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ABSTRACT 

The (nonunitary) pricipal series of SL(2,~) is studied using explicit 

expresssions for its.matrix elements with respect to certain K-bases. 

In particular we find all subquotient representations of the principal 

series and all equivalences occurring among these. Using the subquotient 

theorem this allows us to classify the topologically completely irreducible 

representations of SL(2,~) on a Banach space. 

Calculating certain intertwining operators allows us to decide which 

representations can be made unitary by choosing a suitable inner product on 

the representation space. 
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1 . INTRODUC'rION 

In this paper we study the representations of the group G = SL(2,<r) of 

2 x 2 complex unimodular matrices. Our approach is almost identical to the 

approach in [6], a paper which deals with the representation theory of 

SL ( 2, :IR) • 

In Section 2, we introduce the (nonunitary) principal series and de­

rive a canonical basis consisting of K-finite vectors in the principal 

series representation spaces. 

In Section 3 we calculate the matrix elements of the principal series 

representations with respect to these bases, and we use this to decide when 

the representations are irreducible, and to find the irreducible subquotients 

in the reducible case. 

In Section 4 we determine the equivalences which exist between the sub­

quotient representations we have found, and applying Barish-Chandra's sub­

quotient theorem we use this to give a classification of the topologically 

completely irreducible representations of G. (Here our approach differs 

from that of [6], where completeness of the set of representations is proved 

by considering the eigenfunctions of the Casimir-operator.) 

In Section 5 we determine which representations are unitarizable. We 

do this by determining when the representations of 4 are equivalent to their 

conjugate contragredient, and when the intertwining operator can be normal­

zed so that it becomes positive definite. This allows us to describe the 

unitary dual of G. 

In Section 6 we give a (certainly incomplete) history of the problem 

in order to indicate what was already known. 

All re~ml ts in Sections 2, 3, 4 and 5 are obtained by noninfini tesimal 

methods, i.e. without using Lie-algebras ( except of course that Lie- alge­

bras are implicitly used when we apply the subquotient theorem). All re­

ducibility properties and equivalences are found by using explicit expres­

sions for the matrix elements of the principal series. 
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2. DEFINITION OF THE PRINCIPAL SERIES 

G = SL(2,~) is a six-dimensional semisimple noncompact Lie group with 

Iwasawa decomposition G = KAN, where 

- {fa. K = SU(2) - \ _ 
'-B 

8
) I I a.1 2+1 a 11 

2 _ = k(a.,S) µ = 
a. 

( 2. 1) A= at I t E lR} , 

which means among other things that the mapping K x A x N ➔ G given by 

(k,a,n) ➔ (kan) is a real analytic diffeomorphism. Furthermore we have the 

decomposition G = KAK: every g E G can be written as g = k 1ak2 with k 1 ,k2 EK, 

a EA, but this expression is not unique. 

so if 

then 

a. = 

(2. 2) -B = 

t 
e = 

t 
= ( e a. 

\_ets 
... \ 

)' 

gl2) __ 
k(a.,S)a n 

t z 
g22 

gll 

2 2 ~ 
(lglll +lg21' ) 

g21 
2 2 l:z ' c lg11 1 +lg21 1 > 

2 2 ~ 
(lg11I +lg21l ) 



In particula.r, 

implies: 

(2. 3) 

-1 
at (k (a, Bl 

s 
e 

1 
a. 

s1 

-t 
e a. 

a n 
s z 

If we parametrize K by coordinates 8,¢,ljJ as follows: 

( 2. 4) 
a: = cos 

S, sin 

i¢ 
8 e 

iljJ 
8 e 

(0 < 8 < TI/2 , 0 < q> 1 l/J < 2n) 

then the normalised Haar measure on K becomes: 

(2.5) dlk sin 28 a8 def> dljJ. 

Let M . LI\ (
·e -oi8 0 

elv} = 1 u 8 j e E JR J" M is the centralizer of A in K. 

-M, the collection of finite-dimensional irreducible representations of 

M consists of the pairwise inequivalent elements ~k (k E ½ ?Z ) given by 

(2.6) 
-2ik0 = e 

-(We write the elements of Min bhis way because it eliminates many factors 

by½ in our later calculations). 
1 3 j 

For j =0 0 ,2 , 1 ,2, . . let V be the ( 2 j + 1 )- dimensional complex vector space 

of polynomials in indeterminates z 1 ,z2 with complex coefficients, 

homogeneous of degree 2j. 
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K acts on Vj by: 

(2. 7) 

(We consider (z 1 ,z2 ) as a column vector which can be multiplied from the 
-1 

left by k E SU(2)) 

The representations TI. are irreducible, TI. and TI. are inequivalent 
J J 1 J2 

if j 1 ~ j 2 and every finite dimensional irreducible representation of K is 
j j j j j 

equivalent to a TI •• V has a basis v . , v '+l , .• ,v. 1 , v. , given by 
J -J -J J- J 

(2. 8) 

If we define an inner product ( ) on vj by 

then TI •. is unitary. 
J 

-2ile j 
= e vl, 

so,as a representation of M,Tij splits as a direct sum of ~,e_'s 

(l = -j, -j+l, ... ,j-1, j), each of these occurring exactly once, so 

(2.9) 
~ f 1 if k-j E ?Z 

dim Hom__ (Vj, V k) = 1 
M l O otherwise 

~k 
where V =~is the onedimensional vector space on which the represent-

. ~ 
ation ~k is realised, HomM (VJ, V k) is the space 

linear mappings A:Vj ➔ v~k.If dim HomM(Vj, v~k) = 
. ~ 

is spanned by A. . : VJ ➔ V k = <t given by 
k, J 

(2.10) 

of M-intertwining . ~ 
1, then Ho~(VJ,v k) 

Now we are ready to define the principal series of representations 



-
TTc (l;k EM, z E ~) of G on Hilbert spaces He : For l;k EM, z E ~ 
sk,z sk,z 

let Cc z (G) be the space of continuous functions f :G ➔ vl;k satisfying 
sk, 

the relation 

5 

(2. 11) f (g man) 
-1 -2(z+1)1oga 

= l;k(m ) e f(g) Vg E G, m EM, a EA, n EN, 

where log: A ➔ lR is defined by log at= t. 

G acts on C (G) by 
l;k,z 

(2.12) 
-1 

= f(g x) (x,g E G) 

Define an inner product 

(2.13) (f,g) = I f(k)g(k)dk 

K 

and let He 
sk,z 

be the closure of Cc with respect to this inner product. 
sk,z 

The operators TTl;k,z (g) can be extended uniquely to bounded operators on 

the separable Hilbert space He z which we shall also denote by TTc z (g). 
Sk, Sk, 

Then TTc is a strongly continuous representation of G on He z, TT~ z is 
sk,z · Sk' Sk' 

unitary, if and only if z is purely imaginary. TTl;k,z is the representation 

of G induced by the onedimensional representation µl;k,z of the standard 

minimal parabolic subgroup B = MAN defined by 
2z loga 

µc z (man) = l;k(m) e 
sk, 

The restriction of TT~ to K splits as a unitary direct sum of irreducible 
,sk,z 

representations He Jz equivalent to Vj, each j occurring at most once. To 
Sk' 

be more precise: 

(2 .14) as a K-representation • 

This follows immediately from (2.9) and the Frobenius reciprocity theorem 

if we observe that the restriction of TT/;k,z to K is just the representation 

of K induced by the representation l;k of its subgroup M (this is 
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because of the Iwasawa decomposition). We now exhibit non-trivial elements 

of HF;,k~z: For A E HornM (Vj,vF;,k), v E Vj let f(kan) = e-2 <z+l)logaA(TTj(k-1)v), 

then f E HF;,k,jz· In fact the mapping v 0 A+ f defines a K-intertwining 

isomorphism vj © Horn (Vj,vF;,k) + Hj if we let K act trivially on HornM 
• F;, M . -½ 

(v;v k). Now take v = vi.((j-l)!(j+l)!) , A= ~,j.((j-k)!(j+k)!)½ 

( see ( 2 • 8) and ( 2 • 10) ) • 

lj-l. lj+l (j:.e.,e:.e.)aKBj-l-Kzl Kz}-.t-K (-8) vaj+,t-vz/z}+.e.-v = 

~=0 v=O ' ' 

min (j-,t, j-k) (j-l)(· j+,t \ K j-.l-K - j-k-K-l+k+K j-k j+k 
..• + l K J-k-K} a B (-B) a z 1 z 2 + •.. 

K=rnax(0,-l-k) 

This gives us an element fj E Hj 
l,k F;,k,z 

(2.15) 
( (j-k) ! (j+k) ! \½ 

= 
'· (j-l) ! (j+,e_) !} 

rnin(j-l,j-k) 1. o\( . o) . o . o \ {J-~ J+~ K J-~-K - J-k-K_~+k+K 
l \ J\ . k a B (-f3) a · K - -K K=rnax(0,-l-k) ',J 1 

observe that the functions fi (k) are matrix elements of the representation 

TT, defined by (2.7) with respect to an orthonormal basis: 
J 

3. CALCULATION OF THE MATRIX ELEMENTS OF TT . REDUCIBILITY PROPERTIES. 
F;,k,z 

We calculate the matrix elements of TT with respect to the ortho-
F;,k,z 



gonal basis consisting of the fj and then use Theorem 3.2 of [6] to 
l,k 

deduce which TT~ z are irreducible and to determine the irreducible 
k, 

subquotient representations in case TT~k,z is reducible. Let 

By ( 2. 3) , ( 2 . 11 ) , ( 2 . 12) , ( 2 . 13) and ( 2 • 15) we get: 

( 3. 1) 

'7 

Some simple considerations show us that a large number of these functions 
j 

must be zero : M acts on f i,k ~s ~ ,e_· The elements of A commute with those 
J of M, so M acts on TT~ (a )f 0 again as ~o, so 

sk,z t ,{.,,k ,{_, 

(3.2) = 0 

so from now on we assume t 1 ~ i 2 = i. 

(3. 3) -2t I 12 2t I 131 2 e a + e = 

4t 
We expand this in a power series in (1-e ) and change the order of 

summation and integration to find an expression for the matrix elements 
4t . 

involving power series in (1-e ). (These, and all the following expressions 
4t 

only hold for sufficiently small values of 1-e , but as the matrix 

elements are real analytic functions oft it suffices to know them in 

a neighbourhood of t=O. Thus, from now on we shall tacitly assume that 

in all expressions tis sufficiently small.) 

Write 
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j2 
F_e_, k, K, V ( k (a, S) ) 

( 3. 4) 

j2 j2 
(F is the K-th term of fl,k 

. . 12 \) multiplied by (IS ) ) and 
l,k,K,V 

( 3. 5) 
V,K 

Then 

( 3. 6) 7T • o • o(a) 
~k, z; J 1 ,.{,; J2'.{, t 

2t (z+1+2j 2-l-k) 
= e 

min(j 2-l,j 2-k) 4 \ - Kt 
L e • 

K=max(O,-l-k) 

Now we claim that 

(3.7) O for v ::; j 1 - .j 2 - 1 • 

j2 
Indeed, F 0 is contained in the space W of polynomials in a,a,S,S, 

.{,,k,K,V 
of degree::; 2j 2 + 2v. Wis invariant under the left regular action 

of K. As a representation of M,W splits into one-dimensional 

subrepresentations ~k (k = -j 2-v, -j 2-v+1, ... ,j 2+v). fljl is contained 



in a left K-invariant irreducible subspace which contains~- as an 
J1 

~-representation. Hence W cannot contain the representation TTjl of K. 

Now (3.7) follows from the orthogonality relations for the left-regular 

representation of K. 

Next we show that 

( 3. 8) 

We do this by giving quite explicit expressions for certain matrix 

elements, which we shall also need for the study of unitarizability of 

the representations. 

(3.9) 

with 

= e2t(z+l+j 2-k) I 
v=O 

because of (2.15) ,(3.4) and (3.5). 

For the integral over K we can write 

K 

9 
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ITT/2 2 j 2+k+K 2 j 1-k-K+V 

(cos 0) (sin 8) d . 28 sin = 

8=0 

1 . k . k I J 2+ +K J 1-.-K+V 
(1-t) t dt 

t=O 

f(j 2+k+K+1)f(j 1-k-K+V+1) 
,I 

where we used (2.5) and the well-known integral representation for the 

beta-function: 

B(z,w) 
f(z)f(w) 

(z+w) 

1 

= I 
0 

z-1 w-1 
t (1-t) dt ([2],§1.5(1)). 

j1,j2;j2,k 
Substitution of this last identity into the expression for C 

1 v,O 
and introduction of the new summation variable K = j 1-j 2-K yields: 

(3 .10) 

. ( 

{ 2j2\ (j1+j2)'. (j2-k+v)! ('(j2-k)!(j2+k)!(j1-k)!(j1+k)! \½ 
\j2-k} (j2-k) ! (j1+j2+v+l) !\. (2 j2) ! (j1-j2) ! C\+j2) ! } 

(-V)j1-j2 

(j 2-k+1). . 
J1-J2 



where we used the relation 

(c-b) 
n 

2F1 (-n,b;c;l) = _(_c_)_ (n=0,1,2, ••• ,c ~ 0,-1,-2, ••• ,-n+l). 
n 

This proves (3.8). 

For later use in §5 we write down an expression for the matrix 

elements TI~ •••• (at) which follows from the above calculations 
"k'Z'J1,J2;J2,J2 

(3.11) 

= l-1/2-jl ((2j~) ! ~ji:j~) ! (j:-~) ! (j:+k) !)½ (z+l+j2) j1-i2 
\ (J1-J2).(J2-k).(J2+k). . (2j1+1)! 

Using (3.7), (3.8) and theorem 3.2 of [6] we find the reducibility 

properties of the Tisk,z· Denote the (j 1!j 2 ) generalized matrix element 

(see [ 6]p.7) by Tisk,z,j 1 ,j 2 , then it follows from (3.6),(3.7) and (3.8) 

that for j 1::e:j 2 : 

( 3. 12) 

11 



12 

For the case j 1~j 2 we use the fact that the conjugate contragredient 

of TT~ is equal to TT -, so 
sk,z ~k,-z 

This shows that for j 2 :2: jl 

(3.13) TT~ , , (a ) -
'"k' z 'J 1 ' J 2 t 

= 0 • 

Because of the decomposition G 

0 on G. 

Applyin•J Theorem 3.2 of [6] we obtain a theorem analogous to 

Theorem 3.4 of [6] (an asterisk at some place in the diagrams occurring 

in the theorem means that all generalized matrix elements TT 
~k,z,j1,j2 

correspondirnJ to that block are nonzero): 

THEOREM 1. Depending on ~k and z the representation TT~k,z of 

SL(2,<r) has the following irreducible subquotient representations 

and subrepresentations: 

a. 1r is irreducible if and only if z f- + ( jkj+j) for every positive 
~k,z 

integer j. 

b. z = -(lkl+j) for some positive integer j: 

jl [-z ,oo) 

- z - 1] * * 
[-z,oo) 0 * 



Irreducible finite-tiimensional subrepresentation on 

-z-1 j 
e H 

j=lkl . !;k,z 

irreducible infinite-dimensional subquotient representation but not 

subrepresentation on 

CX) 

EB 
j=-z 

c. z = lkj+j for some positive integer j 

. + -+ [ I k I , z-1] [ z ,"") 
Jl j2 

[ I k I , z-1] * 0 

[z, "") * * 

irreducible finite-dimension~l subquotient representation but not 

subrepresentation on 

irreducible infinite-dimensional subrepresentation on 

CX) 

e 
j=z 

(Here [a,b] means {a,a+l,a+2, .•• ,b-2,b-l,b}, so the summation 

index j increases in steps of 1.) 

13 
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4. EQUIVALENCES OCCURRING BETWEEN THE SUBQUOTIENT REPRESENTATIONS OF THE 

PRINCIPAL SERIES 

We want to determine which of the irreducible representations of 

SL(2,<I:) we have found are Naimark-equivalent to each other. We want 

to apply Theorem 4.6 of [ 6] and therefore need to compute diagonal 

matrix elements. In what follows we shall denote by Ti:- z and Oi:- z the 
sk' sk, 

infinite-respectively finite-dimensional proper subquotient representation 

of TTi:-k,z in case TTi:-k,z is reducible. T, • • etc. will have the 
s s skr 2 ,J1,J2 

obvious meaning. 

we shall first show that TT/;-k,-z ~ TTE;k,z, in case TTE;k,z is irreducible, 

d ~ ~ T ~ T in case TTck,z is reducible. This 
an 0/;-k'-z - vi;k,z ' t;-k'-z - i;k,z s 

will be proved when we have shown that 

( 4. 1) TTi:- . 0 . 0 (at) = TTc . 0 . 0 (a) V k,z,j,f 
sk,z;J,,t_;J,,t_ s_k,-Z;J;,t_;J,,t_ t 

(by [ 6], theorem 4. 6, and ( 3. 2) ) . Now, from ( 2. 15) , ( 3. 4) , ( 3. 5) and ( 3. 6) 

( 4. 2) 

with 

(4.3) 

2t (z+1+2j-l-k) (j-k) ! (j+k) ! 
TTi;k,z;j,l;j,l(at) = e . (j-l) ! (j+l) ! 

K +K 
= (-1) 1 2 

'ff/2 

cl,k,j (z+l+j)v (l-e4t)v 
V,K 1 ,K 2 V! 

K 

I (l-sin28)l+k+K1+K2(sin28)2j-l-k+v-K1-K2d sin28 = 

8=0 



K1+K 2 r(l+k+K 1+K 2+1)r(2j-l-k+v-K 1-K 2+1) 
(-1) 

r (2j+v+2) 

Substituting (4.3) in (4.2) enables us to express the power series as 

hypergeometric functions: 

( 4. 4) 2t(z+1+2j-l-k) (j-k) ! (j+k) ! 
1ri;k.z;j,l;j,l(at) = e (j-l) ! (j+l) ! 

l -4K1t (j-l \( j+l \ l (j-l)( j+l \ 
e \ K /\j-k-K) \ K \j-k-K) 

Kl 1 1 K 2 2 2 

( 2j ) (2'+1) 
J l+k+Kl+K2 

F (z+J·+1 2J'-l-k-K -K +1·2J'+2·1-e4t) 21 I 1 2 1 1 • 

15 

Using formula (2), §2.9 of [2] for the transformation of the hypergeometric 

function we find that expression (4.4) is equal to 

(4.5) 2t(-z+1+2j-l+k) (j-k) ! (j+k) ! l ( j-l \( j+l \ 
e (j-l)!(j+l)! -K

1 
\j-l-K 1,J\j+k-(j-l-K 1)) 

(j-l-K )+(j-l-K) 

( 
j-l )( j +l < -1 l 1 2 

l j-l-K2, j+k- (j-l-K2)) ( 2j \ 
K (2'+1) 

2 J l l-k+ (j-l-K ) + (j-l-K ) I 
' 1 2 · 
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If we write K2 instead of j-l-K1 and Kl instead of j-l-K2 in the last 

expression we find that it is equal to rr/;-k,-z;j,l;j,l<at) as we had 

claimed before. 

Now we ask whether the equivalences we have just established are the 

only ones occurring between the various subquotientrepresentations of 

the principal series. By (4.4): 

4t) 4': 2 
rrc- .... (at) = C(l+ck . (1-e +d . (1-e ) + .. ) 
sk,z;J,J;J,J ,z,J ~k,z,J 

for a certain normalization constant Ci 0, with 

( 4. 6) 
-zk 

C = k,z,j 2j+2 

So if two subquotient representations of rrl; respectively rrl;l 1 
. 1 h k 1 1 .. k'z 1 d k'z equiva ent, ten z = z k. Comparing K-contents we cone u e: 

1 1 
~ ~ 1 => (k,z) = (k ,z} or 

l;k1,z 

=> (k., z) T ::::: T 1 
l;k,z l;k1,z 

(J ::::: (J 1 
l;k,z /;k1,z => (k, z) 

= (kl,zl) or 

= (k1,z1) or 

1 1 (k,z) =(-k ,-z ) 

(k, z) 1 1 
= (-k ,-z ) 

(k, z) 
1 1 

=(-k ,-z) 

Furthermore a1;k,z can clearly never be equivalent to a T1;kl,z1 or a 

rrl;kl,zl , so the only possible equivalen~es except the ones we have already 

found are between rrc- z and Tc- k( and then also Tc- -k> for lzl < lkl, sk, sz' s-z' 
z-k E 2Z. We claim that these equivalences do indeed exist. Because of 

the equivalences we have already proved we may assume k > 0 and then need 

only prove rr1;k,z ::::: T1;z,k for lzl < k, z-k E 2Z. So we have to prove that 

the matrix elements rrc- z·k l·k l (at) and rrc- k·k v.k o(at) are proportional. t:,k, , , , , s.z' , ,-L, ,..(... 



To facilitate the calculations we derive some symmetry properties of the 

functions fl,k' (see also [16], chapter III, §3.6), and use these to 

derive symmetry properties of the matrix elements of 1Tl;k,z: 

LEMMA 1. a. 
j 

f l,k (k(a,S)) = j -
fk,l (k(a,-S)) 

b. 
j 

fl,k (k(a,-S)) = 
j 

f -l, _ k ( k ( a , S) ) . 

17 

PROOF. Write the normalized basis vector ((j-l) ! (j+l) !)-½vlj of Vj as w,e.j· 

a. f j (k(a,S)) .t, k 

j j -
fk , l ( k ( a , -S ) ) = f k , .t'. ( k ( a , -S ) ) 

because the coefficients of the polynomial ( 2. 15) are real . 

b. 

j - -
fl,k (k (a,-S)) 

LEMMA 2 

. 2j j 
l W_f 

- - -1 j j 
(nj(k(a,-S) )w,e_ ,wk) 
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PROOF. 

.j -t t 
. fl,k (k(e a,e S)) 

By lemma 1 a: 

f ce-2t1ai 2+e 2t1sl 2>-(z+j+l)f~~k(k(e-ta,etS)) f:~kk(a,S)dk(a,S) = 

K 

f -2tl 2 2t 12 -(z+j+l) j2 -t t- jl -
(e al +e IS ) fk,l(k(e a,-e S))fk,lk(a,-S)dk(a,S) = 

K 

j2 jl 
(TI~ (a )fk o,fk o 

"'l'z t ,,{.. ,,{.. 
= TI~ • k . k (a ) • 

"'l'Z;Jl' ;J2' t 

The second equality is proved similarly by using Lemma 1 b. 

Now we derive a slightly different expression for the matrix elements 

which has the convenience that the exponential factors are independent 

Of the summation variables Kl and K2 . If l ~ -k, then we see: 

(4.7) 
j = 0 j-l(-0 )j-k -l+k ((j+l) !(j+k) !\~ 1 

fl,k(k(a,S)) µ µ a- \(j-l)!(j-k)!} ·ct+k)! 

2F1 (-j+l,-j+k;l+k+l; 

Now use formula (2), §2.9 of [2] and the fact that Jal 2 + lsl 2 = 1 

to transform this into a 2F 1 function of argument ial 2 and then 

expand this expression again in powers of a and a. 



The result is: 

( 4. 8) 

j 
fl,k(k(a,8)) 

j-l 

= ( (j-k); (j+k) ! \~ 
\. (j-l) : (j+l> : / 

. , (-1) j-k-K (j-.t\(l+j+K\ K-l+k+K-l-k 
l \ K }\.l+k+K}°' a 8 · 

K=O 

Proceeding analogously for the case l ~ -k we find that in both cases: 

(4.9) 

j 
fl,k(k(a,8)) 

j-l 
. I (-l)j-k-K 
K=max(O,-l-k) 

= ((j-k) !(j+k) :\½ 
\ (j-l) : (j+l) ! ) 

( j-.t\f.t+j+K\ K-.t+k+K8.e.-k 
K J\l+k+K) a a · 

This gives us a new expression for the matrix elements: 

(4 .10) 7f • fl . fl (at) 
!;k, z ; J , .(.,.; J , .(.,. 

2t(z+l+l-k) (j-k) ! (j+k) ! 
= e (j-l) !(j+l>: 

j-l Kl+K2 (" fl\(fl . \ . I (--1) J-.(.. .(..+J+Kl l • 
K1 /\_l+k+K I 

K1,K2 = max(O,-l-k) ' 1' 

(l+k+K l +K2) ! (~--k) ! 

(2.f..+K 1+K 2+1) ! 

for l ~ k, and a similar expression for l ~ k. For l ~ + z this yields 
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(4.11) 

with 

~ o(a) 
E; ,k;k,l;k,.c.. t 

z 

2t(-z+1+k+l) (k-z) !(k+z)! 
= e (k-l) ! (k+l) ! . 

(X) - z,k,l 
. L cv (1-e4t) v ' 
v=O v ! 

(k+l+1+K1 ) (l-z+l) 
.V V 

Now sum over Kl to find: 

(4 .12) z,k,.f (k-l) ! 
C =----

v ( (k-z) !2 

(l-z+v) ! (k+l+v) ! l _(-1~ 2 _(_k_+_l_+_K_2_)_: ______ _ 

(l+z) ! K2 K2. (k-l-K2 ) ! (2l+K2+v+1) ! 

• F (k+l+v+1, l+z+K•2+1, l-k; 1\ • 

3 2 \l+z+l 2l+K2+v+2 } 

Now the 3F2 of unity argument in this expression is terminating because 

f-k ~ 0, and SaalschUtzian, so it can be summed in terms of r-functions. 

(for the relevant facts on 3F2 funtions see [2] , §4.4). We then find: 

= 

(4.13) 

(k-.l) ! (l-z+v) ! 
(k-z) ! (l+z) ! 

(z-k-v) o (-K) o 
k-.c.. 2 k-,t.. 

The only nonzero term is the one with K2 = l-k, so at last we arrive at: 
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(4.14) 
(k-l) ! (k+l+v) ! ( 2k) ! (k-z+v) ! = __ .;.._-'---.;.._-'---'----------'--

2 
( (k-z) !) (k+z) ! (2k+v+l) ! 

so: 

(4.15) rr o o(a) 
1 2t(-z+l+k+l) 4t 

= 2k+l e 2F1 (-z+k+1;k+l+1;2k+2;1-e ). l; ,k;k,,{__;k,,{__ t 
z 

It follows from (4.4) that 

1 2t(z+1+k-l) 4t = 2k+l e 2F1 (z+k+l;k-l+1;2k+2;1-e ) , 

so transforming (4.15) by formula (2) ,§2.9 of [2] we see that the 

respective matrix elements are indeed equal. The case l ~ ± z follows 

from the preceding case (l ~ ± z). Indeed, 

rr 0 (a) = (by lemma 2) 
i;z,k;k,l;k,,{__ t 

rr 0 (a) = (by the prededing case) 
l; ,k;k,-l,k,-,l.. t -z 

rr ( a ) = (by ( 4 .1) ) 
l;k,-z;k,-l;k,-l t 

rr (a) = (by lemma 2) 
l;_k,z;k,-l;k,-l t 

The case I l 1 < I z I follows from the preceding cases ( I l I > I z I ) • 

Indeed, 

rr O 0 (a) = (by lemma 2) 
l; ,k;k,,{__;k,,{__ t 

z . 
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n (a) = (by the preceding cases) 
o;,e_,k;k,z;k,z t 

n o (a ) 
,;k, .{__ ; k , z ; k , z t 

(by ( 4. 4) ) 

1 2t(l+1+k z) 4t e 2F 1 (l+k+1;k-z+1;2k+2;1-e ) = (by (4.4)) 
2k+1 

Summarizing we have: 

THEOREM 2. i. If n is irreducible, then n 
,;k,z ,;k,z 

~ n , otherwise 
,; -z 
-k, 

ii. If 

then 

No other equivalences exist between the various subquotient representations 

of the principal series. 

Instead of proving explicitly the analogue of Theorem 5.10 of [6] for 

SL(2,~) we shall rely on a general result due to Barish-Chandra, the 

famous "subquotient theorem": 

Let G be a connected semi-simple Lie group with finite center, U 

a topologically completely irreducible representation of G on a Banach 

space, then U is Naimark-equivalent to a subquotient of a principal series 

representation of G. For this theorem see for instance [17] (theorem 

5.5.1.5) where one can also find a definition of topologically complete 

irreducibility. 

Using this a consequence of Theorem 2 is the classification of 



topologically completely irreducible representations of SL(2,C): 

THEOREM 2 1 .Every topologically completely irreducible representation of 

SL(2,a) on a Banach space is Naimark-equivalent to exactly one of the 

following representations: 

i. 'fTsk,z with 1Tsk,z irreducible (i.e. lzl > lkl or z-k i Zl) and z > O 
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(these are all even subrepresentations of principal series representations, 

cf [6], theorem 5.10. That this is true in general has been proved by 

Casselman) 

REMARK. For K-finite or unitary representations topologically complete 

irreducibility is equivalent to (topological) irreducibility ([17], 

remark on p.305, Proposition 4.3.1.7. and Proposition 4.2.1.3) • 

5. UNITARIZABILITY 

It is well-known (and clear from our definitions) that the conjugate 

contragredient (see [6],6.1) 'of 'fTSk'z, 'fTsk,z*, is equivalent to 'fTSk'-z 

so: 

* 

Now a necessary condition for unitarizability of a representation T 

is that it is equivalent to its conjugate contragredient •*· Applying 

the results of the preceding paragraph we find: 

1T irreducible, 1T * :::: 1T -sk,z sk,z sk,z 

(k, z) = (k ,-z) or (k, z) = (-k,z) -
i. z is purely imaginary, or 
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ii. k = 0, z is real, not an integer. 

iii. T * "" T <=> k = 0 
i;k,z i;k,z 

iv. cr * "" cr <=> k = 0 . 
i;k,z i;k,z 

We treat the four cases separately. Because of the equivalences we may 

assume z > 0 if z is real, as we shall do in case ii and iv. 

i. If z is purely imaginary then 1T is unitary • 
i;k, z 

iii. T ""TT , so T is always unitarizible. 
i;o,z i;z,o i;o,z 

For the remaining cases we have to decide whether the intertwining operator 

between the representation and its conjugate contragredient (which is 

unique up to a complex scalat, according to Schur's lemma) can be chosen 

to be selfadjoint and positive definite. This will be a necessary and 

sufficient condition for unitarizability ([6], theorem 6.4). Thus we proceed 

by determining the various intertwining operators. If 1r 1 and 1r 2 have the 

same K-content: HTI 1 = e Hj, HTI 2 = © Hj and A:H1r 1 ➔ HTI 2 is an intertwining 

operator, then A acts on each Hj as a scalar C .. If we fix j 0 and take 
J 

cj 0 = 1, then all cj are determined by: 

( 5. 1) C.{1r 2 (g)f.,f.) = (TI 1 (g)f.,f.) 
J J Jo J Jo 

P9sitive definiteness and selfadjointness of A is now equivalent to 

positivity of all C .. To apply the above we use formula (3.11) which gives 
J 

the nondiagonal matrix elements we need in (5.1). 

Case ii: take j = 0, then 
0 

C. = 
J 

( 1-·z) . 
J 

(l+z) . 
J 

( j =O , 1 , 2 , ••• ) . 

TI . (a ) 
i;o,-z;J,0;0,0 -t 

TI, - . Q O O (a ) '--o I Z i J 1 i I -t 

So TI is unitarizable if and only if O<z<l (we consider only the case z>O) 
i;o,z 

iv . take j O = 0 , then we find : 



C, 
J 

(1-z) . 
J 

(l+z) . 
J 

( j = 0, 1 , •.. , z-1) • 

For z = 1 we find the unitarizability of the trivial onedimensional 

representation. For z = 2,3,4, .. we find that the representations o~ 
"'o'z 

are not unitarizable. 

Using theorem 2 1
, considering the fact that two Naimark-equivalent 

irreducible unitary representations are unitarily equivalent ([17], 

Proposition 4.3.1.4), and using formula (6.8) of [6] for the redefined 

inner products, we see: 

25 

THEOREM 3. A.ny irreducible unitary representation of SL(2,<C) is unitarily 

equivalent to one and only one of the following representations: 

A > 0 

00 

2. The representation TT A (O<A<l) on~ Hj with respect to the inner 
~O' j=O 

product<,> defined by 

<f,g> 
( 1-z) . 
-- J1 
(l+z) . 

J1 

( f' g) 

(the closure being taken with respect to this inner product also). 

3. The trivial onedimensional representation. 

6. HISTORY OF THE PROBLEM 

Though our approach to the representation theory of SL(2,<C) seems to 

be new the classification of representations of SL(2,<t) has been obtained 

before, by different methods. The matrix elements have also been calculated 

before.GELFAND and NAIMARK [5] were, in 1947 the first to classify the 

unitary irreducible representations of SL(2,C). NAIMARK [8] extended this 

result in 1954 by classifying the completely irreducible representations on 

a reflexive Banach space, and wrote a survey article [9]. The problem 

is also treated in books: NAIMARK(1958)[10], GELFAND,MINLOS and SHAPIRO 
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(1958)[4] , GELFAND, GRAEV and VILENKIN (1962)[3], and RUHL (1970)[11] • 

Formula (2.15) for the matrix elements of the irreducible represent­

ations of SU(2) was first derived by WIGNER [18]. Formula (4.9) for these 

matrix elements can be found in [16]. 

Starting from the same integral representation as our formula (3.1), 

and inserting Wigner's formula STROM [14], and DUC and HIEU [1] in 1967 

derived our expression (4.4) for the matrix elements of the principal 

series; MAKAROV and SHEPELEV [7] did the same for (4.10), using Vilenkin's 

formula, in 1971. 

SCIARRINO and TOLLER [12] give symmetry relations for the matrix 

elements. STROM [13] finds a fourth order differential equation for the 

matrix elements. 
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