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Travelling waves in an initial-boundary value problem*) 

by 

E.J.M. Veling 

ABSTRACT 

In this paper we consider the initial-boundary value problem for a 

function u(x,t) satisfying a one-dimensional semilinear diffusion equation 

on the half-bounded interval x ~ O. For a wide class of initial and 

boundary values a uniformly valid asymptotic expression will be given to 

which the solution converges exponentially. This expression is composed 

by a travelling wave and a solution of the stationary problem. 

KEY WORDS & PHRASES: semilinear diffusion, initial-boundary value problem, 

travelling waves, Lyapunov functional, asymptotic 

beh~viour, exponential stability 

*) This report will be submitted for publication elsewhere. 





1. INTRODUCTION 

In this paper we are interested in the equation 

(1. 1) = u + f(u), xx 

where f satisfies 

(x,t) E Q 

(Hfl) 1 f E C ([O,l]), f(O) = f(l) = O, f' (0) < O, f' (1) < 0, 

3a, O<a<l 

and further 

(Hf2) 

1 

f f(u)du > 0. 

0 

• 3. f(u) < 0 on (O,a) and f(u) > 0 on (a,1) 

1 

The function u represents the density of an allele in a disploid population. 

Condition (Hfl) implies the heterozygote case, see ARONSON & WEINBERGER [1]. 

Besides the equation stands for a model for the signal propagation along 

transmission lines and is a degenerate case of the FitzHugh-Nagumo equation 

for the propagation of nerve pulses, see FIFE & McLEOD [4]. An interesting 

feature of this equation is the existence of travelling waves, i.e. solutions 

of the form u(x,t) = U(z), z = x-c0t, where U satisfies the ordinary differ­

ential equation 

{ 
d2 d + f(U) o, Z E lR, --u + co -u = 
dz2 dz 

( 1. 2) 

lim U (z) = 1, lim U (z) = o. 
z-+-00 z-+<><> 

It can be proved that u is m0not0ne decreasing and that the value of c 0 is 

unique, because of (Hfl) and c0 > O, because of (Hf2), see [4] and HADELER 

& ROTHE [6]. We fix U through the requirement U(O) =~,so we have lost the 

freedom of translation along the z-axis. 

If we look at the pure initial value problem - (1.1) together with the 

condition u(x,O) = g(x) -, and we require 
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( 1. 3) 

g (x) :5: 1, X E ]R, 

{ 

0 :5: 

lim inf g(x) > a, lim sup g(x) < a 
X ➔ oo X ➔ -oo 

then the solution u(x,t) will converge to some translate of U(z) in an expo­

nentially way, i.e. there exists constants z 0 ,K, w, K > O, w > O, such that 

(1.4) lu(x,t) - U(x-c0t-z0 )! < Ke-wt, uniformly x E :m. 

See the paper of FIFE & McLEOD [4] for this result. Here we treat an initial­

boundary value problem, so we have to specify besides the initial condition 

also the boundary function 

+ f (u) , (x, t) (:m + + 

{ 
u = u E Q = X :m_ ) ' t xx 

(P) u(x,O) = g (x) ' X E :m+ ' 

u (0, t) h (t) , t E ]R+. 

As we are interested in densities we add the conditions 

(Hg1) 

(Hh1) 

0 :,:; g (x) :5: 1, 

0:,:; h(t) :5: 1, 

+ 
X E :ffi. 1 

+ t E :ffi. 

To be sure that the solution satisfies some smoothness properties we 

require 

(Hg2) 

(Hh2) 

for some a, 0 <a< 1. 

Cl,a/2
1 

c2,a(lR+) For the notion see section 2. We require the following 

consistency conditions 

(Hgh3) 
h (0) 

{ -~ h(O) 
dt 

= g (0)' 

d2 
= -2 g(O) 

dx 
+ f(g(O)). 
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The conditions (Hghl), (Hgh2), (Hgh3) are sufficient to ensure the existence 

and uniqueness of a classical solution of (P), see Theorem 1. 

The purpose of this paper is to prove that even in this case of a half­

bounded x-interval the notion of convergence to a travelling wave is pos~ 

sible. Of course the boundary condition now plays an important role and if 

the limit value h(t) fort tending to infinity is not equal to the limit 

value of U(z) for z tending to minus infinity (U(-00 ) = 1) we need in the 

formulation of our result the function Ve which is the solution of 

I 
d2 

f(Ve) o, 
+ 

--2 V0 + = X E JR 

( 1. 5) l 
dx 

Ve (0) = e I lim v e (x) = 1' 0 s e s 1. 
X--l--00 

Under the following conditions 

(Hg4) 

(Hh4) 

lim sup g(x) < a, 
X ➔ oo 

38, o s es 1, 3y, y > o.3.0-h(t) = O(e-yt), t + 00 

and a technical condition (HhS), to be specified later it is possible to 

prove that the solution of (P) subject to conditions _(Hfl-2) , (Hgl-4), 

(Hhl-5) converges exponentially to an asymptotic state, i.e. there exists 

a z0 , K, w, K > 0, w > 0 such that 

( 1. 6) 
-wt + lu(x,t) - U(x-c0t-z0 ) - v8 (x) + 11 < Ke , uniformly x E JR • 

See Theorem 2. We note that for e = 1 Ve (x) = 1. If we examine (1.6) we 

find immediately in view of the uniformity in x the following limit values 

for u(x,t) 

i) X = XO' XO arbitrary, lim u(xo,t) = Ve (xO)' 
t--l--00 

ii) X = XO + c 1t, cl < co, lim u(x0+c1t 1,t) = 1, 
t--l--00 

iii) X = XO + cot, lim u(xo+cot,t) = U(x0-z0), 
t--l--00 

iv) X = XO + c 2t, c2 > co, lim 
t--l--00 

u(xo+c2t,t) = 0. 
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In iii) we follow the wave while in ii) and iv) we travel respectively too 

slow and too fast to the right. 

In section 2 we list some notations and properties of the functions 

which we consider. In section 3 we mention the main ingredients for the 

proof of Theorem 2 and we prove Theorem 1. The proof of Theorem 2 is based 

on the same techniques as were used in the paper of FIFE & McLEOD [4], i.e. 

the maximum principle and the use of a Lyapunov functional. 

2. NOTATION AND STATEMENT OF RESULTS 

We introduce the following notations and definitions 

If we drop 

t-interval 

+ + 
lR = (0,a:>), JR = [Q,a:>), 

n . - (a,b) C lR, 

QT = { (x,t) Ix e: 

ST = {(x,t) Ix e: 

B = {(x,t) Ix e: 

BT = { (x,t) Ix e: 

the lower index 

to infinity. It 

-a:> :$; a < b :$; a,, 

n, t e: (O,T)}, 

an, t e: co,T)}, 
Q, t = O}, 

Q, t = T}. 

T ~f QT and ST we extend the upper bound of the 

is clear that aQ.., =Bu Sm u B. We define some 
.L ..._ T (.) 

classes of functions depending on a scalar variable (u = u (x) , and u 1 i.s 

the i-th derivative), 

Cm(n) = {u = u(x) lu m-times continuously differentiable, x e: Q}, 

Q compact: Cm(Q) = {u = u(x) lu m-times continuously differen-
. (1) (m) 

tiable, u,u , ••• ,u bounded in Q and 
( 1) (m) 

.u,u , ••• ,u can be extended to continuous func-

tions on Q}, 

Q not compact: Cm(Q) = {u = u(x) lu m-times continuously differ-
. . ( 1) (m) 

entiable and u,u , ••• ,u bounded and uniformly 

continuous in Q}. 

= sup lu(x) I, luln = 
m 

x1oQ 
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H(u;a;Q) = sup 
x1,x2En,x1#x2 lx1-x2 1a 

, 0 <a~ 1, 

m - (m) 
= {u = u(x) lu € C (n), H(u ;a;n) < 00}, 

n m Ci) 
= lul + l H(u ;a;Q). 

m i=O 

We note that Cm(Q) (Cm,a(Q)) is a Banach space under the norm l•ln (l•ln ). 
m m,a 

We denote by CO,a(Q) the class of Holder (a< 1) or Lipschitz (a= 1) con-

tinuous functions on Q. Next we define some classes of functions depending 

on a two-dimensional argument, namely (x,t) €DE Q, D open. 

c0 (D) = {u = 

c1 (D) = {u = 

u(x,t) ju continuous, (x,t) € D}, 

u(x,t) lu,u continuous, (x,t) € D}, 
X 

c2 (D) = {u = u(x,t) lu,u ,u ,ut continuous, (x,t) € D}, and 
X XX 

c0 (o), c1 {o), c2 (D) analogously as for a scalar variable, 

2 ½ 
d(P 1 ,P2) = {(x1-x2 ) + lt1-t2 1} , with Pi= (x. , t. ) , i = 1 , 2, 

l. l. 

u(P) = u(x,t) for P = (x,t), 

sup !u(P) I, 
PED 

H(u;a;D) = sup 
P1 ,P2ED,Pi#P2 

a d(P1 ,P2) 
, 0 <a~ 1, 

= {u = u(x,t) lu € c2 (o), H(uxx;a;D) < 00 , H(ut;a;D) < 00}, 

D D 
lula = lu1 0 + H(u;a;D), 

I ID I 1D D I ID I ID u 2 ,N = u1 + lu I + u + ut N. 
~ a x a xx a ~ 

Now we study the stationary equation u + f(u) = O, where f satisfies xx 
(Hfl) and (Hf2). As a consequence of the model we are only interested in 

values of u with O ~ u ~ ·1. The reverse sign in (Hf2) can be treated by the 

change u' = 1-u. Equality in (Hf2) does not lead to travelling wave solutions. 

The solutions of u + f(u) = 0 satisfy the expression xx 
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( 2. 1) 

where 

(2. 2) 

1u!(x) + F(u(x)) = k, 

u 

F(u) = J f(w)dw, 

0 

and k is a constant; (2.1) defines a curve in the (u,u) plane. In this 
X 

phase plane the singular points (0,0) and (1,0) are saddle points, while 

(a,0) is a center point. From (Hfl) and (Hf2) it follows that 0:t~l F{.u) = 
= F(a) < 0 and that there exists a number K, a< K < 1 such that F(K)= 0. 

For the choice k = F(l) in (2.1) we find the solution u = 1 or u corresponds 

with the stable (u = V) or unstable manifold of (u,u) = (1,0). We label V 
X 

bye such that v0 (0) = e, see (1.5). The following asymptotic behaviour holds 

( 2. 3) 
-vx = 0(e ) , x + 00 , ~ ✓-f'(l)'. 

For the special choice f 

explicitly 

= f = u(l-u) (u-a), with O <a<½, we find 
C 

Ve (x) 
= 1 _ 2(1-a) 

2 1 --,, I 

3 (2-a)-+:3fih+all-2a' sinh (11-a x+B) 

[ fi(3-3a- (1-0) (2-a)) l 
B = arsinh J , 

(1-6) ✓1+a'✓1-2a 

V == /1-a'. 

\ 

Next we study the travelling wave solutions, i.e. solutions depending 

only upon the variable z = x-ct. We write 

(2. 4) u(x,t) = u(z+ct,t) - v(z,t) = v(x-ct,t) 

where v(z,t) satisfies 

(2. 5) = V zz 
+ CV 

z 
+ f (v) • 



For travelling wave solutions we have vt = 0. A consequence of our choice 

for f (Hfl-2) is the existence of a unique number c 0 > 0 and a function 

U(z) which satisfies 

l Lu+ 
d + f(U) o, co -u = Z E JR, 

dz 2 dz 
(2. 6) 

lim U (z) = 1, lim U (z) = 0. 
z+-oo z➔oo 
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We fix U(z) by the condition U(0) =~-The uniqueness of the number c 0 will 

become clear by realising that in the phase plane the function U represents 

the unstable manifold of (1,0) which merges with the stable manifold of (0,0). 

Both points are saddles. See e.g. [4], [6] and McKEAN [7] for the correspond­

ing phase portraits. The following asymptotic behaviour holds 

( 2. 7) 

(2. 8) 1 - U (z) 

For the choice f = f we find explicitly 
C 

U(z) = 1 . 
z//z , 

1 + e 

We finally mention the results. 

THEOREM 1. Let the condition (Hfl-2), (Hgl-3), (Hhl-3) be satisfied, then 

problem (P) has a unique solution u E c2 ' 0 (Q). 

(2. 9) 

For the next theorem we need an additional property of u(x,t), namely 

lim lim inf u(x,t) = 1. 
x➔oo t ➔ 00 

We will formulate Theorem 2 under the hypothesis (Hh5), which is sufficient 

for (2.9). We note that the theorem remains true as long as (2.9) is valid. 
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Hypothesis (HhS) can be interpreted by saying that the boundary function h 

exceeds some treshold value, for a sufficiently long time. 

(Hh5) 
If 8 ~ K, then h(t} ~ n > K during some interval (t1 ,t1+Tn), 

where t 1 is arbitrary and Tn will be specified in Lemma 2. 

THEOREM 2. Let the conditions (Hfl-2), (Hgl-4), (Hhl-5) be satisfied, then 

there exists constants z 0 , K,w, K > O, w > 0 such that the solution u(x,t) 

of (P) satisfies 

1) 0 ~ e < 1 

lu(x,t) - U(x-c t-z ) v 8 (x) 11 
-wt uniformly + - + < Ke , X E JR I 0 0 

2) e = 1 

lu(x,t) - U(x-c t-z) I -wt + 
< Ke I uniformly x E JR . 0 0 

In section 3 we give an outline of the proof of Theorem 1. In section 

4 we prove a weaker form of Theorem 2, case 2 in the sense that the uniform 

convergence result only holds for x ~ 8 > 0, where 8 is arbitrary. In section 

5 we prove Theorem 2, case 1 using results of section 4 and an analysis 

which includes the local behaviour at x = 0. In section 6 we prove Theorem 

2, case 2. 

3. INGREDIENTS OF THE PROOF 

For the study of the partial differential equation ut = uxx + cux + f(u} 

(c = 0 and c ~ 0) we formulate the well known maximum principle and a con­

sequence of it. 

Sbiong Maumum PJu.,nup£e (see ARONSON & WEINBERGER [2]). 
0 - 2 

Let u,v E C (Q,r) n C (~ u BT), where the corresponding S"2 is a possible un-

bounded interval in JR , and let 

( 3. 1) L[u] = uxx + cux + f(u} - ut, 

QT 
where f is Lipschitz continuous on [-K,K] for some K > 0. Suppose lul 0 , 

IVI QOT ~Kand 
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L[u] :s; L[v], (x,t) E ~ U BT, 

u(x,0) ~ v(x,0), XE Q, 

and when ST -/- 0 

u(x,t) ~ v(x,t), (x,t) E ST, 

then 

-u(x,t) ~ v(x,t), (x,t) E ~-

· If moreover 

u(x,0) > v(x,0) in an open subset of n 

then 

u(x,t) > v(x,t), 

The requirement about the boundedness of u and vis much too strong. If 

H(f;l;lR) < 00 (i.e. f is uniformly Lipschitz continuous) then we can relax 

the a priori boundedness condition; see the discussion in [2]. Also it is 

not necessary to require the uniform continuity of u and v if~ is not 

compact: continuity and the relaxed boundedness condition are enough. 

DEFINITION 1. u(x,t) is a regular sub-(super-)solution of the problem 

I u = u + cu + f (u), (x,t) E ~ u BT, t xx X 

(P') u(x,0) = g (x)' XE Q, 

l u(x,t) = h (t) , (x,t) E ST, 

0 - 2 
if u E c (~) n c (QT u BT), L[u] ~ (::,) 0, (x,t) E ~ u BT, 

u(x,0) :s; (~) g(x), x En, u(x,t) :s; (~) h(t), (x,t) EST. 

DEFINITION 2. u(x,t) is a sub-(super-)solution of the problem (P') if 
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u(x,t) = max (min) u. (x,t) for a finite collection of regular sub-(super-) 
1<i<N N 1. 

solutions - - {ui} 1 for the problem (P'). 

Comp<VcMon. The,011.em (see FIFE [3]). 

Let u(x,t), u(x,t) be respectively sub-, and super-solutions of the problem 

(P'), where f is uniformly Lipschitz continuous. Let 

XE Q, 
-

u(x,O) ~ g(x) ~ u(x,O), 

u(x,t) ~ h(t) ~ u(x,t), (x, t) E ST, 

then we can bound a solution u (x, t) of (P') by 

-
u(x,t) ~ u(x,t) ~ u(x,t), (x,t) EQT 

and further 

1) u(x,,t) < u(x,t), (x,t) EQT 

or 

2) u(x.,t) - u(x,t), 

In case 1) either u or u may al.so be a solution; in case 2) both u and u 

have to be the solution. 

The proof of the existence of the solution u E c2 'a(Q) (Theorem 1) 

requires a priori bounds for the derivatives of u. These estimates are 

developed by Schauder for the elliptic case and extended by Friedman to the 

parabolic case, see FRIEDMAN [5]. In the proof of Theorem 2 we use a corol­

lary of these Eistimates for the semilinear case, which we formulate below. 

A PJu,oJu, E-0.tlma;te, The,011.em (see [3], [4]). 

Let Q = (a,b) x (t0 ,t1), t 0 ~ O, -a, b, t 1 possible infinite. Let Q0 = 

= (a+o,b-8) x (t0+o,t1), O < o < min((b-a)/2,t1-t0). Let u E c2 (Q) and let 

u satisfy ut = u + cux + f(u), (x,t) E Q, with JuJQ0 ~Kand 
0 1 xx 

f EC' ([-K,K]). Then the following estimates hold for some a, 0 <a< 1, 

where C is a constant, depending only on 8 and a 
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(3.2) 

(3. 3) 

( 3. 4) 

The derivation of (3.2) is based on Friedman's (1+o)-estimate (see [SJ, 

Ch. 7. Thm. 4) and the derivation of (3.3) and (3.4) is based on the inte­

rior estimate (see [5], Ch. 3, Thm 5). Note that the constant c does not 

· depend on Q, u and f but only on the distance between Q0 and the parabolic 

boundary of Q. 

REMARK. We note the difference in formulation of (3.3) with FIFE [3], for­

mula (4.4b). This stems from the fact that in Fife's formula (4.2b) the 

term lhli should be changed into !hi~+ H(h;a;Q) according the interior 

estimate. The continuity with respect tot enters then in the estimate. The 

corresponding term in Fife's formula (4.4b) becomes lf'oul~o/2. 

(lul~012 + H(u;a;Q0/ 2)). The second factor can be estimated in the same way 

as (3.2), because the term H~u;a;Q0/ 2) was present in the original (1+o)­

estimate. The final result is (3.3). 

PROOF OF THEOREM 1. By (Hg1), (Hh1) and the fact that f(O) = f(1) = 0 we 

can take u = O, u = 1 as sub-, and supersolution. So we know by the Strong 

Maximum Principle that O ~ u(x,t) ~ 1. For the proof of Theorem 1 we adapt 

the technique in OLEINIK & KRUHKZKOV [8] in an obvious way. They treat the 

corresponding initial value problem in theorem 14. Conditions (Hg2-3), 

(Hh2-3) give the required smoothness. We note that in stead of 

f E c1 ([0,1]) it is sufficient for this Theorem 1 to take f E c0 ' 1 ([0,1]). 

4. A LEMMA 

In this section we prove a weaker form of Theorem 2 for the case e = 1, 

but the main ingredients of the proof are already present. In Theorem 2 we 
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give a convergence result which is uniform on the entire half line JR+. Here, 

however, we shall exclude a neighbourhood of the origin. 

LEMMA 1. Let the conditions (Hfl-2), (Hgl-4), (Hhl-3) and (Hh4) with 0 = 1 

be satisfied, ·then for arbitrary o > 0 there exists constants z 0 , K,w, K > 0, 

w > 0, such that the solution u(x,t) of problem (P) satisfies 

-wt iu(x,t) - U(x-c0t-z0)i < Ke , uniformly x ~ o > 0. 

The most complicated part of the proof of this lemma is the construc­

tion of sub- and supersolutions. Our intention is to bound the solution 

.between translates of the function U(z). In the same spirit as FIFE & McLEOD 

[4] we try as subsolution 

u = max(0,U(x-c0t+s(t)) - q(t)), 

where we requi1,e at this stage that q > 0, and that q ands tend monotoni­

cally to a limit value fort+ 00 , with q( 00 ) = 0. For an application of the 

Comparison Theorem we have to check the following conditions 

i) L[u] ~ 0, (x,t) E Q, see ( 3. 1) for L[u], with c = 0, 

ii) u(x,0) ~ g (x), X 
+ 

E JR , 

iii) u (0, t) ~ h (t) , + t E JR , 

both for u 1 = 0 and for u2 = U(x-c0t+s(t)) - q(t). The conditions on f,g and h 

imply trivially that u 1 is a regular subsolution. We evaluate L[u2J. 

(4. 1) 

= f(U-q) - f(U) - sU + q. 
X 

To give estimates for this expression we study the difference f(U-q) - f(U) 

and the behaviour of U. For convenience we extend the domain off as 
X 

follows 



{

f' (O)u, 

f(u) = f(u), 

f' (1) (u-1), 

u < o, 
0 s us 1, 

1 < u, 

then there exists a constant K > 0 such that 

f (u-q) - f (u) ~ -Kq, 0 $ q $ 1, 0 $ u $ 1, 

(4.2) 

f(u+q) - f(u) $ Kq, 0 $ q $ 1, 0 $ u $ 1, 

where 

(4. 3) K= sup f' (u), 
OSuSl 

and further, for any choice of q 1 , 0 < ql < a and q2 , 0 < q2 < 1-a there 

exists positive numbers µ1 , µ2, 01 and 02 such that 

ru-q) - f(u) ~ µlq, 0 $ q $ 1, 0 s us 01' 

(4. 4) f(u+q) - f(u) $ -µlq, 0 $ q $ ql < a, 0 $ u $ 01, 

f(u-q) - f(u) ~ µ2q, 0 $ q $ q2 < 1-a, 1-o2 s u $ 1, 

f(u+q) - f (u) $ -µ2q, 0 $ q $ 1, 1-0 $ u $ 1, 
2 

see [4]. We note that in any case 01 + ql < a and o2 + q2 < 1-a. 

13 

The purpose of the function q is to satisfy ii), so we have to choose 

q (0) > o. The other requirement on q (q tends to zero monotonically) implies 

q < O, so we have to balance this negative term in (4.1) by f(U-q)-f(U) or 

by (-su ). We know that U(z) is monotonically decreasing with lim dd U(z)=O. 
x lzl-+oo z 

Hence for any choice of o1,o2 it follows that 

(4.5) l= 

is bounded away from zero. If we chooses> 0 then -su is positive and 
X 

bounded away from zero for values O < o1 s Us 1-o2 < 1 and fixed t. For 

the remaining part of the range of U ([O,o 1) and (1-o2 ,1]) we use (4.4). 

We fix q 1,q2 then we know o1 ,o2 ,µ 1 ,µ 2 and we define the functions 
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(4.6) q (t) = q (0) e -St, s (t) = s (0) + 13 ~~-~) q (0) (1-e -St ), 

where 

(4.7) 

Later on we restrict 13 furthermore. We consider (4.1). 

1. 0 s U < o1 , L[u2 J ~ µ 1q - Sq~ 0, 

2. o1 SU s 1-82 , L[u2 ] ~ - Kq + (-l) ((K+/3)/(-l) )q - Sq= O, 

3. 1-o2 <us 1, L[u2J ~ µ 2q - Sq~ 0. 

It is thus possible to fulfill condition i). Next we turn to condition ii). 

By (Hg4) it is always possible to choose s(O) and q(O) such that 

(4.8) U(x+s(O)) - q(O) s g(x), + 
X E lR , q ( 0 ) < 1-a • 

From the monotonicity of U(z) it follows that any larger value. of s(O) 

also suffices. Finally we examine condition iii). By (Hh4) we know that 

there exists constants c 1 , T1 such that 

-yt 
1 - h(t) s c1e , 

thus for some :number T2 > T1 

u 2 (0,t) - h(t) = U(-c 0t + s(t)) - q{t) - h(t) 

s U(-c0 t + s(O)) - 1 + 1 -h(t) - q(t) 

if we choose 13 < y and T2 large enough. By enlarging s(O) it is also pos­

sible to fulfill condition iii) for OS ts T2 , while it does not disturb 

the estimate above. So by application of the Comparison Theorem we find 

(4.9) u(x,t) = max(O,U(x-c0t+s(t)) - q(t) < u(x,t), (x,t) E Q. 



In an analogous way it is possible to construct a supersolution 

(4.10) 

where 

(4.11) 

u(x,t) = min(1,U(x-c0t-s(t)) + q(t) 

q(t) = q(O)e-6t , s(t) = s(O) + K+$ q(O) (1-e-$t ). 
$(-l> 
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By examining the corresponding condition ii) we need q(O) ~ lim sup g(x), 
x-+«> 

while for application of (4.4) we need q(O) < a, so we find (Hg4) in a 

natural way. We pay attention to the corresponding condition iii). From 

(2.8) we learn that there exists constants c2 , T3 such that 

1 U( t -(0)) ::;; c e-$1cot - -co -s 3 , 

thus for some number T4 > T3 

U(-c0t-s(t)) +q(t) -h(t) 

~ U(-c0t-s(O)) - 1 +1-h(t) 

~ -c3e-$1cot + q(O)e-$t > o, 

+ q(t) 

t > T 
3 

if we choose$< s1c0 and T3 large enough. So finally we set 

(4.12) 

With these estimates and the knowledge of the asymptotic behaviour 

of U ( z) , I z I > 00 , namely ( see ( 2 • 7) , ( 2 • 8) ) 

6oz) 
U(z) = O(e_ , z + 00 , s0 = -

S1z 
1 - U(z) = O(e ) , z +- 00 , S1 

we can give the estimates for the function u(x,t) 

(4.13) 

co 
(- -- cr) (x-c t) 

u(x,t) < c4 (e 2 O -$t + e ), 

co 
rr > -Vo 2 I 

C 

cr > _Q 
0 1' 1 2 

x-c t ~ o, 
0 
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(4.14) 

C 

a< 0, 81 ~ - 1 +a> O. As was noted 

in section 2 u(x,t) = v(z,t), z = x-c0t and v satisfies (2.5). Thus the 

estimates (4.13), (4.14) can be translated directly into estimates for 

v(z,t). 

We want to apply the A Priori Estimate Theorem for the derivatives and 
2 2 o give a pointwise bound for V (z,t). By choosing Q= (z--o,z+-o) X (t---, 00), 

1 1 z 3 3 3c0 
and Q O = ( z - 3 o , z + 3 o) x ( t, 00 ) we find by ( 3 • 2) 

There exists positive constants k,K such that -ku $ f(u) $ Ku, and -k(l-u) $ 

f (u) $ K(l-u), where k = -inf f' (u) and K = sup f' (u). Now we can estimate 
Q$u$1 · 0$u$1 

the right hand side by means of (4.13) and (4.14). This yields 

co 
(- --a)z 

-St (4.15) Iv (z,t) I < c5 ce 2 z ~ o, t ~ o/co, + e ) ' z 
co 

(--+a)z 
-St (4.16) Iv (z,t) I < c5 ce 2 -c t + o $ z $ 0, t ~ o/co. z + e ) ' 0 

The need to take the supremum over the larger domain Q_has been met by 

enlarging the constant c4 by a factor depending·on o. For values of z $ 0 

we study the function w(z,t) = 1-v(z,t) and the corresponding equation. We 

treat the higher derivatives in the same way and we translate the results 

for the function u(x,t). Then finally we arrive at the following estimates 

(4.17) lu (x,t)I, lu (x,t)I, lut(x,t)I, 
X XX 

. (-~c0-a)(x-c0t) -St 
H(uxx;a.;Q1),H(uea.;Q1) < c6 (e +e ), 

(x,t) E Q1 = {Cx,t) I x-c0t ~ o, t ~ o/c0}, 

(4.18) lu (x,t)I, lu (x,t)I, fut(x,t)I, 
X XX 

He . •O_) H( . ·Q) < c C C-~c0+a)(x-c0t) + -St) 
uxx'a.,~ ' ut,a.' 2 6 e e ' 

cx,t> € Q2 = { cx,t> I -c0t + o $ x-c0t $ o, t ~ o/c0l. 
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___!!_will be ~venient to extend the domain of the function u(x,t) from 
+ + + 

lR x lR to lR x lR • This will be done in the following way 

r X :s; o, t ~ 0, 

(4.19) u(x,t) = 1/J(x,t), 0 :s; X :s; 20, t ~ o, 
u(x,t), 20 :s; x, t ~ o, 

where 1/J(x,t) represents a smooth connection between the functions u and 1 

(4.20) 1/J (x, t) 2x-3o =l+x( 0 )(u(x,t)-1), 

1 y 1---
J e 1-s2 ds 

(4.21) -1 x<Y> = -------
1 1 --1-
J e 1-s2 ds 

-1 :s; y :s; 1. 

-1 

~ We shall use the notation v(z,t) = u(x,t). Now the same type of estimates 

are valid for u with possibly a larger constant (say c7 )~ but without the 

restriction x ~ o, because firstly the constant part of u does not give 

any problem and secondly the derivatives of the connection 1/J are all bound­

ed in view of the boundedness of u and x and their corresponding deriva­

tives. 

Thus we have found the same estimates as Fife & McLeod did in their 

treatment for the pure initial value problem. The rest of the proof of 

this lemma follows the lines of [4]. For the sake of completeness we sketch 

this remaining part. 

1. {;(•,t) I t ~ t 0 = o/c0} is relatively compact in c2 (:iR). 
00 

For a sequence {tri} 1 , tn + 00 , n + 00 , we apply Arzela-Ascoli's Theorem 

on the interval [-K,K] for every K. Then there exists a subsequence {t K} 
~ 2 n, 

such that v(•,t K) converges in C ([-K,K]), and there exists a subsequence 
n, 

{t 1} c {t } such that ;(z,t ) converges to v(z) on [-K-1,K+l], 
n,K+ n,K n,K+1 

and v(z) satisfies also the a priori estimates for the limit case t = 00 , 

d2 -
so --2 v(z) is uniformly concinuous on lR. Choose now numbers K and T such 

dz · 
that 
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(4.22) I a i ~ - I (3z) (v(z,t) - V(z)) < E, lzl < K, t > T, i = 0,1,2. 

Choose N such that tN,K > T then 

(4.23) I a i ~ - I (az) (v{z,t) - v(z)) < E, lzl :,; K, n ~ N, i = 0,1,2. 

(4.22) and (4.23) together imply that there exists a subsequence {t'} c {t }, 
_ 2 _ n n 

t + 00 such that lim v(z,t') = v(z) in C (JR). 
n n+oo n 

2. Estimates for v(z). 

For the function v(z) = v(x-c0t) we can give the estimate 

( 4. 24) 

We remark that both s( 00), s( 00 ) are finite numbers, so the limit function 

is bounded by two translated travelling waves. It is possible to prove 

that the limit function itself is a travelling wave, i.e. there exists a 

z0 such that v(x-c0t) = U(x-c0t-z0). The mathematical tool for proving this 

purpose is a Lyapunov functional V. To avoid difficulties with convergence 

we transform v(z,t) to w(z,t), where w lies in the domain of the functional 

V 

(4.25) 

1 

CJ (z,t), 

w(z,t) = v(z,t) , 

cr+(z,t), 

0 

Z :,; Et - 1, 

-Et - 1 :,; Z :,; - Et, 

-Et:,; Z $ Et, 

Et $ Z $ Et+ 1, 

Et+ 1 $ z, 

where we have chosen 

(4.26) 

and 

(4.27) 
CJ (z,t) = 1 + x(2z+2Et+1) (v(z,t)-1), 

CJ (z,t) = (1-x(2z-2Et-1))(~(z,t)). 
+ 



3. The Lyapunov functional v. 

Define the following functional 

00 

(4.28) v[w] = J ecoz{¼! - F(w) + H(-z)F(l)}dz, 

-co 

where H(z) = 0, z < O, H(z) = 1, z > O; see (2.2) for F(w). We can make 

the following sequence of statements as a result of the definition of w 

and (4.17), (4.18) and (4. 26) 

i) 

ii) 

v[w(•,t)] is bounded, independently oft~ o/c0 • 
d 

Let V(t) = v[w(•,t)], then dt V(t) exists and 

:t V(t) = V(t) = 

-00 

iii) Let 

00 

Q[w] J coz 2 
= e { w + COW + f (w) } dz, 

zz z 
-00 

then Q[w] ~ 0 and 

lim lv(t) + Q[w](t) I= 0. 
t-+<x> 

. 
iv) limsup V (t) s:; 0 and even lim sup V (t) = 0, because otherwise 

v) 

vi) 

t-+<x> t-+<x> 
V[w(•,t)] tends to minus infinity, which contradicts i). Thus there 

exists a sequence {t} such that lim V(t) = 0. 
n n-+<x> n 

lim Q[w](t) = O. 
n-+<x> n 
There exist a subsequence {t'} c {t} such that 

n n 

lim Q[w](t') = 0 
n-+<x> n 

and w(z,t') -+ v(z) in c2 (:R). 
n 

vii) For any bounded interval I vi) implies 

lim 
n➔oo 

19 



20 

viii) 

and the same limit is also equal to 

I coz - 2 
e { V + C V + f (~)} dz. 

zz Oz 
I 

-
So we have v +c v + f(v) = 0 for z EI. We know v(-00 ) = 1, 
_ zz Oz 
v(00 ) = 0, thus from the uniqueness in the phase plane, modulo 

translation, there exists a z 0 , such that v(z) = U(z-z0 ). 
2 -We know that w(z,t~) ➔ U(z-z0 ), n ➔ 00 in C (JR) and thus also 

v(z,t~) ➔ U(z-z0 ), n ➔ 00 • We prove that z0 does not depend on the 

choice of the sequence {t }. If for some no lv(z,t' )-U(z-zo) I < E 
n no 

we can construct sub- and supersolutions in the same way as at the 

beginning of the 

l;(z,t)-U(z-z0 ) I 
by choosing q(0), 

proof of this lemma, such that for all t ~ t' 
no 

< E (and also for the corresponding derivatives) 

q(0) = O(E) and s(0), s(0) = z0 + O(E). 

4. The rate of convergence is exponential. 

For the proof of this statement we refer directly to the paper of 

Fife & McLeod ([4], section 5). In our notation they find 

l~;(z,t) - U(z-z0 ) I.< Ke-wt, uniformly z E JR. 

We remark that it follows from their proof that w < S, so also w < y. See 

also the discussion in section 5. Keeping in mind that v(z,t) = v(z,t) = 

u(x,t) for x ~ 2o it follows 

I I -wt u(x,t) - U(z-z0) < Ke , uniformly x ~ 2o. 

Thus we have proved the statement of Lemma 1 (o was arbitrary). At this 

point we need a better analysis for extending the domain of uniformity up 

to x = 0. This will be done in the next section for the general case 

(0 ~ 8 < 1). In section 6 we apply the same technique for the particular 

case 8 = 1. 



5. THE GENERAL CASE 

In the preceding section it was possible to prove a uniform conver­

gence result for x E [o, 00), o > 0 arbitrary, by the special choice of 

boundary function h(t), because lim h(t) = 1 and lim U(x-c0t-z0 ) = 1 for 
t+oo t+oo 
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a fixed number x. In the general case the limit value of h (t) is 0, 0:,; e < 1, 

so it will be impossible to prove a result like lemma 1. The influence of 

the boundary function will play an important role in this section. As in 

ARONSON & WEINBERGER [1] we encounter in this initial-boundary value prob­

lem a threshold effect (see [1], Theorems 5.3 and 5.4). 

If the boundary function h(t) fulfills some condition (Hh5), which 

can be interpretated by saying that this function exceeds some value over 

a long enough period then lim lim inf u(x,t) = 1 ([1], Theorem 5.4) while 
x+ro t+oo 

there exists another condition which is sufficient to ensure that 

lim lim sup u(x,t) = 0 ([1], Theorem 5.3). We shall only consider the first 
x+oo t+oo 
case and prove the convergence to a travelling wave in a certain sense. We 

shall reformulate Theorem 5.4 of [1] but first we introduce the function 

Q (x) as solution of 
n 

(5. 1) 

2 

{

d 2 Q + f(Q) = 0, 
dx n n 

Q (0) = n, dd Q (0) = 0, 
n x n 

X E lR, 

K<n<L 

we find Q (x) by choosing k = F(n) in (2.1). Q satisfies the bounds 
n n 

0:,; Q :,; 1 only for x E [-l ,l] where 
n n n 

.tn = f du 
✓2 (k-F (u)) 

0 
and 

Q (± l > = o, 
n n 

Q C± l > = +ill . 
nx n 

LEMMA 2 (see [1], Theorem 5.4) Let the conditions (Hfl-2), (Hgl-3), (Hhl-4) 

with g = 0 be satisfied. There exists for any n E (K,1) a positive number 

T such that if 
n 
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for some t 1 > 0 

then the solution u of problem (P) satisfies 

(5 .2) 

and 

u(x,t1+Tn) ~ Q (x-1-l ), x E (1,1+2l ), 
n n n 

lim lim inf u(x,t) = 1. 
x+oo t,+co 

Lemma 2 proves the existence of the number T in condition (Hh5). 
11 

* Next we shall prove the existence of positive constants c 1, c, y, T0 

such that 

(5.3) 1-u(c1t,t) < Ce 
* -y t 

consider therefore the following problem 

(p I) 

u = u + f(u_), x > o, t > t 1+Tn, -t -xx 

{
Qn(x-1-ln), x E (l,1+2l11 ), 

u(x,t1+T) = 
- n 

0 I X E [0,1] u [1+2l , 00), 

n 
u(O,t) = 0, t > t 1+T . n 

The solution of (P') is a subsolution for the solution of (P) so that 

~(x,t) ~ u(x,t), x ~ O, t ~ t 1+Tn. Now we apply the Proposition 5.1 in 

[1] to show that u(x,t) is nondecreasing int and lim u(x,t) = ~(x) uni-
t-k<> -

formly on bounded x-intervals, where ~(x) is the smallest nonnegative 

solution of the equation ~xx+ f(~) = 0, x > 0 such that 

i) 

ii) 

~(O) = lim u(O,t) = O, 
t-k<> -

~ (x) ~ Qn (x-1-ln>, x E (1,1+2l). 
T1 

We shall show that these conditions imply that ~(x) = v0 (x) (see section 2 

for v0 (x)). Clearly ~(O) = v0 (0). Next we shall prove that v0 (x) satisfies 

ii). Choose any number p, 0 ~ p ~ n, and define x 1 and x 2 by v0 cx1) = p, 
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Qn(x2-1-ln) = p, x 2 ~ 1 +in.By the monotonicity of v0 (x) ii) is equivalent 

with the inequality x 1 ~ x 2 • From (2.1) we learn 

r du r du x2-1, x1 = < = 
✓2(F(1)-F(u)) ✓2(F(n)-F(u)) 

0 0 

because F ( 1) > F (n) , so the statement follows. From the convergence of 

~(x,t) to v0 (x) uniformly on bounded x-intervals we learn that for any 

given x-interval [0,X] and for any given£> 0, there exists a time 

TO= T0 (X,£) such that 

(5. 4) XE (0,X]. 

DEFINITION 3. Define the function m(x,t) = ~(x,t+To), x ~ 0, t ~ o. Then 

m(x,t) is the solution of problem (P") 

(P") {

m = m 
t xx 

m(x,0) = 

m(0,t) = 

+ f (m) , 

~(x,T0), 

0 

(x,t) E Q 

X E IR+ 1 

t E IR+ • 

+ + = (IR x IR ) , 

For the solution of problem. (P") we shall construct a subsolution t](X,t). 

The construction of this subsolution is complicated and we do the calcula­

tions in an Appendix (section 7). From that construction we learn that 

* there exists positive constants c 1 , C, y such that c 1 < c 0 and 

( 5. 5) t > o. 

See formula (7.59) in the Appendix. Because of the inequalities 

m(x,t) ~ m(x,t) = ~(x,t+T0) ~ u(x,t+T0 ) we learn from (5.5) that also 

(5.6) 

which is equivalent with (5.3). 

DEFINITION 4. Define the following subdomain of Q 
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(5. 7) * Q ={(x,t)lx>x(t)=c1t, t > o}. 

* In this domain Q we apply Lemma 1. We formulate the result as Lemma 3. 

LEMMA 3. Let the conditions (Hfl-2), (Hgl-4), (Hhl-5) be satisfied, then 

* * * * for arbitrary o > 0 there exists constants z 0 , K, w, K > O, w > O 

such that the solution of problem (P) satisfies 

(5.8) 
* *-wt lu(x,t) - U(x-c0t-z0 ) I < K e uniformly x ~ x(t) + o. 

* PROOF. Apply Lemma 1 to the domain Q. The role of the boundary function 

will be played by the function u(x,t) itself. We learn from (5.3) that 

* the behaviour of u along the t-dependent boundary of Q fulfills the con-

* ditions of Lemma 1. The fact that the lower bound of x of the domain Q 

depends on t does not matter in the proof. The only point to check is 

whether the argument of the sub- and supersolutions along this boundary 

tends to minus infinity. For the subsolution this argument reads 

x(t) - c 0t + s(t). In view of the behaviour of s(t), the fact that c 1 < c 0 

and the equality 

(5.9) t ~ 0, 

this argument runs to minus infinity as t + 00 • An analogous result holds 

for the supersolution. For the corresponding S value (see (4.12)) we have 

to take 

(5.10) 

* * 

* y , 

so we know w < S • The equality sign in (5.10) follows from the calcula-

tions in the Appendix. D 

Now fix the number o > 0 in Lemma 3 and consider the complement of 

* Q in Q. 

DEFINITION 5. Define the following subdomain of Q 
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(5.11) Q** = {(x,t) I O < x < x*(t) = x(t)+o = clt+o, t > o}. 

* ** ** * From Definitions 4, 5 it follows that Q\Q c Q and Q\Q c Q. 

We give the following a priori lower bounds for u(x,t). 

(5.12) u(x,t) ~ ~(x,t-T0), (x,t) ** 
E Q I t ~ T0 , 

* *-wt ** (5.13) u(x,t) ~ U(x-c t-z) - Ke (x,t) E Q\Q , t ~ o. 
0 0 

Estimate (5.12) follows from the construction of the subsolution min the 

Appendix. Estimate (5.13) follows from the result of Lemma 3, where the 
** domain of convergence was Q\Q : u converges to a travelling wave. Next 

** we shall prove that u converges to v8 for (x,t) E Q • Therefore we define 
~ the following function u(x,t) for the fixed chosen o > O, 

u(x,t), 0 ~ X ~ 
-* 
X (t), t ~ 0, 

-* 
('5.14) ~ 2x-2x (t)-o u(x,t) = u (x, t) + X ( 0 ) (V 8 (x) -u (x, t) ) , 

-* -* 
X (t) ~ X ~ X (t)+o, t ~ o, 

v8 (x)~ -* 
X (t)+o ~ x, t ~ 0. 

see (4.21) for x(x). From the definition (5.14) and the estimates (5.12) 

and (5.13) we obtain for some c1 > 0 

(5 .15) X ~ 0, t ~ 0, 

* where,= min(v,w /c1). According to the A Priori Estimate Theorem we 

have for Q0 = {(x,t) Ix> o1 , t > o1}, o1 a small fixed number, for some 
1 

(5.16) (x,t) E Q0 , 
1 
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~ -TX 
H(u ;a;Q0 ), H(ut;a;Q0 ) ~ c2e . 

xx 1 1 
(5.17) 

In view of thei fact that u E c2 'a(lR+ x lR+) (see Theorem 1) we know that 

there exists some number M > 0 such that 

I~ I, I~ I, l~tl, H(u ;a;Q) ,H(~t;a;Q) ~ M, 
X XX XX 

so that we can extend (5.16), (5.17) up to the boundary x = O, t = 0. 

Thus for some c3 > 0 

(5.18) I~ I, I~ I, I~ I ~ c3e-Tx 
X XX t 

(x,t) E Q = {(x,t) I x::?:O, t::?: o}, 

(5.19) 

+ We use these estimates to prove that lim u (x,t) = V 6 (x), uniformly x E lR . 
t-+<xi 

As in Lemma 1 we can make the following statements 

1. {~(•;t) I t::?: O} is relatively compact in c2 (lR+). 

The proof runs along the same lines as in Lemma 1. We denote the 

limit function by w(x). 

2. The limit function satisfies 

max(0,2V0 {x)-1) ~ w(x) ~ 1. 

This estimate is trivial after the discussion above. To prove that w(x) = 

v6 {x) we need again a Lyapunov functional. 

3. The Lyapunov function v. 
Define the functionals 

00 

~ I{½~~ V[u] = F{u) + F(l) }dx, 

0 
00 

~ I {~ 
~ 2 

Q[u] = + f{u)} dx, 
xx 

0 



which are well defined by (5.15) and (5.16). As Lemma 1 we find 

w + f (w) = 0, 
xx x E [0,L] for every L, 

~ w(0) = lim u(0,t) = lim h(t) = e, 
t-+oo 

lim w(x) = 1. 
x-►oo 

t-+<x> 

From the uniqueness in the phase plane we conclude w(x) = v8 (x), x ~ 0. 
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2 + ~ By the uniquness of the limit in C (JR) it follows that u(x,t) converges 

to v8 (x) not only along sequences but for all t, thus 

(5.20) lim u(x,t) 
t-+<x> 

+ = V 8 (x) , uniformly x E JR • 

4. The rate of convergence is exponential. 

For this property we cannot directly refer to the proof of FIFE & 

McLEOD [4], because of the influence of of the function h(t), but after 

some appropriate. changes we can still use the basic idea underlying their 

proof. Define 

(5.21) k(x,t) = u(x,t).- v8 (x-a(t)), 

where a(t) has been chosen so that (recall u(O,t) = u(0,t) = h(t)) 

k(0,t) = h(t) - Ve(-a(t)) = 0. 

So lim a(t) = 0, because lim h(t) = 8. It follows from the implicit func-
t-+<x> t-+<x> 

tion theorem that a(t) exists and that it is continuously differentiable. 

In view of the fact that h(t) - 8 = O(e-yt), as t ➔ 00 , we find 

8-V (-a(t)) = O(e-yt), as t ➔ 00 and even a(t) = O(e-yt), as t ➔ 00 

e ~ 
From the definition of u(x,t) (see (5.14)) we learn that u satisfies 

(5.22) 

where 

= u 
xx 

~ + f(u) + r, 
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-* -* 

r(x,t) - {: :: 

0 ~ X < X (t), X (t) + 0 < X, t ~ 0, 

-* -* X (t) ~ X ~ X (t)+o, t ~ 0, 

and for some number C > 0 

-* -* lr(x,t) I --rx 
~ Ce , X (t) ~ X ~ X. (t)+o, t ~ 0 

as a consequence of (5.18) and (5.19). So k(x,t) satisfies 

kt(x,t) = kxx(x,t)+a' (t)v8 (x-a(t))+f(v8 (x-a(t))+k(x,t)) 
X 

- f(V8 (x-a(t)))+r(x,t). 

By (Hf1) (f e: c1 ([0,1]) this can be written as 

(5.23) kt(x,t) = k (x,t)+f' (v8 (x))k(x,t)+s(x,t) 
xx 

+ a' (t)v8 (x-a(t))+r(x,t), 
x· 

where s(x,t) = o(k(x,t)) as t ➔ 00 • 

Define the operator M 

k(O) = O. 

00 2 
Mis symmetric, bounded below on c0 (0, 00 ) n L (0, 00), so according Friedrichs 

2 
Theorem M possesses a self-adjoint extension with V(M) c L (0, 00 ). We study 

the behaviour of k(x,t) for large values of x. Fix t > 0, then 

lim k(x,t) = lim v 8 (x)-v8 (x-a(t)) = 
x-+.<x> x-+.<x> 

lim a(t)v8 (~(x)) = O, 
x-+.<x> X 

where~ represents some function with ~(x) > x. In view of the fact that 
-v~ * Ve (~) = O(e ), ~ ➔ 00 , and a(t) ~ sup a(t) =A, we find that 

X O~t<oo 



-vx -* k(x,t) $; Ae , X ~ X (t) + o, 

so that 
-* 00 X (t)+o 

k(t) = I k(x,t)dx $; J k(x,t)dx + A/v. 

0 0 

Because li.m k(x,t) = 0 uniformly in x, we know that given E > 0, fort 
t-+oo 

larger than some number T 
E 

(5.24) -* k(t) ~ ex (t)+o)E + A/v = c 1t+c2 , 

with 

From the theory of singular Sturm-Liouville problems we learn (see 

TITCHMARSH [4])) that the spectrum cr(M) of M consists of a continuum in 

the interval [X, 00), where A= lim - f' (Ve(x)) = -f' (1) > 0 and possible 
- ~ -

a discrete part in (-A(e,,A), where A(e) = sup f' (Ve(x)). Now we shall 
Q$;x<00 

prove that the smallest eigenvalue of M, AO' is positive (if it exists). 

Let l represent the eigenf~nction belonging to the eigenvalue of A0 , so 

(5.25) .e.xx + f' (Ve (x) )l = -Aol, l(O) = o, l(x) > o, X E (O,00). 

we differentiate the expression for Ve (Ve + f(Ve) 0). 
xx 

(5.26) = o. 

Multiply (5.25) by (-V ) and (5.26) by l, add both expressions and in­
ex 

tegrate over (0, 00): 

00 00 

.eve dx-= J 
X 

0 

(lv e -lxxv e )dx = 
XXX X 

We know that Ve (0) > 0 and also that .e. (0) ~ 0 (otherwise l should be 
X 00 X 

identical zero), so J lve dx > 0 and lx(O).Vex(O) > O, and hence AO> 0. 
0 X 

29 
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00 

Multiply (5.23) by k and integrate over (0, 00), then (lik11 2 = J k2dx) 
0 

(5.27) 

where 

( 5. 28) 

(5.29) 

(5.30) 

00 00 

1 d II kll 2 -- J (-Mk,k) + s.kdx + a' (t) 
2 dt J Ve (x-a(t))k(x,t)dx 

X 

0() 

00 

+ J r.kdx, 

0 

0 0 

I J s. kdx I = o (1) llkll 2 , 

0 

t + oo, 

00 

j a' (t) I Ve (x-a(t))k(x,t)dxj = O(a' (t)) .O(k(t)) = 

0 
X 

-yt 
= O((C1t+c2)e ), 

-* ex:, X (t)+o 

1J - J 
-* 

r.kdxl :,;; -TX OCe-TX (t) C -Tc1t Ce dx < = 3e I 

0 x*(t) 

t + oo, 

t + 00 

2 
For k E V(M) we have (-Mk,k) :S: (-A0 ) likll , so from (5.28), (5.29), (5.30) 

there exists for arbitrary p, ½ :s: p < 1 a number TO such that for some number 

C > 0 
4 

(5.31) 1 d llk112 
2 dt 

Finally we find 

(5.32) 

Thus if 

i) 

ii) 

--yt 
e + 

2AoP > y, llk11 2 = O(e-yt), 

2AoP < Y, lik112 = o(e-2AoPt), 

t + oo, 

t + oo. 

If AO> y/2, then there exists a p, ½ :s: p < 1 such that 2A0p > y, so we 

have case i); if AO :s: y/2, then 2A0p < y, and we have case ii). So the 
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decay is O(e-µt), whereµ is arbitrarily close to min(2A0 ,y,,c1), which 

* * is in turn arbitrarily close to min(2A0 ,y,c1v,w) because T = min(v,w /c1). 
1 - 2 Now we use [5], Lemma 5.1. For f EC (JR+) n L (JR,-) 

-µ/3t 
so lk(·,t) 10 s c5e for some number c5 > 0, because lk(•,t) I can be 

. 2,a - 1 
estimated uniformly by a constant (we recall that u EC (Q)). So 

sup 1;:;'.cx,t)-Ve(x) I = 
0Sx< 00 

sup 1;:;'.cx,t)-Ve(x-a(t))-a(t)Ve (~(x)) I 
OSx<oo X 

1 ~ 
Thus there exists a K, w, K > O, w > 0, w = 3 µ such that 

(5.33) 
-wt 

< Ke 
+ uniformly x E JR • 

** ** If we restrict (5.33) to the domain Q and we use (5.8) for Q\Q we find 

(c7 ,c8 > 0) 

(5.34) 

anq 

(5.35) 

lu(x,t) - u(x-c0t - z 0 ) - v 8 (x) + 11 

s lu(~,t) - v 8 (x) I + l1-U(x-c0t-z0 ) I 

** (x,t) E Q 

lu(x,t) - U(x-c0t - z 0 ) - v 8 (x) + 11 

s lu(x,t) - U(x-c0t-z0 ) I+ l1-v8 (x) I 
* *-wt S K e 

* *-wt 
S K e (x,t) E Q\Q ** 

Taking (5.34), (5.35) together, we learn that there exists constants z0 , 
~ * 1 ~ 

K, w, K > O, w = min(w,w ,13 1 (c0-c 1) ,vc1 ) = 3 µ > 0 such that 
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( 5. 36) I -wt + u(x,t)-U(x-cOt-zO)-v0 (x)+11 <Ke , uniformlyxE JR, 

which was the first statement of Theorem 2. 

6. THE CASE 0 - 1 

As was observed in section 4 it was not possible to extend the uniform 

convergence domain up to x = 0, because the a priori estimates did bot hold 

there. Nevertheless it is possible to prove the same result ( 5. 36) for 0 = 1 . 
-* We know already that the solution converges to 1 for x (t) = c 1t (even 

for x = o) in an exponential way. So we can apply the techniques of section 

5 directly with the only difference that we take u = 1 instead of u = v0 (x). 
-* Finally we find that lim u(x,t) = 1 uniformly O ~ x ~ x (t), with decay 

-wt N o (e ) , with w 
1 ~t-+oo ~ * = 3 µandµ arbitrarily close to min(-2f' (1) ,y,c1v,w). 

This result together with (5.8) gives the second statement of Theorem 2, 
1 ~ 

with w = 3 µ. 

7. APPENDIX 

In this Appendix we shall .construct a subsolution m for problem (P") 

+ + r =m 
+ f (m) , (x, t) E Q = (JR X]R ), 

t xx -:+ 
(P") m(x,O) = ~(x,TO), X E JR , 

mi(O,t) 0 + = t E JR . 

We know that it is possible to choose TO such that for any given x-interval 

(O,X] and for any given E: > 0 

( 7. 1) XE (0,X]. 

* our object is to prove that there exists positive constants c 1 , C, y such 

that 

(7. 2) t > o. 



The subsolution m(x,t) will be composed of three functions m., i = 1,2,3 
-1 

(7. 3) ~l (x,t) = o, 

(7. 4) ~ 2 (x,t) = v0 (x-r(t)) 8x-a.t 
- poe I 

(7. 5) ~3 (x,t) = U(x-c0t+s(t)) -yt 
- qoe I 

where r (t) and s (t) are defined by 

(7.6) 

(7. 7) 

-ot 
r(t) = R(l-e ), 

-yt 
s(t) = s(O) + S(l-e ). 

We define v0 (x) for negative x as the natural continuation of v0 (x) for 

positive x, then v0 (x) is negative for negative x. 
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In the sequel we have to specify the positive parameters p0 , 8, a., R, 

o, q 0 , y, Sand the parameter s(O). We define the subsolution m(x,t) as 

follows 

max(~1'~2), 0 s; X s; x 1 (t) , 

max(~2 ,~3), x 1 (t) s; X s; x 2 (t), 

(7. 8) m(x, t) = !!!2 (x2 (t),t) < o, 
X 

max(~3•~1), x2 (t) s; X s; x3 (t) , 

~1 x 3 (t) s; x. 

The function m(x,t) has been pictured in figure 1. 

First we shall calculate under which conditions on the parameters 

the functions m. satisfy the differential inequalities 
-1 

(7.9) L[m.] = m. 
-1 -1 

xx 
+ f(m.) - m. ~ O, 

-1 -it 
X, l (t) < X < X, (t) 1 t > 0, 
1- 1 

i = 2,3. 
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1 ------ v0 (x) 
m(x,t) 

x(t) 

"' '\ 
~ 2 (x,t) 

fig. 1 

we-remark that ~l (x,t) = 0 is a trivial subsolution. 

We evaluate L[~2]: 

(7.10) 

...... _ 
x+ 

Sx-a.t 
where we have used the shorthand notation v 0 = v 0 (x-r(~)) and p = p0e 

In the same way as in section 4 we split the range ofv0 up in parts: 

0 ~ v 0 ~ 1-o2 and 1-o2 < v 0 ~ 1. But before we can proceed we have to bound 

the function x 2 (t). It is possible to prove that x2 (t) = c 2t + 0(1), t + m, 

for some positive constant c 2 , which will determined later (see (7.56)). 

Now we can bound p = p(x,t) as follows 

Sx-a.t * 
<Sc2-a.) t 

(7.11) p = P e ~ poe X ~ x 2 (t), t ~ o. 
0 

We choose 

(7.12) 0 =-(Sc-a.), 2 

and by a proper choice of a.,S we can insure that o is positive. Choose now 

pan arbitrary small number and let o2 = o2 (p), and p 2 = p 2 (p) be such that 



the third inequality in (4.4) holds: 

(7.13) 

where 

(7 .14) 

f(u-p) - f(u) ~ µ 2p, 

2 
µ = V ( 1-p). 

2 

As in section 4, let 

(7. 15) k 

Choose further 

(7 .16) 2 * R = (K+S +a)pofcSk, 

see (4.3) for Kand let 

(7.17) 

We consider (7. 10) 

1. ~ 1-cS , 
2 2 -cSt 

~ -Kp -(S +a)p + cSRe k 
-cSt * 2 * ~ e [-Kp0-cs +a)p0 + cSRk] = o, 

2. 

by (7. 10) • 

We note that this inequality holds only for 

(7 .18) 

by (7 .16) . 

We shall discuss this condition later on. We evaluate L[~3 J. 

35 



36 

(7.19) L[~3 J = f(U-g) - f(U) - yq - sUx, 

-yt where we have used the shorthand notation U = U(x-c0t+s(t)) and q = q0e • 

In exactly the same way as in section 4 we prove that ~[~3 ] ~Oby choosing 

(7.20) l d = sup dz U(z), 
01:;;;u:;;;1-0 2 

(7.21) y :;;; min (µ 1, µ 2), 

(7. 22) s = (K+y)q0/y<-l>, 

where o1 is an arbitrary small number and µ 1 follows from (4.4). In view 

of (7.13) we have to choose q0 < p 2 • We recall the asymptotic behaviour of 

v 0 (x) and U(z), see (2.3) and (2.8) 

(7.23) -vx = a 1 e ( 1 +o ( 1 ) ) , X -+ oo, 2 
V = -f 1 ( 1) , 

(7.24) 1 - U (z) z ➔ -oo, 

where a 1 and a 2 are some positi~e numbers; see for analogous results 

UCHIYAMA [10, Thm.2.1]. We shall use the relation 

(7.25) 

which follows from the quadratic equation s2 + c 0S - v2 = 0 for s1 • 

Next we determine the behaviour of the function x(t) defined by 
d -

dx ~2 (x(t),t) = 0: 

(7.26) d · 0 Sx-atl dx v 0 (x-r(t)) - µp0e _ 
x=x(t) 

= o. 

By the relation 

(7. 27) 
d 

dx v 0 (x) = v(l-v0 (x)) (l+o(l)), X -+ oo, 

and by (7.23) we find 



(7.28) X + oo. 

Using (7.26) and (7.28) we find with the aid of the implicit function 

theorem for x(t) the following expression 

(7. 29) t + oo, 

and for ~2 (x(t),t) 

(7.30) ~ 2 (x(t) ,t) = v0 (x(t)-r(t)) 

1 d -v0 (x(t) - r(t)) - S dx v0 (x(t)-r(t)). 
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In view of (7.27) we know the existence of a positive constant A such that 

(7. 31) X 2 0, 

so we can estimate ~ 2 (x(t),t) as follows 

(7.32) ~ 2 (x(t),t) 2 (1 + ~)V0 (x(t)-r(oo)) 
A 

s 

Let us co~~are ~ 2 (x(t),t) with ~ 3 (x(t),t). An easy estimate for ~3 (x(t) ,t) 

reads 

(7. 33) ~ 3 (x (t}, t) :o; sup ~3 (x, t) 
-oo<x<oo 

If we can prove that 

(7.34) t 2 o, 

then, by (7.32) and (7.33) the consequence is 

(7.35) ~2 (x(t) ,t) > ~3 (x(t) ,t), t 2 o. 

In view of (7.23) there exists a constant a 1 > a 1 such that 
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(7.36) X ~ 0. 

Using (7.36) the inequality (7.34) is implied by 

a 
(7. 37) Y < vc3 = v v+S, 

together with 

(7. 38) 

By reducing p 0 we enlarge x 0 , so the righthand side of (7.38) can be made 

arbitrarily small and we can choose q 0 < p 2 , which was necessary in view 

of ( 7. 13) . 

Next we define the functions x 4 (t), x 5 (t) by 

( 7. 39) 

(7.40) 

~ 2 (x4 (t),t) < 0, 
X 

Our object is to prove that x 4 (t) < x 5 (t), t ~ 0. This inequality gives 

together with (7.35) the existence of the function x 2(t) for all time, 

where x 2 (t) is defined by 

(7.41) ~ 2 (x2 (t) ,t) < O. 
X 

It is clear that the solution x4 (t) of 

(7.42) 
Sx4 (t)-at 

1 - poe = 1-p2 

satisfies x 4 (t) < x4 (t) and analogously that the solution ~ 5 (t) of 

(7.43) 

satisfies ~ 5 (t) < x 5 (t). It is easy to determine x 4 (t) and ~5 (t) 



(7.44) 

( 7. 45) 

p 
x4 <t> = ~ t +.!..en c2> 

B B p ' 
0 

u- 1 is the inverse of u. If we choose 

(7.46) 

(7.47) 
1 P2 -1 - in (-) < - s(m) + U (1-p2+qo), 
B P0 

then we have proved the desired inequalities 

(7. 48) 

We note that s(m) = s(O) + S = s(O) + (K+y)q0/y(-l). So we can achieve 

(7.47) by choosing s(O) small enough, possibly negative. Once we have 

found the existence of x 2 (t) we can determine its asymptotic behaviour. 

First we specify a, Bandy 

(7.49) 

(7.50) 

a = Be - Ip, 
0 

The condition (7.17) together with (7.49) gives 

(7.51) 

Ip 
= 81 + ~~==+ O(p). 

/c2 + 4v2 
0 
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Note that the choice (7.49) implies the condition (7.46). We calculate vc3 

Sc0-/p 
(7.52) vc3 = v a -- = V v+B v+B = 
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by (7.49), (7.51) and (7.25). We note that y < vc3 implies also 

(7.53) 

because 

(7.54) 

Inequality (7.54) can be proved as follows 

s2 + C S - vB = s2 + S1 (-2S 1 + le;+ 4v2 - v) = 1 0 1 1 1 

- s2 
1 - vs + 1 S1 /4; + 4v2 < S1 /4~ + 4v2 • 

Next we can determine the asymptotic behaviour of x 2 (t). With the aid of 

the implicit function theorem we find 

(7.55) t ➔ oo, 

where 

(7.56) 
a-y 

C = --
2 S 

The expression (7.55) holds only under the hypothesis 

(7.57) 

The first condition of (7.57) is equivalent with 

y < S/~; + 4v2 + O(v'p), 
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which is satisfied by (7.53). The second condition of (7.57) is implied 

by (7.50) if we can demonstrate that indeed c 3 < c 2 , or 

a a-y c =--<--=c .,..y<v 
3 v+S 8 2 

Thus the condition (7.50) on y implies (7.57). Our choice for o = 

(see (7.12)) implies 

(7.58) 0 = y, 

-(Sc -a) 
2 

so indeed o is positive. With respect to the condition (7.18) we note that 

x2 (t) < x4 (t), so the rather conservative bound p(x2 (t),t) <p(x4 (t),t) = p 2 
(see (7.42)) implies (7.18). 

At this moment we have specified p 0 , 8, a, o, q0 , y from the set of 

parameters mentioned in the beginning of this Appendix, while Rand S were 

determined by (7.16) and (7.21) respectively. 

Next we consider the boundary condition m(O,t) = o. From our construe-

tion we find m(O,t) (0,~2 (O,t)), where ~2(0,t) = V (-r(t)) 
-at = max - Poe <O, 0 

so m(O,t) = o. Finally we take s(O) so small negative that inequality (7 .47) 

is satisfied: it amounts to saying that we shift the travelling wave U(z) 

far to the right. 

After we have completed the construction of the function m(x,t), we 

can choose T0 so large that ~(x,T0 ) satisfies by (7.1) 

X ~ 0. 

We recall that ~(x,O) = O, x ~ x 3 (0). So indeed ~(x,t) is a subsolution 

for problem (P"). If we examine the behaviour of ~(c3t+c3T0 ,_:>, then fort 

large enough m = ~2 and so there exists a positive constant C such that 

(7.59) t > o, 

It means we have proven (7.2) with c 1 
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