectory the state of the singular solution can 

be represented by one real variable, called the phase, which coincides for 

isolated oscillators with time. The period of the singular solution is de­

noted by T0 . In figure 2.2 the closed trajectory x0 is drawn. At the 

points A, B, C and D the phases and the values of x are indicated. In the 

pictures F(x) = x3 /3 - x (Van der Pol equation). 

ness 

We shall investigate the regularity properties of x0 (t). For definite­

we consider x0 (t) to be continuous from the right at the jump points 

½ jT0 (j integer). From the smoothness off (see (2.2.c)) it follows via 

(2.3.c) that on the regular parts x0 has continuous derivatives of all 

orders. These derivatives are bounded except in left-neighbourhoods of the 
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jump points. 

of½ T0 . The 

(see (2. 2)). 

We will consider the behaviour of x0 (t) in a left neighbourhood 

behaviour near the other jumps follows by the symmetry of F 

t 

0 When x - m + 0 we have according to (2. 5) 

I 
- T -
2 0 

0 
X -m 

I 
0 

f(m+r) ---'--'-- dr, 
m+r 

in which f can be developed in a Taylor-series around m (see (2.2)): 

0 
X -m 

(2.6.a) 
I 

t - 2 TO= J 
0 

rf'(m) +. . . dr = 
m+r 

f I (m) 0 2 
2m (x -m) + • • • • 

It follows that x0-m can be developed in powers of ✓½ T0-t: 

(2.6.b) 
0 

X - m 
/ J I = ✓~2m_/_f_'_(_m__,)' 2 TO - t + ... ' 

For later reference we summarize some direct conclusions from the foregoing: 

LEMMA 2.1. The component x0 (t) of the periodic singular solution of (2.1) is 

piecewise Holder continuous with exponent½ and with jumps at½ jT0 (j 

integer). Moreover x0 (t) is C00 and uniformly Lipschitz continuous on compact 

sets not containing jump points. 

The following theorem establishes a relation between the periodic solu­

tion of (2.1) for some s > 0, and the singular solution (x0 (t), yO(t)). For 

the proof the reader is referred to MISHCHENKO and PONTRYAGIN [7], [8], [10]: 

THEOREM 2.3. Let F satisfy (2.2). Then the period T of the asymptotically 

stable periodic solution of (2.1) satisfies: Ts= T0 + O(s 213 ) (s ➔ O). 

The limit cycle X of (2.1) satisfies: X ➔ x0 uniformly for s ➔ 0. 
E E 

3. SYSTEMS OF RELAXATION OSCILLATORS 

In this section we shall investigate a finite system of coupled relaxa­

tion oscillators described by the following differential equations: 
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(3.1.a) £u. = v. - F(u.) 
l. l. l. 

(i = 1,2, ••• ,n), 

(3. I.b) v. = -u. + oh.(u,v) 
l. l. l. 

where n denotes the number of oscillators and where u = (u 1,u2 , ••. ,un), 

v = (v 1,v2, ••• ,vn). The parameters£ and o are assumed to be small and posi­

tive. The function F satisfies the conditions (2.2). The functions h. repre-
1. 

sent the coupling between the oscillators. We shall assume that these func-

tions have continuous derivatives of any order: 

(3. l .c) 
oo 2n 

h. EC (JR ), 
l. 

(i = 1,2, •.. ,n). 

The main result of this section (theorem 3.3) can also be proved when the 

latter condition is weakened. 

We will investigate the behaviour of the solutions of (3.l) for£ tend­

ing to zero. Just as in the previous section we introduce the reduced system. 

(3.2.a) v. = F(u.) 
l. 1 

(i = 1,2, ... ,n), 

(3.2.b) v. = -u. + oh.(u,v) 
1 l. 1 

Combination of these equations yields a reduced equation for u: 

(3.2.c) f(u.){i. = -(l-oq.)u. + oh.(u,F(u)), 
1 1 l. 1 1 

where F(u) = (F(u1),F(u2), .•. ,F(un)) and where f = F'. We also introduce 

the fast system 

(3.3) £U. = v. - F(u.), 
1 1 1 

(v. constant), 
1 

in which the constants v. are considered as parameters. 
l. 

The siYl(JuZar solution of (3.l) is defined as follows: When (u,v) is 

not a stable equilibrium point of the fast system an instantaneous jump is 

made along a trajectory of the fast equation until a stable equilibrium 

of this equation is reached (a landing point), where v. = F(u.),f(u.) > 0 
1 1 1 
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for i = 1,2, ..• ,n (see figure 2.1). Afterwards the singular solution satis­

fies the reduced system until one or more of the variables u1,u2, ... ,un 

reaches a local extremum of F (i.e. a zero, ± m, of f). At that point (a 

leaving point) the unique solution of the reduced equation (3.2.c) cannot 

be further extended. The singular solution then makes an instantaneous 

jump along the uniqe trajectory of the fast equation departing from the 

leaving point until a new landing point is reached. After the jump the 

singular solution is described again by the reduced system. 

The singular solution approximates the true solution of (3.1) in the 

sense indicated in theorem 2.2: 

THEOREM 3.1. Lets£ and sO denote the trajectories of a soZution respective­

Zy a singuZa~• soZution of equation (3.1) that start in the same point of 
2n 

JR • Then s 
E: 

corresponding 

➔ s0 for i:: ➔ O. The convergence is uniform on parts of si:: 
to bounded time intervais. 

PROOF. See MISHCHENKO & ROZOV [9]. 

It can moreover be shown that system (3.l) has a periodic solution if 

it has a periodic singular solution satisfying certain conditions. We have 

to introduce some concepts before formulating a theorem of this kind. 

Let the regular parts AB and CD of the closed trajectory x0 of the 

periodic singular solution of one oscillator (2. l), be indicated by Qo· Then 

we may define the following n-dimensional torus-like surface in the space 
JR.Zn 

(3 .4) Q~ := {(u,v) E JR.Zn I (ui,vi) E St0 for i = 1,2, ..• ,n}. 

This means that (u,v) E QnO when each oscillator (u.,v.) lies on the regular 
J. J. 

trajectory QO of the singular solution of one isolated oscillator. We shall 

show that for o sufficiently small a singular solution (u(t), v(t)) will 
n remain in the set St0 , once it has arrived there: 

LEMMA 3.1. When o is sufficientZy smaZZ but finite, the set Q~ is invariant 

with respect to singuZar soZutions of (3.1). 
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PROOF. Let (u,v) E Q~. We first consider the case when f(ui) # 0 (i = 1,2, 

••• ,n). This means that f(u.) > 0 and that lu. I > m (figure 2'.l). Moreover 
l. l. 

(u,v) is bounded. It follows from (3.2) that for o sufficiently small 

v. = F(u.) 
l. l. 

(3.5.a) ( i = 1 , 2, ••• , n) • 

sign(~.)= -sign(u.) 
l. l. 

From (2.3) we obtain for the isolated oscillator 

y = F(x) 

(3.5.b) 

sign(i) = -sign(x). 

This implies that the coupled oscillators run through parts AB and CD in the 

same direction as the uncoupled oscillator. In the leaving points, where at 

least one of the functions f(u.) is zero, the system makes an instantaneous 
l. 

jump to a new stable equilibrium of (3.3). This equilibrium is the same for 

coupled and uncoupled oscillators. Consequently, Q~ is invariant. D 

For a concise formulation of a theorem on periodic solutions of (3.1) 

we will need two definitions: 

DEFINITION 3.1. Let n ~ 2 and let W be a smooth n-1 dimensional surface 
n lying in then-dimensional surface n0 • Moreover, let W be nowhere tangent 

to the trajectories of the singular solutions of (3.1). Let w be a point of 

Wand let a singular solution start in w. Then it may happen that this 

singular solution will return in W. If so, denote the point of first return 

by P(w). In this way a mapping, P, is defined from a part of W into W. This 

mapping is called the Poincare map of W produced by the singular solution. 

The Poincare map 1.s commonly used to investigate the stability of solu­

tions which are known to be periodic (see for instance HIRSCH & SMALE [4]). 

We shall use this mapping also to detect periodic solutions. It is clear that 

there exists a periodic singular solution if P has a fixed point, i.e. a 

point w E W such that P(w) = w. The closed trajectory of such a periodic 
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solution will be indicated by z0 c IR2n, the period by P0 . 

DEFINITION 3.2. A periodic singular solution of (3.1) will be called C-stable 

if a surface W exists as described in definition 3.1, such that the corres­

ponding Poincare map, P, 1.s contracting at the intersection of Wand z0 • 

The following theorem, proved by MISHCHENKO [7], permits us to fix our 

attention to C-stable periodic singular solutions of equation (3.1): 

THEOREM 3.2. Let 8 be such that equation (3.1) has a C-stable periodic 

singular solution with trajectory z0 and period P0 • Let only one of its 

components u. (t) (i = 1,2, ... ,n) be discontinuous at a time. Then a positive 
l. 

function E(o) exists such that for O < s s E(o)~ equation (3.1) has a 

periodic solution with period P and trajectory Z c JR2n satisfying: 
s s 

(i) Zs ➔ z0 uniformly for s ➔ 0~ and 

(ii) PS po+ O(s 213 ). 

In the sequel we shall only consider singular solutions of (3.1) lying 
n 1.n Q0 • The differential equation of such a solution will take on a particu-

n larly simple form when transformed by a suitable parametrisation of ~0 . This 

parametrisation is given by the phase map: 

(3. 6. a) 

Since x0 and yo are T0-periodic this map, which 1.s surjective, can be made 

injective by identification of any two points¢ and¢ with¢. = ¢. (modulo 
l. l. 

T0 ) (i = 1,2, ... ,n). Consequently the map¢ will be defined on then-

dimensional torus T0 , then-fold cartesian product of the circle T := JR/T0 : 

(3.6.b) 

when so defined¢ is injective and (by lemma 2.1) diffeomorphic except at 

the jump planes ¢i = ½ jiTO (j integer). The point cpi ET will be called the 

phase of the i-th oscillator. 

LEMMA 3.2. A singular solution (u(t),v(t)) of equation (3.1) lying 1,,n ~~ 

can be represented as 
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(3. 7. a) (u(t),v(t)) = ~(~(t)), 

where the components~- of the function~: [O,~) + Tn satisfy the phase 
l. 

equation: 

. 
(3.7.b) ~ . = 1 + ok. ( ~) 

l. l. 
(i = 1,2, ••• ,n), 

in which k. : Tn + JR is defined by 
l. 

(3.7.c) 

PROOF. Equation (3.7.b) describes the singular solution both on the regular 

parts and on the singular parts. On the regular parts (3.7.b) is obtained 

by substituting (3.7.a) into (3.2.c), making use of (2.3.c). At the end of 

a regular part the system makes an instantaneous jump to a new stable 

equilibrium of (3.3). Since the oscillators are uncoupled in (3.3), the 

behaviour in the jumps is also correctly described by (3.7.b). D 

Note that the functions k. are bounded since x0 is bounded away from 
l. 

zero. 

We shall now approximate the solution of (3.7.b) in order to investi­

gate the mapping P. Since o is a small parameter it-is natural to try to 

solve (3.7.b) by iteration. Let ~(O) = a E Tn. Then the first and second 

iterates are 

(3.8.a) ~ ~O) (t) = a. + t 
l. l. 

t 

(3.8.b) ~~1)(t) = a. + t + o J k.(a 1+T, ..• ,a +T)dt. 
l. l. l. n 

0 

LEMMA 3.3. Equation (3.7.b) with initial condition ~(O) =ahas a unique 

solution ~(t) satisfying 

(3.9.a) ~- (t) = ~~ 1)(t) + O(o 312), 
l. l. 

(t bounded). 

~ 

PROOF. Lennna 3.2 shows that there is a 1-1 correspondence between singular 
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solutions of (3.1) lying in Q~ and solutions of (3.7.b). The singular solu­

tion of (3.1) with initial value ~(a) E Q~ exists and is unique by defini­

tion. This solution remains in Q~ by lennna 3.1. It follows that (3.7.b) has 

a unique solution. 

The correctness of (3.9) remains to be proved. We start with an investi­

gation of the regularity of the function k(¢) given in (3.7.c). It was 

shown in lemma 2.1 that xO is piecewise Holder continuous with exponent~ 

and with finite jumps at the points½ jTO (j integer). Since hand Fare 

C00-functions and since xO is bounded away from zero it follows from (3.7.c) 

that k(¢) is piecewise Holder continuous with exponent½ and with finite 

jumps in the planes¢. = -21 j.TO (j. integer). 
l. l. l. 

This property of k(¢) may be used to estimate ¢(t) - ¢(l)(t) which, 

according to (3.7.b) and (3.8), can be written as 

(3.9.b) 

t 

¢(t) - ¢(l)(t) =of [k(¢(t)) - k(¢O(t))Jdt. 

0 

It follows from (3.7) and (3.8) that ¢(t) - ¢O(t) = O(o) (t bounded). The 

space Tn is partitioned by the planes¢. = -21 j.TO (j. integer) into n-
1. l. l. 

dimensional cubes where k(¢) is Holder continuous. When ¢(t) and ¢O(t) are 

in the same cube one has 

I I 

lk(Ht)) - k(¢ (O) (t)) I ::; HI Ht) - ¢ (O) (t) 12- = 0(02), 

in which His the Holder constant of k. This gives an O(o 312) contribution 

to (3.9.b). However ¢(t) and ¢O(t) may be located in different cubes, 1.n 

which case k(¢(t)) - k(¢(O)(t)) = 0(1). It follows from ¢O(t) = 

=a+ t(l,1, ... ,1), that ¢O(t) is never tangent to the jump planes. This 

implies that ¢O(t) will remain in an O(o) neighbourhood of the jump planes 

only during O(o) time intervals. Using ¢(t) - ¢(O)(t) = O(o) we obtain that 

¢(t) and ¢O(t) can only stay in different cubes for O(o) time intervals. 

These give an O(o 2) contribution to (3.9.b). The correctness of (3.9.a) 

follows immediately. D 

We shall frequently need a special condition on the initial value 

¢(0) =a.Therefore we state 
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DEFINITION 3.3. A point a E Tn will be called regular if the functions 

x0 (a. + t) (i = l, 2, ••• ,n) are continuous in t = 0 and if they become dis-
1. 

continuous one at a time. 

Since x0 is discontinuous at½ jT0 (j integer) the regularity condition 

implies that ai / ½ jT0 and that no two of the phases ai are equal or com­

plementary. 

The Poincare map P of definition 3.1 can be investigated with the aid 

of approximation (3.9.a). Let V be an n-1 dimensional plane in Tn perpendi­

cular to the vector e := (l,1, ••. ,1) E Tn. Let a be a re3ular point in V, 

let Uc V be a neighbourhood of a, and let W := ~(U). Since~ is diffeo-
n morphic outside the jumps, the n-1 dimensional surface W c n0 satisfies the 

conditions of definition 3.1. The Poincare map P: W ➔ W may be derived from 

* the map P: U ➔ U produced by following the trajectories of (3.7.b) (see 

figure 3. l) • 

~ n * LEMMA 3.4. Let a ET be regular and let U, Wand P be defined as above. 

Then the Poincare map P: W ➔ Wis given by 

(3.10) 
* -1 p = ~p ~ • 

The point~(~) is a contracting fixed point of P if_P*(a) = a and if the 

eigenvalues of the derivative of p* in~ have absolute values Zess than one. 

PROOF. Representation (3.10) follows from lemma 3.2. The rest of the lemma 

is proved by defining a distance in W c Q~ as the corresponding euclidean 
n -1 

distance in Uc T, produced by the map~ • D 

We shall find an approximation of p* for small values of o. Substituting 
n t = T0 + s with s = O(o) in (3.8.b) we obtain for <P(T0 + s) E T : 

(3. l l • a) cj> (T0 + s) = a + se + oG(a) + O(0 3/Z), 

where G: Tn ➔ Tn is given by its components 
TO 

(3.11.b) G. (a) 
l. 

= f k/a. 1+T, ... ,an+T)dt. 

0 
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<P2 

* ~ (a) 

u 

u 

0 

Fig. 3~1. The map p* for two oscillators, produced by the trajectories of 

(3.7.b). The Poincare map is given by P = ~p*~-I. For clarity of 

the drawing the torus T2 = (1R/TO) 2 has been unrolled. 

The function G(a) gives the phase shift caused by the coupling. Since k. is 
l. 

defined on Tn (lemma 3.2) the function G(a) depends only on the phase dif-

ferences a. - a. : 
l. J 

(3. 11 • c) G(a+ce) = G(a), (c E IR), 

We shall fix s (a) so that </> (TO + s (a)) E V. This yields 

(3. l 2) s (a) = _ _§_ L G. (a) + 0(0312). 
n l. 

* It follows that a EV is mapped by P on 

(3. l 3. a) 3/2 q,(TO + s(a)) = a + oQ(a) + O(o ) , 

where Q: Tn + Tn is defined as 

(3.13.b) Q(a) = G(a) - cl l G.(a))e. 
n l. 
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Note that 

(3.13.c) Q(a.) .l e, 

which implies that for a EV 

(3.13.d) a + oQ (a) E V. 

It follows from (3.11.c) and (3.13.b) that 

(3.13.e) Q(a.+ce) = Q(a.) ( C E JR) 

We may summarize tha above calculations by stating: 

* LEMMA 3.5. The asymptotic behaviour of the map P for 8 ➔ 0 is given by 

(3.14) p*(a.) a + 80 (a)+ 0(8 312 ) 
u u 

where a and Q (a) denote the restrictions of a and Q(a.) to the plane U. 
u u 

LEMMA 

(i) 

(ii) 

(iii) 

Using this lemma we can prove: 

3.6. 

Cl'. E 

au 

tive 

Q (a) 

Suppose that 

Tn is regular (regularity condition)~ 

eigenvalues~ except one~ of the derivative of Q(a.) &n a have nega­

rea l parts ( s tabi U ty condition) . 

0 (synchronization condition). 
~ n * ~ 

Then a point S a+ 0(8) exists in T such that P (B) = s~ and such that 

the eigenvalues of the derivative of p* in S have absolute values less 

than one. 

PROOF. We shall prove the lemma in three steps: 

(I) The mapping P*(a.) is C00 with respect to a and o. 

(2) Consequently a + oQ (a) is an 0(8 2) approximation of P*(a) which re-
u u 

mains correct when differentiated with respect to 

(3) The lemma follows. 



I 7 

Proof of (1): Due to the fact that the left hand side of (3.7.b) is not 

P* 00 Lipschitz continuous it is not immediately clear that is C in a and o. 

This problem can be overcome by a good choice of independent variables. Since 

¢(t) - ¢(O)(t) ¢Ct) - (;;'.+te) = 0(6), we know that ¢(t) will remain in an 

0(6) tube, N0 , around the trajectory of a+ te. By the regularity of a this 

trajectory will not cross points where k(¢) is discontinuous in more than 

one variable. It follows that o can be chosen so small that N0 does not 

contain such points either. This implies that we know the order in which 

the variables ¢ 1 ,¢ 2 , ... ,¢n will cause the discontinuities of k(¢(t)); this 

order will be indicated by ¢i 1,¢i2 , .... The corresponding planes of inter­

section of N with the discontinuity-planes of k(¢) will be denoted by 

u1,u2 , ... (see figure 3.2). 

* The map P: D ➔ U is the composition of the mappings U ➔ D1 , u1 ➔ u2 , ... 

... ,u1 ➔ U, produced by the trajectories of (3.7.b) (the plane Dl is the 

last of the planes u1,u2 ... that is reached.before U is reached). We shall 
• 00 

show that these mappings are C with respect too and the initial conditions. 

This implies that p* is C00 with respect too and~-

In the part of N bounded by U and D1 we shall take ¢i 1 as independent 

variable, so that equation (3.7.b) gets the form: 

(3.7.b') 
I + ok. (¢) 

i 

l+ok. (¢) 
ii 

For o sufficiently small this equation has bounded derivatives of any order 

with respect too and ¢i (i i i 1); moreover it is continuous with respect 

to <Pi . 
I 
It follows from [ I ; Ch. I, thrm 7. 5] that the mapping U ➔ U I produced 

00 

by the trajectories of (3.7.b) is C with respect too and the initial condi-

tion. The other mappings are treated in the same way; for the map Ul ➔ D 

we take rep. as independent variable. 
i 
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<1>2 

1 2 T Oi------,..-----::,......,.-------1 

0 

l i;_. J.~. Tile tube N0 and the planes u1, u2 , etc., .tor Lwo oscillators. For 

clarity of the drawing the torus r2 has been unrolled. 

Proof of (2): It follows from (1) that p* and its derivatives with respect 
* 2 * to a (denoted by DP ,DP ... ) can be developed in a Taylor series around 

o = 0: 

P*(a) = A(a) + oB(a) + 0(o 2), 

DP*(a) = DA(a) + oDB(a) + 0(o 2), 

Using lennna 3.5 we obtain 

p*(a) = a + oQ (a)+ 0(o 2), 
u u 

(3 • 14 I) * DP (a)= Da + oDQ (a)+ 0(o 2), 
u u 

2 * DP (a)= 0(o). 

Note that (3.14') gives a better estimate of p* than (3.14). 
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Proof of (3): According to (3.13.e) the derivative D(a+oQ(a)) has an eigen­

value l corresponding to the eigenvector e. According to (3. 13. d) a+ oQ (a) 

maps U into U. This implies that D(a + oQ (a)) is contracting if the other u u 
eigenvalues of D(a + oQ(a)) are lying strictly within the unit circle. It 

now follows from the conditions of the lemma that a + oQ (a) is contracting 
u u 

in;. It remains to be shown that a point Sexists, close to~. such that 

p* e's) = s' 

P* . ~ contracting ins. 

Let II •II denote the euclidean norm in U and let SEU. Then 

* * * ~ * ~ * * ~ 2 P (S) - a= P (S) - P (a)+ P (a) - a= P (S) - P (a)+ O(o ). 

By the fact that D (a + oQ (a)) is contracting in 

has 

2 * a, and that DP = O(o) one 

for some positive y, Mand N. Let lls-;11 ~ 2oN/y then for o sufficiently 
* ~ small IIP (S)-all ~ 2oN/y. Thus an O(o) ball in U around a is mapped on itself 

* * ~ by P. It follows that P has a fixed point Sin an O(o) neighbourhood of 

a. Using n2P* = O(o) we see that D is contracting in·S. This concludes the 

proof of the lemma. 0 

At this stage our knowledge of the behaviour of the singular solution 

is sufficient to return to the original equation (3.1). Combining lemma 

3.6, lemma 3.4 and theorem 3.2 we obtain: 

THEOREM 3. 2. Suppose that ~ satisfies the three conditions of lemma 3. 6. 

Then a positive 8 and a positive function £(0), defined on (0,8) exist such 

that for O < o < 8 and O < £ < £(0) equation (3.1) has a periodic solution. 

This periodic solution has the foZZowing properties: 
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(i) Its trajectory ZE O tends to the trajectory of 
0 ~ 0 ~ 0 ~ 0 ~ 

(x (a 1+t), ... ,x (an+t), y (a 1+t), ... ,y (an+t)) when E and o tend to 

zero. 

(ii) Its period PE;o satisfies PE,o = T0 - ! I Gi(;) + O(o 312) + O(E 213 ). 
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