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1. INTRODUCTION

In this paper we study the representations of the group G = SL(2,C) of
2x 2 complex unimodular matrices. Our approach is almost identical to the
approach in [6], a paper which deals with the representation theory of
SL(2,TR).

In Section 2, we introduce the (nonunitary) principal series and de-
rive a canonical basis consisting of K-finite vectors in the principal
series representation spaces.

In Section 3 we calculate the matrix elements of the principal series
representations with respect to these bases, and we use this to decide when
the representations are irreducible, and to find the irreducible subquotients
in the reducible case.

In Section 4 we determine the equivalences which exist between the sub-~
quotient representations we have found, and applying Harish-Chandra's sub-
quotient theorem we use this to give a classification of the topologically
completely irreducible representations of G. (Here our approach differs
from that of [6], where completeness of the set of representations is proved
by considering the eigenfunctions of the Casimir-operator.)

In Section 5 we determine which representations are unitarizable. We
do this by determining when the representations of 4 are equivalent to their
conjugate contragredient, and when the intertwining operator can be normal-
zed so that it becomes positive definite. This allows us to describe the
gnitary dual of G.

In Section 6 we give a (certainly incomplete) history of the problem
in order to indicate what was already known.

All results in Sections 2,3,4 and 5 are obtained by noninfinitesimal
methods, i.e. without using Lie-algebras (except of course that Lie- alge-
bras are implicitly used when we apply the subguotient theorem). All re-
ducibility properties and equivalences are found by using explicit expres-

sions for the matrix elements of the principal series.



2. DEFINITION OF THE PRINCIPAL SERIES

G = SL(2,C€) is a six-dimensional semisimple noncompact Lie group with

Iwasawa decomposition G = KAN, where

( o B
k= ={(_ )=x@e |ladis? =1},
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/et 0

(2.1) A={\O e_t>=at|tem},

(i D-mteeed

which means among other things that the mapping KXAXN - G given by

I

N

(k,a,n) » (kan) is a real analytic diffeomorphism. Furthermore we have the

decomposition G = KAK: every g € G can be written as g = k,ak, with kl'k € K,

1772 2

a € A, but this expression is not unique.
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In particular,
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-1 I W B |
a, (k(o,B) = ‘\_et 5 ...) " k(a”,B) an,
implies:
- 2
eS = (e 2t| {2 o tlBIZ)i ,
1 e a
(2.3) < a = = 1 ’
(e 2t|a!2+e2t|8|2)7
1 _ etB .
(e—Ztlu|2+62t|Bl2)1

\

If we parametrize K by coordinates 8,¢,y as follows:

6 ei¢
(2.4) cos ) 0<6<"2,0<¢,v<2m

. i
sin 0 e

Q
I

Il

then the normalised Haar measure on K becomes:

(2.5) dk = T sin 26 ab d¢ dy.

j e~i8 0 1 - .
Let M = 1 ( ei6/ = u6|8 € K{f. M is the centralizer of A in K.

ﬁ, the collection of finite-dimensional irreducible representations of

M consists of the pairwise inequivalent elements Ek(k € % Z) given by

_ -2ike
(2.6) Ek(ue) = e .

(We write the elements of M in this way because it eliminates many factors
by % in our later calculations).

1 3 ] .
For j = 0,571,57.. let V7 be the (23j+1)-dimensional complex vector space

of polynomials in indeterminates z,12 with complex coefficients,

2
homogeneous of degree 2j.



J

K acts on V- by:

- f ! 3y .
(2.7) (m () (2,2,) = £ (21,2,))  (keX £eV)

2

(We consider (z ,22) as a column vector which can be multiplied from the

1
left by !¢ su2))

The representations ﬂj are irreducible, m, and m., are inequivalent

J1 12
if j1 # j2 and every finite dimensional irreducible representation of K is
_ 3 . 3 3 3 I gi
equivalent to a m,. V- has a basisv .-, v . A y V. iven b
q j _J —j+1 4 3_1 J 4 g y
j -, 3t 3+t
(2.8) Y@ (21’22) = z1 22 .

If we define an inner product ( , ) on vJ by

J J . .
(v ,V = § (3-£,) ' (5+£. ) !
ﬂl £2 ) /&1,32 1 1

then ﬂj is unitary.

3 -2ike_j
ﬂj(ue)vﬂ = e VK ’

so,as a representation of M,wj splits as a direct sum of EE'S

(£ =-3, -j+1,...,3-1, J), each of these occurring exactly once, so
. 5 £ Jlifk-jezz x| <3
(2.9) dim Hom, V=, v = 1 0 otherwise ’

g€

k . . . .
where V = ¢ is the onedimensional vector space on which the represent-

i &
ation Ek is realised, Hom (VJ, v k) is the space of M-intertwining

M

. . . E

linear mappings a:v) - ng.If dim HomM(Vj, ng) = 1, then HomM(VJ,V k)
3 3%

is spanned by A .: V- >V = C given by

r

J_
(2.10) Ak,j Voo = 6k,£

Now we are ready to define the principal series of representations



(gk € ﬂ, Zz € €C) of G on Hilbert spaces H : For Ek € ﬁ, z € C

T
Eklz E 1 Z
let Cgk 7z (G) be the space of continuous functions £ :G - vEk satisfying
14 .

the relation
-1 -2(z+
( ) e (z+1) loga

(2.11) f(g man) = § f(g) Vg e G, me M, a € A, n € N,

k

where log: A > IR is defined by log at = t.
G acts on C 2 (G) by

Er
-1
(2.12) (m (g)f) (x) = £(g "x)(x,9 € G)
i 2
Define an inner product ( , ) on CE ” (G) by
kl
(2.13) (f,9) = J f(k)g(k)dk
K
and let HE ” be the closure of CE 2 with respect to this inner product.

The operators ﬁgk’z (g) can be extended uniguely to bounded operators on

the separable Hilbert space H which we shall also denote by 7

Eklz Ek’z (g)-

Then T is a strongly continuous representation of G on Hgk’z' WEk:Z is

£,z
kl
unitary, if and only if z is purely imaginary. ﬂEk,Z is the representation

of G induced by the onedimenéional representation “Ekrz of the standard

minimal parabolic subgroup B = MAN defined by
(man) = Ek(m) e2z loga .

“ak,z

The restriction of ﬂg . to K splits as a unitary direct sum of irreducible
. 14

representations Hgk’z equivalent to Vj, each Jj occurring at most once. To

be more precise:

(2.14) H = & as a K-representation -
>

3
klz 5 |kl Eklz

This follows immediately from (2.9) and the Frobenius reciprocity theorem
if we observe that the restriction of nglz to K is just the representation

of K induced by the representation Ek of its subgroup M (this is



because of the Iwasawa decomposition). We now exhibit non-trivial elements

N . : _2 o+ _
of Hgk?z : For A € HomM (Vj,vgk), v € Vj let f(kan) = e (z 1)logaz-\('frj(k 1)V),

then f ¢ Hgk,Jz- In fact the mapping v ® A - £ defines a K-intertwining

isomorphism VI ® Hom, (VJ,VEk) > HJ if we let K act trivially on Hom

3 j . .z 5 . )
(Vv Ky, Now take v = vf?'((J—K)'(j+£)') A= Ak J.((j—k)l(j+k)5)%

14

(see (2.8) and (2.10)).

32 3L _

2

-1 3
(ﬂj(k(a B) v )(z1 5

£

1Z.) = (oczl+8z2 (-Ezl+az

J=L. o3+L [F-2\(I+L\ K J-Z- j-f-x Vo er v, Vv J+e-v
KZO vZO < \( ) z4 22 (-B) z, 2,

min(j-£,3-k) (3€\/ 3+L s fek = k- -
) ( € Xj—k-K 0 I () ITRgl SR
k=max (0, -£-k)

This gives us an element fﬁ X € Hg 2
kl
2.15 £ (k(a,8)) = ((J"k)' I+ Vs
( ) K,k( (a,8)) Gt 1 ( j+£),,

'm%n(j_g’j_k) (j—ﬂ\( i+2 Kej—Z-K(_E)j-k-K_£+k+K )
(0,-k-x) \ ¥ NIk </ i
k=max (0, L~

Observe that the functions f% (k) are matrix elements of the representation

5 defined by (2.7) with respect to an orthonormal basis:

Il

(0 = 0THE=0 T G0 D v, (-0 LG H T )

J
% K

e g E RN S
((G=2) G+ 1Y) Vo wj(k)((J ORNGLORDIE A

3. CALCULATION OF THE MATRIX ELEMENTS OF 'ITE 2 REDUCIBILITY PROPERTIES.
4

k

We calculate the matrix elements of w

£,z with respect to the ortho-
k7



gonal basis consisting of the fi K and then use Theorem 3.2 of [6] to
4
deduce which ngk 5 are irreducible and to determine the irreducible

4
subquotient representations in case ﬂgk,z is reducible. Let

j2 j1
2 (g) = (Trg z(g)fﬂz,k’ £

17d97%9 k' Lk

) .

™ .
gkrzijlﬂ

By (2.3), (2.11), (2.12), (2.13) and (2.15) we get:

m™ . .
Ekrzijll’@1/]21£2 (at) =

(3.1) .
2, - (z+1) J2

-2t 2 2t
o2 + 2F[8] %) 7

_ k( 1 gt fjl (k( ))dk ( )
= | (e KK (@ B7) Kl’k o, B o,B

K

Some simple considerations show us that a large number of these functions

must be zero : M acts on fz K as & ,. The elements of A commute with those
r .

e
of M, so M acts on ﬂgk,z(at)fz,k again as Eﬂ, so
(3.2) (n @)e? L5l oo 50 4L o
: gk,z t Ez,k’ Zl,k 1 2

so from now on we assume Kl = 22 =L,

N 281512 = o2t (1= (162t g]?) -

(3.3) NG

62t|8|2 - e_2t(1¥|8‘2) + e
We expand this in a power series in (1-e4t) and change the order of
summation and integration to find an expression for the matrix elements
involving power series in (1—e4t)_(These, and all the following expressions
only hold for sufficiently small values of l—e4t, but as the matrix
elements are real analytic functions of t it suffices to know them in

a neighbourhood of t=0. Thus, from now on we shall tacitly assume that

in all expressions t is sufficiently small.)

Write



p 2 k(o,8)) = (-1) 27" (o7 BN
ﬂ,k, vV ! \ jz—f_)!(j2+»@)!/
(3.4)
. /j2—£\ j2+£ GKsz_K—K+v§j2—k—K+v. &£+k+K
\ « A3 —k—K)
2
i, . J

2 2. v
- iplied b nd
(Fﬂ,k,K,v is the k-th term of fﬂ,k multiplied by ([BI ) ) a

(3.5) TV LLk,k,v Tk Ot
\)[K
Then
(3.6) T . . (a, )
Ek’z,Jl,LJz,l’. t
2t (241423 5~L-k) m%n(jz—ﬂ,jz—k) —det
= e .
k=max (0,-£-k)
o jl,jz;ﬂ;k (z+143,) 4. v
.z C ] v (1—e ) 4
V,K V.
v=0 .
Now we claim that
= < 9 - 3 - .
(3.7) C\)’K 0 for v < 31 32 1

J ‘ - -
Indeed, FZ K. KoV is contained in the space W of polynomials in a,a,8,8,
7 14 14
of degree < 2j2 + 2v. W is invariant under the left regular action
of K. As a representation of M,W splits into one-dimensional

subrepresentations Ek (k = =j,-v, —j2—v+1,...,j2+v). fﬂjl is contained

2



in a left K-invariant irreducible subspace which contains Ej as an
1
HM-representation. Hence W cannot contain the representation ﬂjl of K.

Now (3.7) follows from the orthogonality relations for the left-regular
representation of K.

Next we show that

J,rd,id,5k
(3.8) C 1772772 # 0 for j2 <

0 - . j °
3y 32.0 1

We do this by giving quite explicit expressions for certain matrix
elements, which we shall also need for the study of unitarizability of

the representations.

(3.9) ™ L. L. o« (@) =
£k12131,32,32132 t

31,32;32,k (z+1+3,)

. . 4
eZt(z+1+32 k) z c 2 v o t. v

v=0 v,0 vl

with

v,0

s . s v ga Vs s 'L
_ (_l)jl+32 Zk/ 232\/32 k).(?2+k).(j1 k).(31+k).\

. . s /
\jz-k/\(232)!(31-32)!(31+32)! ’
jl_jQ/jl—j2\/j1+j2 \ . _ J tkik G ckeky
Y U e N\5.-kec) (-1) [ (aa) (BB) dk (a,B)
k=0 1

K

because of (2.15),(3.4) and (3.5).

For the integral over K we can write



10

ﬂ/2 5 J.+k+k 5 jl—k-K+v
(cos™6) (sin”6) d sin 6 =

j2+k+K j1~k—K+v
(1-t) t dat =

T(3,+ktict]) T (3, ~k=ic+v+l)
rFa

D(3,+3 ,+v42)

where we used (2.5) and the well-known integral representation for the

beta-function:

1
B(z,w) = 12T { 2 oy lae ([27,51.5(1)) .
(z+w)
0

]11327321k

Substitution of this last identity into the expression for Cv 0
14

1
and introduction of the new summation variable k = jl—j2—K yields:

3 3 o 1 3 ) 1 3 — ]
le,Jz,Jz,k ) {232 \ (31+32).(32 k+v) ! )
3 p— 3 — ¥ 2 s ¥
v,0 \32 k) G,R T (G400

(3.10)

R *
Ezg—k).(j2+k).(31 k).(jl+k). \ B (5. 1]l Joktlsl)
J 27172771772 2

( (2j2)!(j1—j2)!(j1+j2)!

/ 2j2\ (3,430 (Gy=k+v) ! ﬁ(j2—k)!(j2+k)!(j1—k)!(j1+k)- )%
\jz—k/ (3,=k) 1 (G 3, (23, 13, -3,) P (5 +Tp)

(V)31-3,
j—k+1) . .
(3, 3,73,



11
where we used the relation

(c-b)
2F1(—n,b;C;1) =9
. n

(n=0,1,2,...,c # 0,-1,-2,...,-n+1).

This proves (3.8).

For later use in §5 we write down an expression for the matrix

elements T . . . . (a,) which follows from the above calculations
Ek'z’j].’JZ;jZ'jz t

i< 5 ).
(32 s 31).
(3.11) e (at) =

klZ;jlljZ;j2Ij2

.- SN (s s YU Lyt - _

= (—1ﬁ2 71 <(232)'(31+J2)'(31 k)'(31+k)'>7 (Z+1+j2)j1“j2
(3,=35) 2 (F,=k) ! (F,+k) ! 5 F1) '
2t (z2+],-k+1) 3,7 at
. e 2 (1~e4t) ! 22F1(z+1+j1,j1—k+1;2j1+2;1—e ) .

Using (3.7), (3.8) and theorem 3.2 of [6] we find the reducibility

properties of the Tg " Denote the (j1!j2) generalized matrix element

(see [ 6]p.7) by ﬂgk,z,jl,jz, then it follows from (3.6),(3.7) and (3.8)
. > . .

that for 3423,-

(3.12) ﬂ (a,) = Oé=;\(z+1+j2)j -3 =0 .
1 -2
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For the case jlsj2 we use the fact that the conjugate contragredient

of w is equal to m -, SO
Ekrz Ek, z
T . . (a) = - . . (a )
Ek12131,£1132,£2 t Ek' 21321’621311'61 -t
This shows that for j2 > j1
(3.13) m . . (a,) =0 == (z-3,), . =0
Ek,z,31,32 t 23,73,
Because of the decomposition G = KAK: 7 (a) =0T } . (g)
. . t €, 12:3,43
klzljlljz k 1 2

0 on G.

Applying Theorem 3.2 of [6] we obtain a theorem analogous to
Theorem 3.4 of [6] (an asterisk at some place in the diagrams occurring
in the theorem means that all generalized matrix elements ﬂiklzrjlrjz
corresponding to that block are nonzero):

THEOREM 1. Depending on Ek and z the representation Ty rz of
SL(2,Q) has the following irreducible subquotient representations

and subrepresentations:

a. ﬁg 2 is irreducible if and only If z # i_(|k|+j) for every positive
kl

integer j.

b. z = —(|k[+j) for some positive integer j:

m . ..
Ekrzr31132

>
3y ‘v i, [|x|, -z-11 [-z,%)
Olx|, - z - 1] * *

[-z,) 0 *




Irreducible finite-dimensional subrepresentation on

-z=-1 3
® H
J=lk| £ .2

irreducible infinite-dimensional subquotient representation but not

subrepresentation on

o Hé i
j=-z k'7 °
c. z = |k|+j for some positive integer j

w . .
Ekrzrjlljz

. ¥ —,* [lkll Z_]-] [er)
I I

[lx|,2z-11] * 0
[z’m) 3k %

Irreducible finite-dimensional subquotient representation but not

subrepresentation on

(Here [a,b] means {a,a+l,a+2,...,b-2,b-1,b}, so the summation

index j increases in steps of 1.)

13
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4, EQUIVALENCES OCCURRING BETWEEN THE SUBQUOTIENT REPRESENTATIONS OF THE
PRINCIPAL SERIES

We want to determine which of the irreducible representations of
SL(2,€) we have found are Naimark-equivalent to each other. We want
to apply Theorem 4.6 of [ 6 ] and therefore need to compute diagonal
matrix elements. In what follows we shall denote by T z and o the
Ekl Ek,z
infinite-respectively finite-dimensional proper subquotient representation

of WEkIZ in case ﬂgk,z is reducible. et.c. will have the

Tgk;zljlljz
obvious meaning.

We shall first show that ﬂg_k’_z ~ “gklzl in case Wék’z is irreducible,

= = i i ducible. This
and og_k’_z = nglz ’ TE—k'—Z Tgklz in case “Eklz is reduci

will be proved when we have shown that

(4.1) TrEk,z;j,ﬂ;j,ﬂ(at) = 1TE_k,—z;j;ﬂ;j,ﬂ(at) Vk,z,3.4

(by [6], theorem 4.6, and (3.2)). Now, from (2.15),(3.4),(3.5) and (3.6)

2t (z+1+425-£-k) (3-k) ! (j+k) !

(4.2) =
e iz, i3, 0% T GO TG0
. o4xit (-4 ><'j+£ >
Ky \ “1 j_k—Kl
4 i %, 147 4
) (j ) ('zigK ) ) Cork JK' (Z$-+J)v (1-e t)v
K. M ] 27/v=0 ) .
2 %2
with
. K, K _ _ 2j=-f-k#v-k, -k
(4.3) Cfrt,jK - (-1) 1 72 I (aa)ﬂ+k+K1+K2(BB) 2dk(a,8) _
K18y
K
+ 2
Kl K2 L/ — —
-1) J (1-sin2g) EHRH1+K2 (o ,2g) 2T LIV kg (420



————————

15

Kk +k_ T (L+k+k

1%, +1)

1+K2+1)r(23-£—k+v-K1—K2

= (-1

T (25+v+2)

Substituting (4.3) in (4.2) enables us to express the power series as

hypergeometric functions:

e2t(z+1+2j—£—k) (3-k) ! (3+k) !

4.4
(4.4) " G-D L (G+D !

. . pla,) =
gk.z;j,ﬂ,j,ﬂ t

—aert (52 3L\ ¢ (3-8 3+L
Le \JKl /\jzk—Kl/ ) \JK >\j3k—K2/

K2 2

(_1)K1+K2 st
Fl(z+j+1,2j-£-k-n1~K2+1;2j+2;1—e ).

(23+1) ( >
+
Z+k+)<1 K2

Using formula (2), §2.9 of [2] for the transformation of the hypergeometric

function we find that expression (4.4) is equal to

G-0)t (G+0) ! vj—E—Klj\j+k—(j—£—K1),

/

(4.5) Q2E(-z+1423-L41) Gk L (G L g ( SRR VAR TV
K
1

(§=Lk )+ (§-L=k.)
(-1) 1 2

j—K—KZ) j+k-(j-£—K2)> ( 23 \

2 (2j+1)\K—k+(j—£—K1)+(j—K—K2)f

K

. 2F1(—z+j+1,2j—ﬂ+k—(j—ﬂ—K1)—(j—Z—K2)+1;2j+2;1—e4t).
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If we write Ky instead of j—K-K1 and «,

expression we find that it is equal to w

instead of j-ﬂ-Kz in the last

t_xr-2zi3,L;3,£(at) as we had

claimed before.
Now we ask whether the equivalences we have just established are the
only ones occurring between the various subquotientrepresentations of
the principal series. By (4.4):
£) 4+« 2

(a ) = C(l+c j(l—e4 +d (1-e~ ") %4, )

™ PN .
gklZ;JlJ7JI] t k,z, k/2z,]

for a certain normalization constant C # 0, with

_ _-zk
°k,z,3 2942 -

(4.6)

respectivel kil
£ iz C Yo Tel e

1.1 .
equivalent, then zk = z k . Comparing K-contents we conclude:

So if two subquotient representations of T

1 1
T m_ 1 irreducible, 7 ~oT 1 = (k,z) = (k" ,z") or
gk,zl lerz gk’z gkllz
1 1
(k,z) =(=k",-2") i
T L= (kez) = (k1,2Y) or (k,2) = (<k',-z%);
£ 12 £.1+2
k k
o = g 1 1 11
£, 12 akl,zl = (k,z) = (k ,z ) or (k,z) =(-k ,-z) -

Furthermore ng,z can clearly never be equivalent to a T€k1,zl or a

ﬂgkllzl , so the only possible equivalences except the ones we have already

found are between “Ek,z and ng,k( and then also Tg_z,_k) for |z| < |x|,

z-k € Z . We claim that these equivalences do indeed exist. Because of

the equivalences we have already proved we may assume k > O and then need

only prove T z =T x for Izl <k, z-k € Z . So we have to prove that
gk’ gz’

the matrix elements wEk,Z;k,ﬂ;k,ﬂ (ag) and ngzrk;k,l;k,ﬂ(at) are proportional.
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To facilitate the calculations we derive some symmetry properties of the
functions f% X’ (see also [16] , chapter III, §3.6), and use these to
14

derive symmetry properties of the matrix elements of ﬂg 2"
kl

J _J =
LEMMA 1. a. lek (k(a,B)) = fklz(k(a,—B))-
b £ (k(3,-B)) = £, . (k(x,8)
° /e,,k 7 “f@,_k 7 -
PROOF. Write the normalized basis vector ((j—ﬂ)!(j+£)!)_%v£j of Vj as wﬁj'

j - -1, 3 J
a. fﬂ,k (k(a,B)) = (ﬂj(k(a,B) Jwp™ Wy ")

(wzj,nj(k(a,s))wkj> = (m (ko a,-8) " w w,)) =

J = ] i
fk,ﬂ (k(a,-B)) = fk,K(k(a' )

because the coefficients of the polynomial (2.15) are real .

b. ﬂj(k(O,-i))wﬂj = Py _ 7.

J

3 = _ZVy = = vl 3 _
lek(k(a, B)) = (ﬂj(k(a, B) wpm,w ")

<wj(k(o,i)>wj(k(a,s)'l)wj(k<o,—i)>w£j,wkj)

"1
. 14

) nj(k(o,—i))w%,jj<k(o,—i)>wkj) -
-1 3 3
(ﬂj(k(a,B)) W_prW_ ) = f_ﬂl_k(k(a,e))

LEMMA 2,

(a.) (a,) =

. . =T . . . . .
ﬂgklzijlr’@732r’€ t Eﬁlzijlrkijzlk t E_er;jll_’eijzr_'e(at)
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PROOF'.
: j -2t 2 2t 2. - (z+3j+1)
(ng,z(at)fﬁ?k ) (k(a,8)) = (e “"la|%4e"|g| 5 T EITH
: ft?k (k (e Fa,et8))
By lemma 1 a:
. (a) = (n, _(a)f 2o
gkIZ;jll’e;j2l’g t gkl ‘e k 'F— k
-2t (2 2t 2. —(z+j+1) 32 -t 3y
(e %Fla| 2T 18] %) £y k(e Tae “8)) £p (K (0,B)dk(a,B) =
K
2t 2 2t, (2. —(z+j+1) 32 -t 3y
(e %ol %eF8]%) £ plle "o e s)>fk pk(a,~B)dk(a,B) =
K
(T (a )sz ]1 =T . . (a,).
E'KIZ k, E' k, 1{ ££127]1rk;32fk t

The second equality is proved similarly by using Lemma 1 b.

Now we derive a slightly different expression for the matrix elements
which has the convenience that the exponential factors are independent

of the summation variables K1 and K2. If £ > -k, then we see:

e
3 _ oIt g3k Sk { (5+£) 1 (5+k) 1 1
(4.7) £l (k@ 8) = 8777 (-B) oD TG0t (T
~|al 2
F1 (=3+L,-3+k ; £+k+1; 5 )

8]

Now use formula (2), §2.9 of [2] and the fact that |oc|2 + [BIZ =

to transform this into a function of argument Ia]z and then

F
271 _
expand this expression again in powers of o and a.



The result is:

_ /(J k),(3+k) \%

(4.8) 5-£

z (- 1)3 -k-« ,j—ﬂ\{£+J+K\ K- Z+k+K K -k
) K /\K+k+K}

Proceeding analogously for the case £ < -k we find that in both cases:

L
3 NG SHIGE R
Ep i (KlaB)) = \G-DrG+D ) -

(4.9)
j-£

- ) (-1)

k=max (0, -£-k)

j-k-k [ F-L\[L+i+k\ k-L+k+k=L-k
\ e ke ) ¢ 0 B .

This gives us a new expression for the matrix elements:

2t (z+1+L-k) (§=k) ! (§+k) !

4.10 —3

(4.10) TTak,z;j,/&;j,/&(at) © G-0) T (3+D) ¢
=L K, +K . .
ey b2 (3—£\//E+3+K1\’ _
K oK, = max (0, -£-k) |<1'\'()'-'—k-l"(l’

/j—/@\/£+j+l<2\ '€+k+l<1+|< )L (L-k) !

| N 1
\ K2,\£+k+K2} 2ﬂ+K1+K2+1).

4
£-k+1; 28+k, +k +2;1-e t)

F (z+1+£+K1, ; 175

271

for £ > k, and a similar expression for £ < k. For £ 2 + z this yields

19
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2t (=z+1+k+8) (k-2) ! (k+z)!

(4.11) ”gz,k;k,ﬂ;k,ﬁ(at) =€ (k=2) ! (k+2) !
o z,k, L
7S (1-e%5HV
v=0 v}
with
k-£
o2kl _ ) (_1) “2 (k K\/K+k+K \(k—ﬂ\/£+k+K \
v - £+z+K A NL+zt+cs )
Kl,K2=O 2
(£+z+K1+K2)! G (k+£+1+K1)v(£—z+1)v .

(28t +ie 1) ! (284K +ic_+2)
1 72 vV

Now sum over Kl to find:

K ’
(4.12) cz okl ke Z)' Roztv) ! (tliv) 1y (-1) 2 (KHEReQ)!

v ( (k- Z)' (L+z) ! K, KZE (k—Z—K2)1(2£+K2+v+1)!

/k+£+v+1, £+z+p2+1, L-k; 1\
/
/7

"3 2 Wzt 204k y+v+2

Now the 3F2 of unity argument in this expression is terminating because

£-kx < 0, and Saalschiitzian, so it can be summed in terms of I'-functions.

(for the relevant facts on 3F2 funtions see [2] , §4.4). We then find:

z,k, L (k=£)! (L-z+v)!
v T (k-z) ! (£+z) !

(4.13)
T (-1) (k+£+K2)! (z=k=v), _p (—KZ)k—K

2 Kz.f(k—E—Kz)!(2£+K2+v+1)!(£+z+1)k_£(—k—£-v—1—K )

The only nonzero term is the one with k., = £-k, so at last we arrive at:

2
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z,k, & _ (k=0) ! (k+€+v) 1 (2K) ! (k=z+v) !

(4.14) C
v ((k-2) 1P

SO:

(4.15) WEZ,k;k,Z;k,K(at)

It follows from (4.4) that

"gk,z;k,z;k,ﬁ(at)

= 2k+1 € 2

T 2k+1 271

(k+z) ! (2k+v+1) !

4

—z+14k+L '
1 2t(-z )Fl(_z+k+1;k+ﬂ+1;2k+2;1—e

F (z+k+1;k-£+1;2k+2;1—e4t)

1 e2t(z+1+k—1_)

so transforming (4.15) by formula (2),§82.9 of [2] we see that the

respective matrix elements are

from the preceding case (£ = *

“gz,k;k,z;k,z(at) =

“g_z,k;k,—z;k,—z(at)

Trgk,—z;k,-ﬁ;k,-ﬁ(at)

m

g ,Z;k,—ﬂ;k,—z(at)

-k

ﬁgk,z;k,ﬁ;k,z(at)'

indeed equal. The case £ < + z follows

z) . Indeed,

(by lemma 2)

(by the prededing Ease)
(by (4.1))

= (by lemma 2)

The case |£| < |z| follows from the preceding cases (|£| > |z|) -

Indeed,

"gz,k;k,z;k,ﬂ(at)

(by lemma 2)

t

14

).
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= (by th receding cases)
ﬂgzlk;klz;krz(at) (by P g

T (at) = (by (4.4))

Ek, K;k,z;k,z

1 2t (€+1+k 2)

4
P, (B+cH k=241 2k+2; 1 e Y - by (4.4))

2kt © 2
T (a,)
£ ,z:k, ik, Lt
k
Summarizing we have:
THEOREM 2. i. If T is irreducible, then T ~oq ", otherwise
e —— g .z g 1z g =z
k k _kr
o] =g and T = T .
gkrz E_kr- gkrz E~kl—z
ii. If
Izl < |k[ , z-k € Z,
then

m = T
gkrz gzrk .
No other equivalences exist between the various subquotient representations

of the principal series.

Instead of proving explicitly the analogue of Theorem 5.10 of [6] for
SL(2,C€) we shall rely on a general result due to Harish-Chandra, the
famous "subquotient theorem":

Let G be a connected semi-simple Lie group with finite center, U
a topologically completely irreducible representation of G on a Banach
space, then U is Naimark-equivalent to a subquotient of a principal series
representation of G. For this theorem see for instance [17] (theorem
5.5.1.5) where one can also find a definition of topologically complete
irreducibility.

Using this a consequence of Theorem 2 is the classification of
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topologically completely irreducible representations of SL(2,C):

THEOREM 2'.Every topologically completely irreducible representation of
SL(2,Q) on a Banach space is Naimark-equivalent to exactly one of the
following representations:

irreducible (i.e.|z| > |k| or z-k ¢ Z) and z > 0 ;

ie g,z with T2

ii. og 2 (|z| < |x|, z=k e Zz), z <0 .

(these are all even subrepresentations of principal series representations,
cf [6], theorem 5.10. That this is true in general has been proved by

Casselman)

REMARK. For K-finite or unitary representations topologically complete
irreducibility is equivalent to (topological) irreducibility ([17],

remark on p.305, Proposition 4.3.1.7. and Proposition 4.2.1.3) .
5. UNITARIZABILITY

It is well-known (and clear from our definitions) that the conjugate
. . *- . —
contragredient (see [6],6.1) of TeerZ ¢ Mg,z 0 1S equivalent to T2
so:
* *
T 21— _,G = 0 -

2 &, Exr? by

Now a necessary condition for unitarizability of a representation T
is that it is equivalent to its conjugafe contragredient t*. Applying

the results of the preceding paragraph we find:
L irreducible, w ¥ o =
Eklz ! Eklz Eklz

(k,z) = (k,-z) or (k,z) = (-k,z) <=

i. z is purely imaginary, or
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ii. k = 0, z is real, not an integer.
% . —_
iii. T =T =k =0 -
gk’z Ek’z
. X o =
iv. o =6} &= k =0 -
gklz gk’z

We treat the four cases separately. Because of the equivalences we may
assume z > 0 if z is real, as we shall do in case ii and iv.

i. If z is purely imaginary then T is unitary -

Eklz

iii. TEOrZ = ﬂgz'o ; SO T . is always unitarizible.

For the remaining cases we have to decide whether the intertwining operator
between the representation and its conjugate contragredient (which is

unique up to a complex scalar, according to Schur's lemma) can be chosen

to be selfadjoint and positive definite. This will be a necessary and
sufficient condition for unitarizability ([6], theorem 6.4). Thus we proceed
by determining the various intertwining operators. If w, and w_ have the

1 2
J

same K-~content: HTrl = @& H, sz = & Hj and A:HTrl +‘HW2 is an intertwining

operator, then A acts on each Hj as a scalar Cj. If we fix jo and take
CjO = 1, then all Cj are determined by:

(5.1) C.(m (PELE, ) = (T (9E.,£. ) (geG, £, ¢ H, £ ¢ nl0).

P AR Kk PN (R R P 3 jo
Positive definiteness and selfadjointness of A is now equivalent to
positivity of all Cj. To apply the above we use formula (3.11) which gives
the nondiagonal matrix elements we need in (5.1).

Case 1ii: take j0 = 0, then

"g,,2:0,0:3,0%¢) Tg1=213,070,0 -t
C. = = — =
b T ,-2:0,053,01%)  Te ,z:5,050,0 B
(1—2)j
= T 002
J
So NE is unitarizable if and only if 0xz<l (we consider only the case z>0)

OI

iv . take j0 = 0, then we find:
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(1-2) .,
c. = J

5 ?E:E3j (j =0,1,...,2-1)-

For z = 1 we find the unitarizability of the trivial onedimensional
representation. For z = 2,3,4,.. we find that the representations O€O’Z
are not unitarizable.

Using theorem 2', considering the fact that two Naimark-equivalent
irreducible unitary representations are unitarily equivalent ([17],

Proposition 4.3.1.4), and using formula (6.8) of [6] for the redefined

inner products, we see:

THEOREM 3. Any irreducible unitary representation of SL(2,C) is unitarily

equivalent to one and only one of the following representations:

1. "Ek,ik' A >0,
2. The representation ﬂg A(O<A<1) on ® HI with respect to the inner
0’ j=0
product < , > defined by
(1-2), . .
= J1 b J2
<f,g> (132) . (£,9) (f € H*1,g € H 7)

J1

(the closure being taken with respect to this inner product also).

3. The trivial onedimensional representation.
6. HISTORY OF THE PROBLEM

Though our approach to the representation theory of SL(2,C) seems to
be new the classification of representations of SL(2,C) has been obtained
before, by diffefent methods. The matrix elements have also been calculated
before.GELFAND and NAIMARK [5] were, in 1947 the first to classify the
unitary irreducible representations of SL(2,C). NAIMARK [8] extended this
result in 1954 by classifying the completely irreducible representations on
a reflexive Banach space, and wrote a survey article [9]. The problem

is also treated in books: NAIMARK(1958)[10], GELFAND,MINLOS and SHAPIRO
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(1958)[4] , GELFAND, GRAEV and VILENKIN (1962)[3], and RUHL (1970)[111] .

Formula (2.15) for the matrix elements of the irreducible represent-
ations of SU(2) was first derived by WIGNER [18]. Formula (4.9) for these
matrix elements can be found in [16].

Starting frém the same integral representation ag our formula (3.1),
and inserting Wigner's formula STROM [14], and DUC and HIEU [1] in 1967
derived our expression (4.4) for the matrix elements of the principal
series; MAKAROV and SHEPELEV [7] did the same for (4.10), using Vilenkin's
formula, in 1971.

SCIARRINO and TOLLER [12] give symmetry relations for the matrix
elements. STROM [13] finds a fourth order differential equation for the

matrix elements.

REFERENCES

[1] puc, D.V., & N.V. HIEU, On the theory of unitary representations
of SL(2,@), Ann. Inst. Henri Poincaré Section A 6 (1967),17-37.

[2] ERDELYI,A., W. MAGNUS, F. OBERHETTINGER & F.G. TRICOMI, Higher

Transcendental Functions, vol. 1, McGraw-Hill, New York 1953.°

[3] GELFAND, I.M., M.I. GRAEV & N.J. VILENKIN, Generalized functions,

Vol. 5, Academic Press.

[4] GELFAND, I.M., MINLOS & SHAPIRO, Representations of the rotation and
Lorentz groups and their applications, Pergamon Press,

Oxford, 1963.

(5] GELFAND, I.M. & M.A. NAIMARK, Unitary representations of the Lorentz

group, Izwestia Akad. Nauk. U.S.S.R., 11(1947), 411-504.
[6] KOORWINDER, T.H. A global approach to the representation theory of
SL(2,IR), Rapport TW 186/78,Mathematisch Centrum, Amsterdam,1978.

[7] MAKAROV, A.A. & G.I. SHEPELEV, Wigner functions for hyperbolic
rotations in the homogeneous Lorentz group, Sov. J. Nucl.

Phys. 12 (1971),596-597.



[8] NAIMARK, M.A., On the irreducible representations of the Lorentz
group, Doklady Akad. Nauk. U.S.S.R. 97 (1954), 969-972.

[9] NAIMARK, M.A., Linear representations of the Lorentz group, Amer. Math.
Soc. Translations Series 2, Vol. 6(1957), pp. 379-458.

[10] NAIMARK, M.A., Lineare Darstellungen der Lorentzgruppe, Deutscher

Verlag der Wissenschaften, Berlin, 1963.

[11] RUHL, W. The Lorentz group and Harmonic analysis, Benjamin, New

York, 1970.

[12] SCIARRINO, A. & M. TOLLER, Decomposition of the irreducible unitary
representations of the group SL(2,T) restricted to its sub-

group SU(1,1), J. Math. Phys. 8 (1967),1252-1265.

[13] STROM, S., On the matrix elements of a unitary representation of the

homogeneous Lorentz group, Ark.Phys. 29 (1965),467-483.

[14] STROM, S., A note on the matrix elements of a unitary representation

of the homogeneous Lorentz group, AYk. Phys. 33 (1967),465-469.

[15] STROM, S., Matrix elements of the supplementary series of unitary

representations of SL(2,C), Ark. Phys. 38 (1968),373-381.

[16] VILENKIN, N.J., Special-functions and the theory of group represent-
ations, A.M.S., Translations of Mathematical Monographs, vol. 22

(1968) .

[17] WARNER, G. Harmonic analysis on semi-simple Lie groups I, Springer

Verlag, Berlin, 1972.

(18] WIGNER, E.P., Group Theory and its applications to the Quantum

Mechanics of atomic spectra, Acad. Press, New York (1959).

ACKNOWLEDGEMENTS

The author wishes to thank here T.H. Koornwinder for suggesting the
problem, for pointing out some errors during the work and for several valu-

able discussions.






