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How many jumps? Variational characterization 0£ the limit solution of a 
*) singular perturbation problem 

by 

O. Diekmann & D. Hilhorst 

ABSTRACT 

Using two alternative methods we describe the limiting behaviour, as 

£ i O, of the solution y of the nonlinear two-point boundary value problem 
£ 

£y" + (g-y)y' = 0, y(O) = O, y(l) = 1, where g is a given function. The 

first method is based on the theory of maximal monotone operators, whereas 

the second one uses duality theory. 

KEY WORDS & PHRASES: singularl!J perturl:Jed nonlinear two-point boundary 

value problem, maximal monotone operator, convex 

analysis, duality theory 

*) This report will be submitted for publication elsewhere. 





1 . INTRODUCTION 

Consider the two-point boundary value problem 

e::y" + (g-y)y' o, 
BVP 

y(0) o, y (1) 1, 

where g E L2 = L2 (0,1) is a given function and y E H2 is unknown. As we shall show, 

there exists for each e:: > 0 a unique solution ye::, which is increasing. We are inter

ested in the limiting behaviour of ye:: as e:: + 0. 

Motivated by a physical application we previously studied a similar problem in 

a joint paper with L.A. Peletier [2]. Using the maximum principle as our main tool we 

were able to establish the existence of a unique limit solution y0 under certain, 

physically reasonable, assumptions on the function g. In some cases we could charac

terize y0 completely, in others, however, some ambiguity remained. 

Here, inspired by the work of Grasman & Matkowsky [4], we shall resolve this 

ambiguity by using a variational formulation of the problem. In fact we shall present 

two different methods of analysis. The first one is based on the theory of maximal 

monotone operators, whereas the second one uses duality theory. 

During our investigation of BVP we ex~erienced that it could serve as a fairly 

simple, yet nontrivial, illustration of concepts and methods from abstract functional 

analysis. In order to demonstrate this aspect of the problem we shall spell out our 

arguments in some more detail than is strictly necessary. 

The organization of the paper is as follows. In Section 2 we present the first 

method. We prove, by means of Schauder's fixed point theorem, that BVP has a solution 

ye:: for each e:: > 0. Moreover, we show that BVP is equivalent to an abstract equation 

AE, involving a maximal monotone operator A, and to a variational problem VP, involv

ing a convex, lower semi-continuous functional w. Subsequently we exploit these formu

lations in the investigation of the limiting behaviour of y as e:: + 0. (The idea of 
€ 

using the theory of maximal monotone operators was suggested to us by Ph. Clement.) 

It turns out that ye:: converges in L2 to a limit y0 . Moreover, y0 is abstractly char

acterized as the projection (in L2) of g on V(A). We conclude this section with some 
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results about uniform convergence under restrictive assumptions. 

In Section 3 we study a minimization problem P related to VP. We begin by proving 

* that P has a unique solution. Next, we present a dual problem P and we deduce from 

the extremality relations between primal and dual problems that P and BVP are equiva

* * lent. Putting E = O in P we obtain a formal limit problem P0 • Subsequently we asso-

* ** ciate with P0 a dual problem P0 and we show that the solution of P tends, as E + 0, 

** ** to the solution of P0 . A rewriting of P0 reveals the relation with the result of 

Section 2. This treatment of the problem has grown out of conversations with R. Temam 

who, in particular, indicated to one of us the appropriate functional analytic setting 

for studying the minimization problem. 

In Section 4 we give concrete form to the characterization of y0 . In particu-

lar we present sufficient conditions for a function to be y0 and we show, by means of 

examples, how these criteria can be used in concrete cases. The first part of the title 

originated from Example 4. 

In Section 5 we make various remarks about generalizations and limitations of 

our approach. 
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2. THE FIRST METHOD 

2.1. THREE EQUIVALENT FORMULATIONS 

In order to demonstrate the existence of a solution of BVP, let us first look at 

the auxiliary problem 

u" + (g-w)u' O, 

u(O) o, u (1) 1, 

where w E L2 is a given function. The solution of this linear problem is given expli

citly by 

uCx) 

with 

CCw) 

CCw) 1 expCJ Cw CF;) - g (F;)) di';-) di;; 

0 0 

1 I;; 

cf exp cf 
0 0 

-1 
CwCF;) -g(F;))dF;)dl;;) . 



From this expression it can be concluded that u' > 0 and 0 $ u $ 1. So if we write 

u = Tw, then Tis a compact map of the closed convex set {w E L2 0 $ w $ 1} into it

self and hence, by Schauder's theorem, T must have a fixed point. Clearly this fixed 

point corresponds to a solution of BVP. Thus we have proved 

2 
PROPOSITION 2.1. For each£> 0 there exists a solution y EH of BVP. Moreover, any 

2 £ 
solution y EH satisfies (i) y' > 0 and (ii) 0 $ y $ 1. 
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The a priori knowledge that y' is positive allows us to divide the equation by 

y'. In this manner we are able to reformulate the boundary value problem as an equiva

lent abstract equation 

AE (I+cA)y g 

where the (unbounded, nonlinear) operator A: V(A) ➔ L2 is defined by 

(2. 1 l 
u" 

Au = -u' -(ln u')' 

with 

(2.2) V(A) {u E L2 I u E H2 , u' > 0, u(0) 0, u (1 l 1}. 

PROPOSITION 2.2. The operator A is monotone. Hence the solution of AE (and BVP) is 

unique. 

PROOF. Let u. E V(A) for i 1,2 then 
l. 

= f (ln u' - ln u') (u' - u') > o 1 2 1 2 -

(because z,..... ln z is monotone on (0, 00); note that here and in the following we write 

Jcp to denote I; cp(x)dx.) Next, suppose £Ayi = g-yi, i = 1,2, then 0 $ £(Ay1 -Ay2 , 
2 

Y1 -y2 l = (g-y1 - g+y2 , y 1 -y2) = -lly1 -y211 and hence y 1 = y 2. 0 

We recall that a monotone operator A defined on a Hilbert space His called maxi

mal monotone if it admits no proper monotone extension (i.e., it is maximal in the 

sense of inclusion of graphs). It is well known that A is maximal monotone if and only 

if R(I + £A) = H for each £ > 0 (see Brezis [1]). In our case, with H = L2 and A de

fined in (2.1), this is just a reformulation of the existence result Proposition 2.1. 

Consequently we know 
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PROPOSITION 2.3. A is maximal monotone. 

In search for yet another formulation let us write the equation in the form 

-E(ln y')' + y - g O 

1 Hence, for any$ E H0 , 

E f $' (ln y' + 1) + f $ (y - g) 0. 

Motivated by this calculation we define a functional W: L2 ➔ lR by 

(2. 3) W(u) 
1 2 

E'l'(u) + 2 llu- gll 

where 

if u E V('I'), 
(2.4) 'I' (u) 

otherwise, 

and 

(2.5) V('l'l {u E L2 I u is AC, u' ~ 0, u' ln u' E L1 , u (0) 0, u(l) 

(here AC means absolutely continuous). Also we define a variational problem 

VP InfL W. 
2 

1} 

We note that the mappings z >+ z ln z and z >+ z2 are (strictly) convex (on [0, 00 ) and 

(-00 , 00 ) respectively) and that W inherits this property because V('I') is convex as well. 

Hence VP has at most one solution. For future use we observe that the convexity of 

z 1+ z ln z implies, for z ~ 0 and~> O, the inequality 

z ln z - ~ ln ~ ~ (1 +ln O (z - ~). 

PROPOSITION 2.4. YE solves VP. 

PROOF. Firstly we note that yE E V('I'). So for any u E V('I') 

W(u) - W(y ) 
E 

= E f 1 2 (u' ln u' - y' ln y') + - llu-gll 
E E 2 

1 2 - lly - gll 
2 E 
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We recall that the subgradient a'¥ of the convex functional 'JI is defined by 

a'Jl(u) {t; E L2 I '¥(v)-'¥(u):?: (t;,v-u), \/v E V('JI)}. 

A calculation like the one above shows that, for u E V(A) and v E V('JI), 

'Jl(v) - 'Jl(u) :?: (Au, v- u). 

Hence Ac a\JI, but, since 3'¥ is monotone and A is maximal monotone, we must have A=a'JI. 

Likewise it follows that aw = EA+ I - g. These observations should clarify the relation 

between VP and AE. 

One can 13how that 'JI (and hence Was well) is lower semicontinuous and subsequently 

one can use this knowledge to give a direct variational proof of the existence of a 

solution of VP. We refer to Theorem 3.2. below for a detailed proof of this result. 

We summarize the main results of this subsection in the following theorem. 

THEOREM 2.5. The problems BVP, AE and VP are equivalent. In fact, for each E > 0, there 

exists y E V(A) which solves each problem and no problem admits any other solution. 
E 

2.2. LIMITING BEHAVIOUR ASE t 0 

The fact that yE solves AE can be expressed as 

-1 
y E = ( I + EA) g. 

Subsequently, the observation that A is maximal monotone provides a key to describing 

the limiting behaviour. For, it is known from the general theory of such operators 

(see Brezis [1, Section II.4, in particular Th. 2.2]) that 

-1 
lim (I+EA) g 
EtO 

Proj CJ, 

V(A) 

where the expression at the right-hand side denotes the projection (in the sense of 

the underlyimJ Hilbert space, hence L2 in this case) of g on the closed convex set 

V (A) , or, in other words, 

Proj g Yo 
P(A) 

where y 0 denotes the unique solution of the variational problem 
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with 

2 w0 (u) = 0 u - gll • 

Below we shall give a proof of this result for this special case, using techniques as 

in Brezis' book, but exploiting the fact that A is the subdifferential of the func

tional'!'. 

THEOREM 2. 6. 

lim lly - y0 11 = 0. 
E+O E 

PROOF. First of all we note that lly II S: 1. We shall split the proof into three steps. 
E 

Step 1. Take any z E V(A) then from 

it follows that 

lim inf E ('!' (y ) - '!'(z)) ;:::: 0. 
E + 0 E 

Step 2. By definition, 

Hence 

2 2 lim sup II g - y II S: II g - zll , 
E + 0 E 

\/z E V(A). 

But then, in fact, the same must hold for all z E V(A). 

Step 3. Since II y II S: 1 , {y } is weakly precompact in L2 . Take any { E } and y such that ~ E E n 
yEn ~yin L2 , then 

(*) 
~ 2 Dg-yll 2 s: lim inf II g-y II s: 

E n ➔ oo n 

2 lim sup llg-y II s: 
E n ➔ 00 n 

2 llg-zll , \/z E V(A}. 

Consequently y = y0 , which shows that the limit does not depend on the subsequence 

under consideration. Hence YE~ y0 . Finally, by taking z = y0 in (*) it follows that 

in fact yE ➔ y0 . D 

We note that 

VW {u E L2 I u is nondecreasing, 0 s: u s: 1 }. 
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So in general y0 need not be continuous (nor does it need to satisfy the boundary con

ditions). However it is possible, as our next result shows, to establish uniform con

vergence to a continuous limit at the price of some conditions on g. 

1 
THEOREM 2.7. Suppose g EC, g(O) < 0 and g{l) > 1. Then Yo EC and 

lim sup Jye:(x)-y0 (x)I O. 
e:-l-0 0$x$1 

PROOF. The idea is to derive a uniform bound for y~. We know already that y~ > 0 and 

we are going to show that y~ $ sup g'. To this end we first observe that g(O)-ye:(O)<O, 

and g ( 1) -ye: ( 1) > 0, which, combined with the differential equation, shows that y~ (0) > 0 

and y"{1) < 0. Hence y' assumes its maximum in an interior point, say x. Next, differ-
£ £ 

entiation of the differential equation followed by substitution of y~(x) = 0, 

y"' (x) $ 0, leads to the conclusion that y' (x) $ g' (x). The uniform bound for y' im-
£ £ £ 

plies, by virtue of the Arzela-Ascoli theorem, that the limit set of {y} in the space 
£ 

of continuous functions is nonempty. Combination of this result with Theorem 2.6 leads 

to the desired conclusion. n 

In Section 4 we shall show that y0 can be calculated in many concrete examples. 

Quite often it will turn out that y0 is continuous (or piece-wise continuous). This 

motivates our next result. 

THEOREM 2.8. Suppose y0 is continuous. Then ye: converges to y0 uniformly on compact 

subsets of (0,1). 

PROOF. Let I c (0,1) be a compact set. Put B(e:) = max{y£(x)-¥0 (x) J x EI} and let 

x(E) EI be such that yE(x(e:)) - Yo(x(e:)) = B(e:). Suppose lim supe:-l-0 B(e:) = B > 0 and 

let {e:n} be such that B(e:n) +Sas n + 00 • Choose o E (O,o 1), where o1 denotes the dis

tance of 1 to I, such that Jy0 {x) - y0 (~) I $ ¼ B if Ix - ~ I $ o. Also, choose n0 such 

that B (En) ~ ¾ B for n ~ no· Then for X E [x(e:n), x(En) + o] and n ~ no the following 

inequality holds: 

y £ (x) - Yo (x) 
n 

However, this leads to 

2 lly -y II 
£ 0 

n 

~ YE (x(En)) - yO(x(e:n)) + yO{x(e:n)) - yO(x) 
n 

1 B 
4 

1 
2 B. 

which is in contradiction with Theorem 2.6. Hence our assumption B > 0 must be false 

and we arrive at the conclusion that lim supe:-l-O max{y £ (x) - y0 (x) X E I} $ o. Essen-

tially the same argument yields that lim infdO min{ye: (x) - y0 (x) X E I} ~ o. Taking 
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both statements together yields the result. D 

It should be clear that appropriate analogous results can be proved if y 0 is 

piece-wise continuous. In Theorem 2.8 the sense of convergence is sharpened "a poster

iori", that is, once the continuity of y0 is established by other means. Note that 

our proof exploits the uniform one-sided bound y; > O. 

3. THE SECOND METHOD 

3.1. A VARIATIONAL EXISTENCE PROOF 

In this section we study in some detail a minimization problem P which is a 

variant of VP. We shall use methods from convex analysis. In fact, our presentation 

follows closely Ekeland & Temam [3, Chapter III, Section 41 and in order to bring 

this out clearly we begin by introducing some notation in accordance with this 

reference. We define 

(3. 1) V AC 

and we consider Vas a Banach space provided with the norm 

(3.2) Hvll 
V 

* We denote by V the dual space of v. Next, we introduce Y L1 x L2 and a bounded 

linear mapping A: V ➔ Y defined by 

(3.3) Av (v' ,v). 

Moreover, we introduce functionals G1 , G2 and F defined on L1 , L2 and V, respectively, 

as follows 

{~w 
ln w + .£ if w 2: 0 and w ln w E L1 , 

(3.4) Gl (w) 
e 

otherwise, 

(3. 5) G2 (w) 1 
f 

2 
2 (g- w) ' 

= (00 
if w(O) = 0 and w (1) 1' 

(3.6) F(w) 
otherwise. 

Finally, we call P the minimization problem 

(3. 7) 

where by definition 



(3.8) J(v) 

Clearly G2 is (strictly) convex and lower semicontinuous (1.s.c.); consequently 

it is weakly lower semicontinuous (w.l.s.c.) as well (cf. [3, p. 10]). The next re

sult shows that the same conclusion holds for G1 • 

PROPOSITION 3.1. Gl is convex and w.l.s.c •• 

PROOF. Let the function k: lR ➔ lR be defined by 

if y ?: 0, 
(3.9) k(y) 

otherwise. 

9 

Then k is Borel measurable, l.s.c. and positive. Hence, in other words, it is a normal 

positive integrand (cf. [3, p. 216]). Rewriting G1 as 

(3.10) f k (w ( •)), 

we observe that the l.s.c. of k and Fatou's lemma imply that G1 is l.s.c.: 

f k(w(•)) $ I lim inf k(wm(•)) $ lim inf f k(wm(•)) 
m ➔ oo m ➔ oo 

whenever wm ➔ w strongly in L1 • Since obviously G1 is convex the result follows. D 

THEOREM 3.2. For each£> 0, P has a unique solution. 

PROOF. First we note that the functional J is bounded from below on V. Let {u} be a 
m 

minimizing sequence. We intend to show that {um} is bounded in L2 and that {u~} is 

bounded in L1 and equi-integrable (cf. [3, p. 223]). Indeed, from 

u' ln u' +_§:_+.!.I 
m m e 2 

we deduce that u' ?: 0, that 
m 

and that 

I 
S"l(M) 

u' $ (ln M)-l 
m I 

S1 (M) 

u' ln u' $ (ln M)-l C 
m m £ 

where S1 (M) = {x J u' (x) ;:: M} and M > 1. Thus, given any constant cS > 0, we have that 
m 

I 
S"l(M) 

u' $ cS 
m 
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C 
provided M > exp_E6· 

We conclude that {um} is weakly precompact in L2 and that {u~} is weakly pre

compact in L1 (cf. [3, p. 223]). If um~ u in L2 and u~ ~win L1 , then the usual 

manipulations with distributional derivatives show that u' = w, and consequently that 
. X X 

u EV. Moreover, from um(x) = J0 u~(s)ds we deduce that u(x) J0 u' (slds and thus 

that u(0) = 0. Likewise it follows that u(l) = 1. So F(u) = 0. Since the functionals 

G1 and G2 are w.l.s.c. on L1 and L2 respectively, it follows that u = ue is a solu-

tion of P. Since, furthermore, J is strictly convex the solution is unique. D 

3.2. THE DUAL PROBLEM 

In Subsection 2.1 we proved the equivalence of BVP and VP by showing that the 

solution of BVP (whose existence was oroven first) also solves VP. Here we want to 

go the other way around, i.e., we want to show that the solution of Palso solves 

BVP. In order to do so we shall first determine a dual problem and subsequently we 

shall utilize the extremality relations. 

We embed Pinto a wider class of perturbed problems P(p) as follows: 

(3.11) P(p) Infv \I> ( • ,p) 

where p (p1 ,p2) E Y and where by definition 

(3.12) \l>(v,p) 

* With respect to these perturbations the dual problem P is giV-en by (cf. [3, Section 

III.4]) 

(3.13') 

* where Y 

(3.14) 

Hence, 

(3.15) 

* p * Sup * - 4> ( 0, • ) , 
y 

L x L and 4> * is the polar function of 4>, that is 
00 2 

* * * 4> (v ,p ) 

* * \I> (0,p ) 

* * I sup{<v ,v>v+<p ,p>Y- \l>(v,p) v Ev, p E y}. 

sup{<p*,p>Y - \l>(v,p) J v EV, p E Y} 

* sup sup{<p ,p>Y - G1 U\v-p1) - G2 (A2v-p2 ) - F(v)} 
VEV pEY 

* sup sup{<p ,Av-q>Y - G1 (q1) - G2 (q2) - F(v)} 
VEV qEY 
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* * * * 
sup sup{ <-pl ,ql >L - Gl (ql) + <-p2,q2>L - G2 (q2) + <A p ,v>V- F(v)} 
V€V qeY 1 2 

G;(-p;) + G;(-p;) + F*(A*o*), 

* * * where G1 , G2 and F denote the polar functions of G1 , G2 and F, respectively, and 
* * * * * A : Y ➔ V denotes the adjoint of A. We shall determine the functionals G1 , G2 and 

* * F in order to arrive at an explicit expression for P. 

* Let us first consider G1 . We know that (cf. (3. 10)) G1 (w) = J k (w ( •)) and since 

k is a normal positive integrand we can interchange integration and taking the polar 

(cf. [3, Prop. 2.1, p. 251]): 

I * * k (pl(•)), 

where 

sup{yz - k (y) I y 2: 0} 

In the same manner we find 

* * 
= I 1 * 2 * 

G2(p2) 2(p2) + gp2. 

* Next we calculate F : 

e: exp(.!:.- 1) e: , 
e: 
e 

* * * * . 
F (A p ) = sup{<p ,Av>Y Ive V, v(0) 0, v(1) = 1} 

u(1) O}. 

Here we made the transformation v = u+ i, where i denotes the function i(x) = x, in 

order to arrive at homogeneous boundary conditions. Since Vis dense in the set 

{u E VI u(0) = u(1) = 0} we conclude that 

{ 
* * f(ip2 +p1 ) 

* * * F (A p) = 

+oo 

in the sense of distributions, 

otherwise. 

Collecting all results we arrive at the following explicit formulation: 
p* 

_ _!__ 1 

(3.16) p* Sup{f<;-e:e e: -p; + (g-i)p;-½cp;>2i1 p* E LOOXL2, p; 

* From known properties of Pone can deduce that P has a solution. Indeed, since 

(i) <P is convex and inf P is finite, 

(ii) the function p ~ <P(i,p) is finite and continuous at the point p 0, 
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* we are in a posit.ion to conclude from [3, Prop. 2.3, p. 51] that P has a solution 

* and that inf P = sup P . Finally, we deduce from the strict convexity of the function-

* al in (3.16) that the solution of P is unique. 

3.3. THE EXTREMALITY RELATIONS 

In virtue of [3, Prop. 2.4, p. 52] the following claims are equivalent: 

* * (i) vis a solution of P, p is a solution of P 

* * (ii) v EV and p E Y satisfy the extremality relation 

* * ( 3. 17) ¢(v,.0) + ¢ (0,p ) 0. 

In the present case (3.17) can be decoupled as follows: 

* * 0 ¢(v,0) + ¢ (0,p ) 

* * * * * + {F(v) +F (A p) - <A p ,v>V}. 

Since each of these expressions in brackets is nonnegative, actually each of them must 

be zero. Thus we find 
* 

P1 

f (cv' 

---1 
ln v' 

E: * (3.18) + E:e + v'p1) 0, 

(3 .19) J 1 2 1 * 2 
(- (g - v) + -(p ) 
2 · 2 2 

* 2 (p2 - g + v) o, 

(3.20) v(0) o, V (1) 1, * I (pl) . 

In order to draw further conclusions from (3.18), consider the function f defined 

by 

-~-1 
f(x) E:A ln A+ E:e E: + AX, 

for fixed A~ 0. If A= 0, then f > 0. If A> 0, then the convex function f is non

negative and it attains its minimum, zero, at the point x = -c(l+ln A). Consequently 
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(3 .18) implies that v' > 0 and that 

(3. 21) -e:(1 +ln v'). 

Likewise (3.19) implies that 

(3. 22) g - v. 

Finally, combination of (3.20) - (3.22) leads to 

(3. 23) [
e:(ln v')' + v = g. 

v(O) = 0, v(l) = 1. 

So if vis the solution of P then v satisfies (3.23). From the fact that g E L2 
1 2 

we deduce that ln v' EH and consequently that v EH. Hence v satisfies BVP. 

* * Conversely, let v be the solution of BVP. Define p 1 and p 2 by (3.21) and (3.22), 

* * * respectively. Then v and p (p1 ,p2 ) satisfy the extremality relation (3.17) and con-

* * sequently v solves P while p solves P • 

3.4. LIMITING BEHAVIOUR ASE+ 0 

* Formally we can associate with P the following limiting problem 

(3. 24) 

where by definition 

(3. 25) C {q E H1 I q ::0: O} 

* * (note that the condition p 2 (p1)' motivates the choice of the underlying space and 

that we choose q 2 0 because otherwise e: exp (-.9.) tends to - 00 as e: + 0) . 
E 

* P0 consists of minimizing a strictly convex, continuous and coercive functional 
1 

on a closed convex subset of the reflexive space H . Hence there exists a unique solu-

* tion of P0 , which we shall call q 0 . 

Defining functionals G3 and G4 
1 

on L2 and H as follows: 

(3. 26) G 3 (w) f ½ w2 + (i - g)w 

( 3. 27) (w 
if w E C, 

G4 (w) 
otherwise, +oo 

we rewrite 
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where now A1 , defined by A1q = q', is considered as a bounded linear mapping of H1 

into L2 • 

** * Next we construct the dual problem P0 of P0 relative to the perturbed functional 

We find 

{3 ,28) 

where 

(3. 29) 

and 

(3.30) sup{<v,q> 1 - fq I q EC} 
H 

sup{<v-1,q> 1 I q EC} 
H 

if (1-v) € c*, 

otherwise, 

where we have put Jp = <1,p> 1 (according to the natural identification of L2 with a 

subspace of (H 1 )*) and whereH 

(3.31) * i * I C ~ {v E (H) <v,q> 1 ~ o, Vq EC}. 
H 

Performing the change of function u = v + i we get 

Inf{½ f (g- u/ I u E Q}, 

where by definition 

(3. 32) Q 

PROPOSITION 3.3. Q = V(A) 

PROOF. By definition 
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Q {u E L2 J f (q+ (i-u)q') 2 0, Vq EC}. 

1 
Let u E Q and q EC n H0 then, using f(q+iq') = 0, we obtain fuq' s 0, which shows 

that u' 2 0 in the sense of distributions. Next, suppose that u assumes values larger 

than one on a set of positive measure. Since u is non-decreasing this set can be taken 

to be an interval with 1 as its right endpoint and, say, A as its left endpoint. Take 

q(x) = 0 for OS x SA and q strictly increasing for x > A, then we arrive at the con

tradiction 

1 

f (q+ (i-u)q') < f (q(x) + (x- l)q' (x))dx O 

A 

It follows that u S 1. Likewise one can show that u 2 0, so we conclude that u E V(A) 

indeed. 

Conversely, suppose u E V(A) and q EC then 

f (q+ (i- u)q') = u(O)q(O) - (u(l) - l)q(l) + fu•q 2 0 

and consequently u E Q. Finally, if u E VTiJ we arrive at the same conclusion by using 

an approximating sequence in V (A) and by noting that f (q + (i - u) q') depends continuous-

ly on u. D 

** Thus we showed that P0 is precisely the reduced problem considered in Subsection 

2.2. We recall that it has precisely one solution y 0 • Expressing the extremality re

lation 

as 

we obtain that 

(3. 33) 

The other extremality relation 

yields the relation 

(3. 34) 
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* * * THEOREM 3.4. For each E > 0 let yE denote the solution of P and pE (pE 1 ,pE 2l the 

* ** * solution of P. Moreover, let y 0 denote the solution of P0 and <Io the solution of P0 . 

Then 

(i) lim II * - q II 0 
£-1·0 

p£1 0 H1 

(ii) lim lly - y II 0 
£-1-0 

E 0 L2 

PROOF. First we want to show that p:1 is bounded in H1 uniformly in E. Since O $ y E $ 1, 

* * yE and (pE 1)' = pE 2 = g - yE are bounded in L 2 uniformly in E. The definition of Jim-

plies 

0 $ Inf P :,; ½ I (g - i) 2 + ! 

* Using Sup P Inf P we obtain 

From y~ 

(3.35) 

* p£1 
---1 

E 
0 :,; I<! - Ee 

1 * exp(- 8 p£1 - 1) and Jy~ 

lim EI 
£-1-0 

0 

$ ½ I (g - i) 2 + ! 

1 we deduce that 

Combination of these results yields a uniform bound for JJp: 1 J. Hence there exists 

* 6 = 6(£) E [0,1] such that p£l (6) is uniformly bounded and, finally, we obtain 

I * 2 (p£1) = 

1 X 

I (p:1 (6) + I 
o 0 

So there exists a sequence {E } and a 
n 

tow weakly in H1 and strongly in L2 • Next 

* * 

function w E H1 such that * PE 1 n 
we intend to show that w = q0 • 

From the fact that pE solves P we deduce that 

converges 

Furthermore, the functional q >+ J(q+ (i-g)q' + .!.(q 1 ) 2 ) is convex and continuous on H1 
2 

and thus w.l.s.c. Hence 
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(*) f<w+(i-g)w' + .!.(w' /J 
2 

f * * 1 * 
) I ) 2) 5 lim inf (p€ 1 

+ (i-g) (p€ ) I + 2< (p€ 1 1 
n -+ ro n n n 

f * * 1' * ) I ) 2) 5 lim sup (p€ 1 + (i-g)(p€ ) I + 2\ (p€ 1 1 
n -+ ro n n n 

5 f (qo + (i- g) qo 
1 2 

+ 2<qo) i. 

We observe that w? 0 (else (3.35) could not be true). Since q 0 is the unique solution 

* of P0 , 

verges 

* necessarily w = q 0 • Inserting this into (*) we obtain that in fact p 1 con-
1 €n 

to q 0 strongly in H. Moreover, since the limit does not depend on the sequence 

under consideration (i) follows. Finally, we arrive at (ii) by noting that ye= 

* g - (p €1) ' and y O = g - q0. [l 

4. CALCULATION OF Yo 

We recall that y 0 is the unique solution of the variational problem MinV(A) w0 , 
2 

where w0 (u) = II u - gll . It is well known (for instance, see Eke land- Temam [3, II, 2.1 ]) 

that one can equivalently characterize y 0 as the unique solution of the variational 

inequality: 

( 4. 1) find y E '/JTAf such that (y - g ,v - y) ? 0, Vv E V"TAJ. 

Already from the reduced differential equation (g-y)y' = 0, it can be guessed that 

y 0 is possibly composed out of pieces where it equals g and pieces where it equals a 

constant. Of course, if y 0 =gin some open interval, g has to be nondecreasing in 

that interval. The characterization of y 0 by (4.1) can be used to find conditions on 

the "allowed" constants. 

THEOREM 4.1. Suppose y E V(A) has the following property: there exists a partition 

0 = x0 <x1 < ... <xn-l <xn = 1 of [0,1] and a subset L of {0,1, ... ,n-1} such that: 

(i) if if. L then y(x) g(x) for x " [x. ,x. 1], 
l l+ 

(ii) If i E L 

xi+1 

f 
){ 

l{ 

f 
X. 

l 

then y(x) C. 
l 

(Ci - g ( E;) ) di; ? 

(Ci - g(i;) )di; 5 

for x E 

0, 

o, 

[x. ,x. 1 ] and 
l l+ 

Vx E [x. ,x. 1], if C. E (0,1], 
l l+ l 

x. 1 
(so in particular, if Ci E (0,1), I/+ (Ci-g(/;))d/; 0). 

l 
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Then y = Yo· 

PROOF. According to (4.1) it is sufficient to check that 

I(v) = f<y-g)(v-y) ~ 0, Vv E 1'("A)" • 

In fact it is sufficient to check this for all v E V(A) n H 
1 

(since this set is dense 

in V(A)° and I is continuous) • We note that I(v) = l:iEL I, (v), 
1. 

where 

xi+l 

I. (v) f (Ci - g(E;)) (v(i';) - Ci)di';. 
1. 

x. 
1. 

If C. 0 then 
1. 

xi+l xi+l xi+l 

I, (v) -v(x.) f g(E;)ds - f v' (1';) f g(x)dxdi'; ~ o. 
1. 1. 

x. X, s 
1. 1. 

If C, 
1. 

E (0, 1) then 

xi+l xi+l 

I. (v) 
1. f v' (1';) f (Ci - g(x) )dxds ~ 0. 

x. s 
1. 

If C. 1 then 
1. 

xi+l xi+l s 

I. (v) (v (xi+l) - 1) I (Ci-g(s))di';-
1. f v' (s) f (Ci - g (x))dxds ~ 

X, X. x. 
1. 1. 1. 

Hence indeed I(v) ~ 0, Vv E V(A) n a 1 • □ 

The sufficient conditions of the theorem can be used as a kind of algorithm to 

compute y0 in concrete cases. We shall illustrate this idea by means of a number of 

examples (some of which are almost literally taken from [2]). 

EXAMPLE 1. Suppose g is nondecreasing, then 

{;(xl 
if g(x) $ o, 

yO(x) if 0 :,; g(x) $ 1, 

if g(x) ~ 1. 

EXAMPLE 2. Suppose g is nonincreasing, then y0 (x) C with 

0 
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if Jg :;; 0, 

if 0 :;; Jg :;; 1, 

if Jg 2': 1. 

1 
EXAMPLE 3. Suppose that g EC is such that g' vanishes at only two points band c, 

b being a local maximum and ca local minimum. Assume that O < b < c < 1 and 
-1 -1 

Q < g(c) < g(b) < 1. Let g 1 denote the inverse of g on [O,b] and g 2 the inverse of 

g on [c,1]. Define two points a and d by 

-1 
a=g1 (g(c)), d 

-1 
g2 (g(b)). 

Then g([a,b]) g([c,d]). (See Figure 1). 

tg 

a Cl. b C a d ➔ X 

Figure 1 

On [a,b] we define a mapping G by 

-1 
g2 (g (x)) 

G (x) f (g(x) - g (E;) )df;. 

X 

Then G(a) < 0, G(b) > 0 and on (a,b) 

-1 
g2 (g(x)) 

G' (x) g' (x) f df; > O. 

X 

Consequently G has a unique zero on [a,b], say for x = a. The function y0 has the tend-

ency to follow g as much as possible. However, it also has to be nondecreasing. So the 

inverse function of y0 must "jump" from a point on [a,b] to a point on [c,d]. In view 
-1 

of Theorem 4.1 this jump can only take place between a and S = g 2 (a). We leave it to 

the reader to verify (by checking all requirements of Theorem 4.1) that 
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0 if X $ ex and g(x) $ 0, 

g(x) if X $ ex and g(x) ~ 0, 

yo(x) g (ex) if ex $ X $ B, 

g(x) if X ~ B and g(x) $ 1, 

1 if X ~ B and g(x) ~ 1. 

It should be clear that the differentiability of g is not strictly necessary for our 

arguments to apply. In fact the monotonicity of G follows from straightforward geo

metrical considerations and the condition G(ex) = 0 has a corresponding interpretation 

(see Figure 1). 

EXAMPLE 4. If g has more maxima and minima the construction of candidates for y0 can 

be based on essentially the same idea as outlined in Example 3. However, it becomes 

more complicated since the number of possibilities becomes larger (see [2] for some 

more details). For instance, if g has a graph as shown in Figure 2, looking at zero's 

of functions like G above leaves us with two possible candidates: one with two "jumps" 

(a-b, c-d) and one with a "two-in-one jump" (ex - Bl. 

tg 

a ex b C B d ➔ x 

Figure 2 

In [2] we were unable to decide in such a situation which was the actual limit. But 

now it can be read off from the picture that only the one with two "jumps" satisfies 

the requirements of Theorem 4.1, and hence this one must actually be y0 . (The other 

one corresponds to a saddle point of the functional w0 restricted to V(A).) It is in 

this sense that y0 must have as many "jumps" as possible. 

5 • CONCLUDING REMARKS 

(i) In all our examples y0 satisfies the reduced equation (g- y)y' 0. However, 



this equation is by no means sufficient to characterize y 0 completely. Our 

analysis clearly shows that the reduced variational problem Minv(A) w0 con

tains much more information than the reduced differential equation. 

(ii) In [2] we were actually interested in a boundary value problem of the type 

(5. 1) 

(5.2) 

e:xy" + (g- y)y' o, Q < X < 1, 

y(O) o, y (1) 1, 

which arises from the assumption of radial symmetry in a two-dimensional geo

metry. This problem can be analysed in completely the same way as we did with 

BVP in this paper, by choosing as the underlying Hilbert space the weighted L2-
-1 

space corresponding to the measure dµ(x) = x dx. For instance, the operator A 

defined by 

(Au) (x) 

with 

V(A) 

u"(x) 
-x u' (x) 

{u E L2 (dµ) I u' E C(0,1], u' > O, u(1) 

is clearly monotone in this space. The surjectivity of I+ e:A can be proved with 

the aid of an auxiliary problem and Schauder's fixed point theorem. (Note that 

some care is needed in checKing that the functions which occur belong to the 

right space and that the solution operator is compact. This turns out to be all 

right. We refer to Martini's thesis [5] where related problems are treated in 

full detail.) Hence A is maximal monotone. Subsequently it follows that, for 

given g E L2 (dµ),_ the solution ye: tends, as e: i 0, to a limit y0 in L2 (dµ) and 

that y0 is the projection in L2 (dµ) of g onto the closed convex set 

V (A) { u E L2 (dµ) I u is nondecreasing, 0 $ u $ 1}. 

The second method carries over to this situation as well. 

(iii) In [2] we were also interested in the situation where the differential equation 

(5.1), assumed to hold for O < x < 00 , is supplemented by the condition 

(5.3) lim y(x) 1. 
x-+oo 

Intuitively one believes that similar results should be true in this situation. 

However, the present approach does not carry over directly and, in fact, the 

noncompactness of the domain presents serious mathematical difficulties. 

21 
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