
stichting

mathematisch

centrum

AFDELING TOEGEPASTE WISKUNDE
(DEPARTMENT OF APPLIED MATHEMATICS)

N. M. TEMME

THE NUMERICAL COMPUTATION OF THE CONFLUENT
HYPERGEOMETRIC FUNCTION U(a,b,z)

Preprint

~
MC

TW 202/80 JUN I

------------------------------~
Kruislaan 413, 1098 SJ Amsterdam,

Punted at .the Mathemati.c.ai. Ce.nbr.e., 413 Klt.U.-l6la.a.n, Am6.teJui.am.

The. Ma:thema:tlc.ai. Ce.nvc.e, 6ou.nde.d .the 11-.th 06 FebJUuVr.y 1946, -l6 a. non­
ptc.o 6.lt. bu,:ti;:tu;:U.o n a,lmi,YIB at. .the. pMmo.tlo n o 6 pwr.e. ma:themme-6 a.nd m
a.ppU.c.aUon6. 1.t ,l6 .6pon601Led by .the. Ne.theJri.a.n.cl6 GovVLnment .th!Lou.gh .the
Ne.theJri.a.nd6 0.1r.ga.nizmon 601L .the Adva.n.c.ement 06 PUite RueaJr.c.h (Z.W.O.).

980 Mathematics subject classification: 33A30, 33-04, 65D20, 65Q05

*)
The numerical computation of the confluent hypergeanetric function U(a,b,z)

by

N.M. Temme

ABSTRACT

An algorithm is given for the computation of the confluent hypergeo­

metric function U(a,b,z). For real values of a, band z, z > 0, ALGOL 60

procedures are given. The computations are based on a Miller algorithm and

on asymptotic expansions.

KEY WORDS & PHRASES: confluent hypergeometric function, Kummer function,

computation of special functions, Miller algorithm,

ALGOL 60 programs

*) This report will be submitted for publi~ation elsewhere.

1

1. INTRODUCTION

1.1. Definitions and relevant properties

We consider the computation of the confluent hypergeometric function

00

(1. 1) (b) 1 f e-ztta-1 (l+t)b-a-1dt. u a, ,z = r(a)

0

This representation is valid for Re a> 0, Re z > 0, b €~-For other values

of a and z we define U(a,b,z) by analytic continuation. In general, i.e.,

for general a and b values, U(a,b,z) is singular at z = 0. It i~ a many­

valued function with respect to z and we consider for larg zl < TI the prin­

cipal branch, which is real (if a and bare real) for z > 0. With respect

to a (orb) U(a,b,z) is an entire function. For a= 0,-1,-2, •.• it can be

written in terms of Laguerre polynomials

(1. 2) U (-n,a.+1,z) = (-1)nn!L (a.) (z).
n

If b-a-1 = n (n = 0,1,2, ••.) it also reduces to an elementary function. It

easily follows from (1.1) that

(1. 3) U(a,a+n+1,z) =
n n -a-k l (a)k{k)z ,

k=O

where (a)k = r(a+k)/r(a), k = 0,1,2, ••••

The function U(a,b,z) is a solution of Kummer's equation

(1. 4) zw" + (b-z)w' - aw= 0.

A second solution is the function (also denoted by 1F1 (a,b,z))

(1.5)
00

M(a,b,z) = l
n=O

n
(a) / (b) z /n~

n n

which is regular for all finite z-values, although it is undefined for

some pairs (a,b).

The functions U(a,b,z) and M(a,b,z) satisfy recurrence relations with

s

2

respect to a and b. With respect to a we have

(1. 6) f 1 + (b-2a-z)f + a(l+a-b)f 1 = 0
a- a a+

which is satisfied by

(1. 7) U(a,b,z) and M(a,b,z)/f(l+a-b).

With respect to b we have

(1.8) (b-a-l}fb-l + (1-b-z)fb + zfb+i = 0.

with solutions

(1. 9) U (a,b ,z) and I'(b-a)/f(b)M(a,b,z).

We use here the notation of ABRAMOWITZ & STEGUN (1964, Chapter 13). More

information on Kurnmer's function can be found in this and in many other

references, for instance in SLATER (1960).

For certain combinations of a and b the function U(a,b,z) reduces to

other special functions. We list here some examples (see ABRAMOWITZ & STEGUN

(1964, p.510) for a more extensive table).

a b z relation function

v+½ 2v+1 2z
-½ z -\)

modified Bessel 'IT e (2z) K (z)
\)

a.+1
n a

polynomial -n z (-1) n!L (z) Laguerre
n

1-a 1-a
z

z e rca,z) 1
z -a f incomplete gamma

1 l+a z e z rca,z)

-½v ½ ½z2 2-½V/.tz2D (z)
\)

parabolic cylinder

The incomplete gamma function has as special cases the exponential inte­

grals, the sine and cosine integrals and the error functions. D (z) is an
n

Hermite polynomial, D-n-l (z) is a repeated integral of the error function

3

(n = 0 I 1 I 2 I • • •) •

1.2. Contents of the paper

The algorithms given here can be used for complex values of a,b and z.

In order to formulate concrete stability conditions it is better to concen­

trate on real a,b and z = x > O.

The algorithms are implemented in two ALGOL 60 procedures:

1. the procedure chu. computes the values

(1.10) and (a) KU' (a+K,b,x)

for a~ O, k = 0,1, ... ,K, b E JR, x > 0 and K is an integer~ 0.

2. the procedure ua.bx computes the values

(1.11) U(a,b,x) and U'(a,b,x)

for a E JR, b E JR, x > o.

The prime denotes differentiation with respect to x. The single value

(a)KU' (a+K,b,x), delivered by chu is used for a backward recursion process

and it plays an important role when chu. calls recursively for itself. Al­

so ua.bx calls for chu., and then the derivative is important too. It is

possible to obtain the derivative U' (a+K,b,x) from the values uK, uK-l' for

instance by using

xU' (a,b,x) = (a-b+x)U(a,b,x)-U(a-1,b,x).

For small values of x and/or large values of b this formula is not stable.

Our method~ in chu. guarantee a stable computation for the derivative of

U(a+K,b,x).

In Section 2 we discuss recursion with respect to a. For values of x

bounded away from zero we can use a Miller algorithm. For x-values close

to zero, we use asymptotic expansions. In an earlier publication TEMME

(1975a) we used analogous methods for the computation of (1.10) with

a=b=l.

S-

4

In Section 3 we consider some aspects of recursion with respect to b.

The ALGOL 60 procedures are described in Section 4. The procedures call for

procedures published earlier in TEMME (1975b), a publication on the compu­

tation of modified Bessel functions.

2. RECURSION WITH RESPECT TO a

From (1.6) and (1.7) it follows that~ of (1.10) satisfies

(2 .1) (a+k-1)~-l + (b-2a-x-2k)uk + (a+k+l-b)uk+l = 0

with as a second solution

(2. 2) g = f(a+k)/f(l+a+k-b) M(a+k,b,x).
k

From asymptotic expansions of the gamma functions and from SLATER (1960,

p.80) it follows easily that fork+ 00

(2. 3)

where I (z) and K (z) are modified Bessel functions. For Re kx + 00 we ob-
v \)

tain by using well known expansions for the Bessel function

(2.4)

So, in the terminology of GAUTSCH! (1967), ~ is a minimal solution and gk

is a dominant solution of (2.1). Hence the computation of u from u., k+l x.
~_1(using (2.1)) is not stable. If we want to use (2.1) for the computa-

tion of {u.} we have to use it backwardly, i.e. from u., u we compute
k R k+l

~-l· Backward recursion may be unstable for small k; see §3.2.

5

2.1. A Miller algorithm for{~}

As follows from (2.4) we can use a Miller algorithm for the computation

of {uk}. For details of such an algorithm we refer to GAUTSCH! (1967). As

normalization we use

00

(2.5)
-a = X

This relation is easily verified by substituting (1.10) in (2.5) and using

(1.1). For x > O, a~ O, b Em. the uk are non-negative; for b s a+l all

~ are non-negative. Hence in these cases (it will appear that we can re­

strict b to [0,1]) the series in (2.5) has non-negative terms, which is

important in the numerical procedure. For a= 0 we have u0 = 1, u 1 = u2 =

... = 11K. = 0. For the Miller algorithm we suppose O <as 1, other positive

a-values need not to be considered.

This algorithm was also used in TEMME (1975b) for the computation of

the Bessel function K (x). For x-values satisfying 1 < x s 4, CAMPBELL
V

(1980) modified this algorithm by using the Wronskian relation for the

modified Bessel functions. His faster method applies also in the present

case. For 1.4 < x $ 6.5 we use (instead of (2.5)) the normalization

(2.6) U(a,b,x)M' (a,b,x) - U' (a,b,x)M(a,b,x)
f(b) -bx

= r(a) x e.

The M-functions are computed by using (1.5); the rate of convergence of

(1.5) is the same as that of the exponential function (a= b).

In (2.6) U, Mand M' are positive and U' is negative for a> O, b ~ 0,

x > 0. Therefore, (2.6) is stable for the indicated ranges of a, band x.

The Wronskian (2.6) is also used in the ~ase x > 6.5 and a= b. In that

case the M~functions are exponentials and (2.6) becomes

U(a,a,x) - U' (a,a,x)
-a = X

For small a and/orb the gamma functions in (2.6) are not easy to handle

in calculations. In the computer program we combine these functions with

M' and U' in such a way that underflow or overflow will never occur when

6

a orb is small.

In the algorithm a different version of {2.1) is used. From {2.1) it is

not clear whether backward recursion is stable for small values of k. By

introducing

(2.7) V =
k

(a}kU' (a+k,b,x)

(compare (1.10)) we obtain the first order (2x2)-system

(2.8) {
vk = vk+l - ~+1

uk = [-xvk+l + (a+k+1+x-b)~+1]/(a+k)

k ~ 0.

If x > O, a> 0, b E JR, then vk is negative. Hence, backward recursion is

stable for all k ~ 0 if a+1+x-b ~ 0. As mentioned earlier, we take a E (0,1],

b E [0,1] and x > 0. Hence (2.8) is stable for these limited ranges of a and

b. Other values of bare treated in Section 3.

The starting value v in the Miller algorithm is computed as in TEMME

(1975b). In fact it is the method of OLVER (1967). We take as starting

values

u = 1,
V

V
V

This choice follows from approximating the differential equation for y =

U' (a,b,x)/U(a,b,x), viz. x(y'+y2) + (b-x)y - a= 0, by putting y' = b = 0.

2.2. Backward recursion with computed starting values

For small values of x, the Miller algorithm is not very efficient to
.

generate~ of (1.10). As follows from (2.4) the dominance of gk over uk

becomes rather weak if xis small. For small x we use computed starting

values for the recursion (2.8). These values are obtained from asymptotic

expansions of U(a,b,x) and U'(a,b,x) for large a, which are valid for

small x. Such expansions are given in SLATER (1960, p.80). Similar expan­

sions are derived in TEMME (1979), where for the case of real a, band

x > 0 simple bounds are given for the remainders in the expansions. The

expansions are for N = 1,2,3, .•.

N-1
U(a,b,x) = l

n=0
N-1

U' (a,b,x) = l
n=0

c (b,x)qi (a,b,x) + R (a,b,x)
n n N

d (b,x)<j> 1 (a,b,x) + T (a,b,x) n n- N

(2.9) <j> (a,b,x) = 2ex/2 ;r (a) (x/a) (n+l-b) 12K 1 b[2 (ax)~]
n n+ -

n
b ~l) (x)b (2). (b), c (b,x) = I n

j=0 J n-J

n
b ~l) (x)b (3)_ (b). d (b,x) = I n

j=0 J n-J

The b~i) are defined by the generating functions (for ITI < TI)
J

(2.10)

00

exp[xµ(T)] = I b(1)()j· j X T ,

b ~3) (b) =
J

j=0

(1-j /b) b ~ 2) (b) ;
J

-T b [T/ (1-e)] =

µ (T)

00

I
j=0

b ~2) (b) Tj;
J

The function K in <j> is the modified Bessel
(2) \) ~

function. Coefficients b~l) (x)
J

incorporated in the ALGOL 60 program (in and b. (b) are for J = 0, ..• ,8
J (2)

fact b. (b)/b); see arrays bx,
J

x ~ 1.4 then").

bb[0:8] in the block announced by "if

The remainders~~ and TN are bounded by simple expressions. Let

(2.11) K(d,b,x) =]sin d]-bexp[~x(l/d+1/lsin d])]

then, as proved in TEMME (1979), for a> O, x > 0, b ~ 0

b-N
!~(a,b,x) I < d K(d,b,x)q,N(a,b,x)

(2.12)

b-N+l
!TN(a,b,x) I < d K(d,b+1,x)<j>N(a,b+1,x),

where dis arbitrary in [3TI/2,2TI).

7

8

We use the above expansions for the computation of~ and v~ for a large

value of k (see (1.10) and (2.7)). We fix N; in the computer program we use

N = 9. Furthermore we take O ~ b ~ 1. We have to choose k ~ K so large that,

given a E (0,1], b E [O,l], x > O, E > 0, d E [3TI/2,2TT),

(2.13) and

The minimal value of k satisfying both inequalities of (2.13) is com­

puted by using inequalities for¢. (a,b,x) as given in TEMME (1979). Also
J

the value of dis computed according to a device given there.

When uk and vk are computed we use (2.8) for backward recur~ion.

2.3. Negative a-values

The integral (1.1) defines U(a,b,z) for Re a> 0. However, as follows

from recursion with respect to a, see (1.6), U(a,b,x) is an entire function

of a and recursion can be used for the analytic continuation of (1.1) to

Re a~ 0. First values for the recursion can be obtained from the algorithms

of Section 2. We give an ALGOL 60 program ua.bx which computes U(a,b,x) for

a E JR, b E JR, x > O, and the x-derivative. Computation of (1.10) for a< 0

is not attractive due to possible singularities (for negative integer values

of a) of the factor r(a+k)/f(a). Special values for a= -n, n = 0,1,2, ... ,

follow from (1.2).

For a+ - 00 , b bounded, x > 0 we have

-½ ½x ¼-½b -½
U(a,b,x) = r(½b-a+¼)TT e x cos(x+aTT)[1+0{-a) J

with x = (2bx-4abx)½ - ½bTT + \TT. It follows that U(a,b,x) and M(a,b,x)/

f(l+a-b), the two solutions of (1.6), are not dominant with respect to each

other. Thence recursion is possible for both solutions in negative a-direc­

tion.

We use (2.8) in the form

{
U' (a,b,x) = U'(a+l,b,x) - U(a+l,b,x)

U(a,b,x) = -U' (a+l,b,x) + (a+x+1-b)U(a+1,b,x).

It is not possible to give full-proof conditions for the stability as was

done for a> 0. In fact U(a,b,x) and U(a+l,b,x) may have different signs

when a< 0. The same remark applies for the derivatives.

When a< 0 and a= b we have the incomplete gamma case, viz.

U(-a,-a,x) X = e I'(l+a,x).

In that case we can claim stability since we can recur according to the

relation

X X a
e r(a+l,x) = ae r(a,x) + X,

which is stable for increasing (positive) a. In terms of the U-functions

the recursion is

U(-a,-a,x) = aU(l-a,1-a,x) + xU(l-a,2-a,x),

in which the last term is an elementary function (see (1.3)).

3. RECURSION WITH RESPECT TO b

For convergence aspects of the algorithms of the previous section we

restricted b to the interval [0,1]. Here we are concerned with the remain­

ing b-values and we will start with b < 0. Throughout this section we sup­

pose that a> 0 and x > 0.

3.1. Negative b-values

The crucial relation is the reflexion formula

(3.1) U(a,b,x) 1-b = x U(l+a-b,2-b,x).

9

10

If bis negative the b-place in the U-function at the right is positive

(in fact the reflexion occurs at b = 1, for convenience we use it at b = 0).

In order to compute

k=O, •.• ,K,

(3.2)

for b < 0 we first compute

\:\ = (c)kU(c+k,1-b,x), k=O, •.. ,K, c = l+a-b

(3. 3)

w = (c)KU' (c+K,1-b,x).

Using (3.1) and U' (a,b,x) = -au(a+l,b+l,x), we write this as

b b (c)k

\:\ = (c)kx U(a+k+l,b+l,x) = -x
(a\+1

vk

(3. 4)
(c) K+l

= -(c) 1u(c+K+1,2-b,x)
b-1

w = -x
(a)K+l UK+i K+

where vk = ~ (see (2.7)).

For computing the values in (3.3.) we need an algorithm for computing

{\:\} for b > 1. Details on this point will be discussed in the next sub­

section.

The values in (3.4) are used to compute the requested uk. First~ is

computed by using

(3.5) aU(a,b,x) = a(l+a-b)U(a+l,b,x) - xU' (a,b,x)

and the reamining uk (k = K-1, ..• ,0) follow from the second of (2.8). This

recursion is stable since vk and bare negative. Also (3.5) is stable.

REMARK. Instead of (3.3) we might have computed

uk = (c)k U(c+k,2-b,x), k=O, ••• ,K, c = l+a-b,

U' (c+K,2-b,x) b-2 = - (c)K+l x U(a+K,b-1,x).

Then

b-1
x uk;

hence~ follows rather straightforward from the computed 1\:· However, we

need also vK. This value can be computed from the uK, uK-l' or w, ")(by

using one of the recursions

xU' (a,b,x) = (a-b+x)U(a,b,x) - U(a-1,b,x),

xU' (a,b,x) - (1-b)U(a,b,x) - (l+a-b)U(a,b,-1,x).

11

For small values of x and/or large values of -b they are not stable. In the

appraoch described earlier all computations are stable.

3.2. The case b > 1

Recursion with respect to b can be done by using

(3. 6) (b-a-l)U(a,b-1,x) + (1-b-x)U(a,b,x) + xU(a,b+l,x) = 0,

of which a second solution is f(b-a)/f(b)M(a,b,x). From the series (1.5)

it follows that M(a,b,x) = 1 + O(b- 1) for b +~,a and x bounded. From
b-a-1 (1.1) it follows that for b-a-1 ~ 0 (by using (1+t) ~ 1)

(3. 7) 1-b
U(a,b,x) > x f(b-1)/r(a).

Hence for the recursion (3.6) the function U(a,b,x) is dominant with respect

to the second solution. It follows that recursion in the forward b-direction

is stable.

More insight is gained when we use the derivative as in (2.8). Let us
write

fk = U (a,b+k,x)

(3. 8)

gk = U' (a,b+k,x).

s

12

Then the recursion in the b-direction is given by

(3. 9) {
~+1 =

x~+1 =

Since fK > O, gk < O (k ~ 0), (3.9) is a recursion without subtractions

(formula (3.6) lacks this property), and hence it is stable.

Suppose we want to compute (1.10) with b > 1. Then we define b 1 = b - [b]

and we compute the values

(a) Ku (a+K,b1 ,x),

by using the algorithms of Section 2. Then we use (3.9) for obtaining 1)c

and vK and then (2.8) can be used for the remaining~ (k = K-1, •.. ,0).

As mentioned earlier, (2.8) is stable if a+k+l+x-b is not negative.

Large b values may violate this condition and in fact the second of (2.8)

is not stable for large b-values. To show this we need the asymptotic rela­

tion (compare (3.7))

(3.10)
1-b

U(a,b,x) ~ x f(b-1)/r(a),

which is valid for x + 0 (b > 1) orb+ 00 (x fixed). Inserting this in the

second of (2.8) (with modifications for vk+l and ~+1) we infer that in­

deed large values will cancel each other in order to obtain a smaller value,

especially when k is small. Repeated application of (2.8) is allowed as

long ask is so large that a+k+l+x-b is not negative. If a,b and x (and K)

are such that for some k this quantity becomes negative, instabilities may

arise.

It is not easy to formulate an "if and only if" condition for the

stability. The subtraction p-q of two positive numbers (q < p) is harmless

if, say, q < ½p. The recursion (2. 8) can be done by checking this criterion.

However, in the computer program it is convenient to have a priori informa-

tion on safe k-values. We use simply the above condition: a k-value is safe

if a+k+1+x-b is non-negative. Call m the largest value of k that makes

a+k+1+x-b negative. Then

13

(3.11) { u 1 , u 2 , .•• , Q_ }
m+ m+ K

are computed via (2.8) and for

(3.12)

we need a different approach.

The value mis defined by

(3.13) m = [b-x-1-a];

if b-x-1-a = [b-x-1-a] then m:= b-x-2-a. It may happen that m < 0. In that

case all~ are obtained by (2.8). If m ~ K none of the~ are obtained by

(2.8). In other words, the sets in (3.11) or (3.12) may be empty.

To obtain the values in (3.12) we may suppose that the values

(3.14) (a)jU(a+j,b 1 ,x), j = O, ••• ,m, bl = b-[b],

are available, together with their derivatives. We can use (3.9) for recur­

sion up to b with

(3. 15)

All these recursions are stable. However, it may be rather expensive, since

every element in (3.14) is recurred to the b-level. For an alternative

method, which may be much more efficient, we proceed as follows. We start

with the element with j = 0 in (3.14) and we recur up to b-m. That is, we

compute (3.15) with j = 0 fork= 0,1, ... ,[b]-m, giving

f[b]-m = U(a,b-m,x), g[b]-m = U' (a,b-m,x).

Next we compute

(3.16) F. = (a) . U (a+j ,b-m+j ,x) ,
J J

G. = (a) . U' (a+j ,b-m+j ,x)
J J

14

for j = 1,2, •• ,m. (Consider the (a,b)-plane. We compute U and U' along a

diagonal in the (a,b)-plane.) These diagonal elements F., G. are obtained
J J

by using

(3.17)

= -u• (a,b,x)

{
au (a+1,b+1,x)

axU' (a+1,b+1,x) = -aU(a,b,x) + (b-x)U' (a,b,x),

which in fact is Kummer's equation (1.4). In terms of F., G. it reads as
J J

t+! = -G.
J

(3. 18)

xGj+l = -(a+j)F. + (b+j-m-x) G.
J J

for j = 0,1, .•• ,m-1. This recursion is stable: G. is negative and (b+j-m-x)
J

is positive for j = O, .•• ,m-1; (cf. (3.13). From the diagonal a final recur-

sion in the b-direction is performed by using (3.9) with starting values

F., G. in order to obtain (3.12). The procedure is illustrated in Fig. 1.
J J

bt

b=a+x+l b l =a+

• •
0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0

Fig. 1

Example:

K=10, a=0.5, b=9.75

x=4, m=3,

0 auxiliary values

• requested values

a➔

The values• at the right of the line b = a+x+l
are computed via (2.8).

15

In the procedure c.hu this algorithm is controlled by the Boolean variables

rands; r = true means that (3.11) is empty, all requested values follow

from diagonal elements; s = false means that (3.12) is empty, all requested

values follow from backward a-recursion. In ALGOL 60 notation : r := K:,; m,

s : == m 2:: 0 (in c.hu K is replaced by kmax) .

3.3. The polynomial case

The actual algorithm for the case b > 1 is more intricate than described

above. The point is that we take advantage of the possibility that some or

all of the wanted values{~} are elementary functions. See (1.3). In that

case the time-wasting algorithms of Section 2 may be circumvented.

Let us introduce

(3.19) c = b-a-1

and we suppose here that c is a non-negative integer. Then the values

(3.20)

are polynomials, and the values

(3.21) {u 1 , ..• ,u}
c+ K

are higher transcendentals. The set in (3.21) may be empty. If it is not,

its elements are computed as in the previous subsection. Since m (see 3.13)

is not larger than c, the set (3.21) is a subset of (3.11). Hence, the high­

er transcendentals (3.21) can be computed by backward a-recursion, whereas

some of th~ set (3.20) (i.e., u0 , ..• ,um) are to be computed from diagonal

elements. These diagonal elements are elementary functions as well. If

(3.21) is empty than all {uk} are polynomials. Then the first {u0 , •.. ,um}

are computed from elementary diagonal elements, the remaining with backward

a-recursion with elementary starting values.

The polynomial case is recognized in c.hu by the Boolean variables p

and q: p = true iff c is a non-negative integer, p = true and q = true iff

16

all {l\:} are polynomials. That is, if K ~ c. In ALGOL 60 notation;

p := c = ent-i.eJt(c) Ac c 0, q := K ~ c.

If we combine the possible cases of §3.2 with those of the present

subsection we obtain 8 different situations A,B, ... ,H. An illustration by

means of the (a,b)-plane is again very instructive. In Fig. 2 the positions

of the (a,b) parameters of the wanted elements {uk} are depicted with re­

spect to the lines b = a+1, b = a+x+1.

=a+1

p q r s

1 1 1 1

0 1 1

0 0 1

1 1 0 1

1 0 0 1

1 1 0 0

1 0 0 0

0 0 0

a

Fig. 2

For convenience, p = true, p = false, etc. are replaced by p = 1, p = O, re­

spectively. In the cases A,B,C,D,E diagonal elements must be used (s = 1).

In A,B all elements follow from diagonal elements (r = 1). In C,D,E,F,G,H

(r = 0) backward a-recursion is used for some (in F,G,H for all) elements.

Values of q if p = 0 are not significant; rands are not independent: s = 0

implies r = 0. G and Hare treated as being the same: in G higher transcen~

dentals are used in the backward a-recursion and the process is not terminat­

ed at the moment that elementary functions turn up. If K = 0 some cases are

equivalent. Then the location with respect to the line b = a+x+1 is not

relevant; the only question is whether it is a polynomial case or not. For

--

convenience we put r = s = 1 (case A or B) if K = O.

Examples with numerical values for the different eight cases are

given in Table 1.

a b X K C m

A 2.5 8.5 1.4 2 5 3

B 2.0 8.5 1.4 2 5.5 4

C 2.0 8.5 1.4 5 5.5 4

D 2.5 8.5 1.4 4 5 3

E 2.5 8.5 1.4 6 5 3

F 2.5 8.5 6.5 2 5 -2

G 2.5 8.5 6.5 6 5 -2

H 2.0 8.5 6.5 2 5.5 -2

Table 1

With the shown values of a,b,x,K all cases
A through Hare covered.

4. ALGOL 60 PROCEDURES

The procedures given here make use of external ALGOL 60 procedures

for the computation of the gamma function for positive argument and of the

Bessel function K (x), for x > 0 and v E [0,2). For the Bessel function we
V

call the procedure given in TEMME (1975b).

4.1. The procedure Qhu

The heading of the procedure reads as follow:

procedure Qhu(a,b,x,kmax,ep-0,u,upJc)me); value a,b,x,kmax,ep-0;

real a,b,x,ep-0,upJc)me; integer kmax; array U;

The meaning of the formal parameters is:

17

18

a.,b,x

kma.x

<arithmetic expressions>;

the parameters of the confluent hypergeometric function U(a,b,x);

a. 2: 0, b < JR, x > 0.

<arithmetic expression>;

the upper bound of the array LL, k.ma.x 2: O.

ep-0 <arithmetic expression>;

the desired relative accuracy; ep-0 > O.

u <array identifier>

array u.[O: kmax];

exit: the values of r(a+k)/r(a)U(a+k,b,x), 0 s ks k.max, are

assigned to u.[k];

upf/)Jne: <identifier>;

exit: the value of r(a+kmax)/r(a)U' (a+kmax,b,x) is assigned to

upJu.me.

The procedure Qhu calls for the nonlocal procedures bu-0fw. and gamma.; the

first is published in TEMME (1975b) (bU-0ka. also calls for other procedures).

The procedure is not protected against underflow or overflow and does not

give a message when the parameters are out of range. This last aspect is

easily incorporated by the user, the first aspect strongly depends on the

computing machinery. In general the functions U(a+k,b,x) are singular at

X = 0:

if b < 1, the functions are bounded at x = O;

if b = 1, U(a,b,x) = O(ln x) as x ➔ O;

if b > 1, U(a,b,x) = O(xl-b) as x ➔ O.

Hence for large b-values this singularity may cause overflow. For negative

b-values the reflexion formula (3.1) is used. As a consequence, meanwhile

an overflow situation may occur. For x-values bounded away from zero togeth­

er with large b-values see (3.3), which shows that large function values

arise in that case too.

If a= 0 we have simply u[O] = 1, u.[k] = 0, k 2: 1. It follows that

values of U(k,b,x) cannot be obtained from

r (a)
U(a+k,b,x) = I'(a+k) u[k]

taking a= 0 (except fork= 0). However, by calling the procedure with

a= 1, thus calling ehu(J,b,x,kmax,ep-0,u,upM.me), we obtain

u[k] = f(1+k)
f(l) U(1+k,b,x), k = 0,1, ... ,kmax,

19

from which the values of U(a,b,x) with positive integer values of a easily

follow. Remark that a is not restricted to [0,1].

If kmax or a are very large, underflow will occur in u[k] as can be

seen from the first of (2.4).

The (relative) accuracy can be controlled by ep-0. It is used to control

the truncation errors in the approximation processes. Rounding errors are

not considered. The may become important, although the recursions in ehu

are all strictly stable (no significant subtractions). Successive smaller

choices of ep-0 may yield worser results, especially if ep-0 is of the same

size as the machine accuracy. The relative accuracy in the external proce­

dures neup gamma and -0~nh (called by b~-0 k.a.) is about 10-14 •

The user may avoid a call of the Bessel function procedure b~-0 fut

(with its external procedures neup gamma and -0inh) by skipping the part

of the conditional statement announced by if X ~ 1.4 then. In that case the

procedure will use the Miller algorithm for all x > 0. This will result in

a less efficient algorithm with more rounding errors as x becomes smaller.

4.2. The procedure uabx

For convenience we supply a function procedure which gives directly

the value of U(a,b,x) for a E JR, b E JR, x > O. This procedure calls for

ehu of the previous subsection. As a second value it delivers U' (a,b,x).

The heading of the procedure is:

real procedure uabx (a,b,x,ep-0,upJu.me); value a,b,x,ep-0;

real a,b,x,ep-0,upnime;

The meaning of the formal parameters is:

a,b,x: <arithmetic expressions>;

the parameters of U(a,b,x) and U' (a,b,x);

I

20

a. E JR, b E JR, X. > 0.

ep-0 <arithmetic expression>;

the desired relative accuracy; ep-0 > 0.

upll.)me: <identifier>;

exit: the value of U'(a,b,x), the x-derivative of U(a,b,x).

ua.bx ua.bx := U(a,b,x).

For underflow and overflow aspects and the role of ep-0, see the remarks in

the description of Qhu.

4.3. Testing

The procedures can be compared with existing procedures for the computa­

tion of special cases of confluent hypergeometric functions. In this way we

checked succesfully the modified Bessel functions and the incomplete gamma

functions. The procedure Qhu gives as special case the computation of the

repeated integrals of the coerror function. GAUTSCHI (1977) wrote a FORTRAN

program for computing

0
with i

CX)

in erfc x = f
X

n-1
i erfc t dt, n = 1,2, ...

-1
erfc x = erfc x, i erfc x

2
= (2/h)e-x. In terms of the U-func-

tions we have for x ~ 0

in erfc x -½ -n -x2 2 = TT 2 e U(½n+½,½,x) ,

with as special case the error function for n = 0.

The procedures can also be checked against theirselves. The x-interval

is divided.in 3 subintervals: (0,1.4], (1.4,6.5], (6.5, 00). With

±
x1 = 1. 4 (1 ± o) ,

±
x2 = 6. 5 (1 ± 6)

+ +
we computed U(a,b,x1) and U(a,b,x2) and we compared the results with each

other. We also compared U(a,a+n+1,x) with U(a(1+o), a+n+1,x) (o somewhat

larger than the machine accuracy; the computer should recognize the poly-

21

nomial case in U(a,a+n+1,x) and the non-polynomial case in U(a(l+o),a+n+l,x)).

All tests were satisfactory. They were done on the CD CYBER 73 of SARA,
-48 Amsterdam (machine accuracy 2) •

The boundary points 1.4 and 6.5 for the x-intervals were obtained by

comparing computing time for the following choice of the parameters in u.a.bx

a.= .32, b .56, e,pJ., = 1 0 -1 0 •

In the immediate neighbourhood of x = 1.4 the computing time was about

0.02 s, at x = 6.5 it was 0.03 s. A call of ehu with large values of kma.x

and lb! will require much more computing time.

Finally we give the starting index v for the Miller algorithm for

a .5, b = 1, epJ.i = 10- 12 , kmax = O and for several values of x:

X 1.41 2.0 6.5 6.6 10.0 50.0 100.0

V 52 40 19 38 28 12 9

4.4. Codes of ehu. and u.a.bx

procedure chu(a,b,x,kmax,eps,u,uprime); value a,b,x,kmax,eps;
real a,b,x,eps,uprime; integer kmax; array u;
comment computes gamma(a + k) ./ gamma(a) x u(a + k, b, x)
fork= 0 (1) kmax, and the x-derivative of u(a+kmax,b,x)
if a<O or x<O or kmax<O ~ epsiO then
begin comment here the user can incorporate an output statement

II f II with the message parameters out o range
end else
if a=O then
begin u[O]:= l; uprime:= O;

for kmax:= kmax ~ -1
end else
if b(O then

until 1 do u [kmax] : = 0

begin real c,d,e,w; integer j; array v[O:kmax];
c : = a- b+ 1 ; d : = x t (- b) ; ch u (c , 1 - b , x , km ax , e p s , v , w) ;
for j:= 0 ~ 1 until kmax do
begin e:= (a+j)xd; v[j):= -exv[j];d:= e/(c+j) end;
uprime:= v[kmax]; u[kmax]:= -xx(uprime+exw)/(a+kmax);
c:= c+x; for j:= kmax-1 ~ -1 until O do
u [j] : = (-xx v [j+ 1) + (c+ j) x u [j+ 1]) / (a+ j)

22

end else
if b)l then
begin real al,bl,c,d,e,f,g,h,u3,v,w; integer i,j,k,m,n;

end
if

boolean p,q,r,s;
procedure brec(a,b,k,f,g); value a,b,k;

integer k;
real a,b,f,g;

begin k:= k-1; for
begin h:= f-g; g:=

end brec;

i:= 0 step 1 until
((i + b) x g- ax f) / x ; f : = h

k do
end

n:= entier(b); bl:= b-n; al:= a+kmax; c:= b-a-1;
e:= c-x; m:= entier(e); if m=e then m:= m-1;
p:= c=entier(c) and c~O; q:= kmax~c; r:= kmax~m; s:= m~O;
if kmax=O then r:= s:= true
if r then m:= kmax; k:= (if p then c else n)-m;
if 7 r
begin

then
if p and q then

begin g:= l; i:= kmax-1; for
g : = g x (j+ a) ; f : = g x x + (- a 1) ;
brec(al,al+l,c-kmax,f,g)

end else

j:= 0 ~
g:= -alxf/x;

until 1 do

begin chu(a,bl,x,kmax,eps,u,u3); f:= u[kmax]; g:= u3;
brec(al,bl,n,f,g); if 7p and s then
begin for j:= kmax seep -1 until 1

u3:= u3-u[j]; v:= u[O]; w:= u3; d:= bl
end

do

end; n:= m+l; u[kmax] := f; uprime:= g;
for j:= kmax-1 step -1 until n do
begin h:=(-xxg+(j-e)xf)/(a+j); g:= g-f;

if 7s then

f:= u[j] := h
end; if s then
begin if p then

~in v:= x+(-a); w:= -axv/x; d:= a+l end
if r then

else

begin chu(a,bl,x,O,eps,u,w); v:= u[O]; d:= bl end;
brec(a,d,k,v,w); e:= b-n-x;
for j:= 0 step 1 until m do
~in if j=O then

_begin f:= u[O]:= v; g:= w end else

n: = O;

end

begin h:= -w; g:= w:= -((a+j-l)xv-(j+e)xw)/x; v:= u[j] := h
end; brec(a+j,b+j-m,m-j,u[j] ,g)

~; if m=kmax then uprime: = g
end

else
X (1.4 then

begin ~ d,delta,e,f,p,q,r,s,t,tO,tl,uO,ul,u2,u3,v,w,x2,y,z;
integer n,nu,kO,kl,i,j; array bb,bbl,bx[0:8] ,fi[-1:8];
n:= 9;

23

v:= 12.56637; r:= (x-vx(b+l))/2; d:=(vxn+r-sqrt(rxr+4xnxx))/(2xn);
if d<4.7124 then
begin d:= 4.7124; v:= w:= 1 end else
begin v:= abs(sin(d)); w:= v+(-1-b) end;
w:= wxexp(.Sxxx(l/v+l/d));
delta:= epsxexp(-.Sxx+(n-1-b)xln(d))/w;
z:= .5/delta; v:= .5-b; i:= n-1;
for j:= 1 ~ 1 until i do z:= zx(j+v); i:= O;
t:= sqrt(x)xz+(l/(2xn)); e:= ln(""a;lta)+n-nxln(x);

1 ab : r : = n+ b+ t ; s : = 1 + b+ t ; p : = 1 n (r) ; q : = 1 n (s) ;
f:= (ln(t+.5)-2xnxln(t)+(r-.5)xp-(s-.5)xq-e)/

(1/(t+.5)-2xn/t+.5x(n-1)/(rxs)+p-q);
if f<O then
begin t : = t- f ; t : = sq r t (2 x x+ t x t) ; i : = i + 1 ;

if i(lO then goto lab
end else kO:= l+entier(txt/x-a);
nu:= if kmax)kO then l+kmax else kO;
r:= a+nu; w:= sqrt(x/r); v:= 2xrxw;
bess ka(-b,v,tO,tl);
v:= w+(-b); bb[O]:= bbl[O]:= bx[O]:= 1;
ul:= fi[-1]:= vxtO; uO:= fi[O]:= vxwxtl; x2:= xxx;

bx[l] := -x/12;
bx[2]:= x2/288;
bx[3]:= -xx(5xx2- 72)/ 51840;
bx[4]:= x2x(5xx2-288)/2488320;
bx[S]:= -xx(x2x(7xx2- 1008)+ 6912)/ 209018880;
bx[6]:= x2x(x2x(35xx2-10080)+279936)/75246796800;
bx[7]:= -xx(x2x(x2x(x2x5-2520)+176256)- 746496)/ 902961561600;
bx[8]:= x2x(x2x(x2x(x2x5-4032)+566784)-9953280)/86684309913600;

bb[l]:= .5;
bb[2]:= (3xb-1)/24;
b b [3] : = bx (b-1) / 4 8 ;
bb[4]:= (bx(bx(bxlS-30)+5)+2)/5760;
bb[S]:= bx(bx(bx(bx3-10)+5)+2)/11520;
bb[6]:= (bx(bx(bx(bx(bx63-315)+315)+91)-42)-16)/2903040;
bb[7]:a bx(bx(bx(bx(bx(bx9-63)+105)+ 7)-42)-16)/5806080;
bb[8]:= (bx(bx(bx(bx(bx(bx(bx135-1260)+3150)-840)-2345)-

540)+404)+144)/1393459200;

for
begin

i:= 1

tO:= bb[i];
for j:= 1
begin

1 until n-1 do

t 1 : = b b 1 [i] : = (b- i) x t O ;

~ 1 until i-1 do

24

tO:= tO + bb[i-j]xbx[j];
tl:= tl + bbl[i-j]xbx[j]

end;
tO:= bx[i]+bxtO; tl:= tl+bx[i];
f i [i] : = (xx f i [i - 2] + (i - b) x f i [i - 1]) / r ;
uO:= uO + tOxfi[i]; ul:= ul + tlxfi[i-1]

end;
w:= 2xexp(x/2)/gamma(l+a);
u2:= wxuO; u3:= -wxul; v:= a+l-b+x; kl:= nu-1;
for j:= kl step -1 until 1 do
begin ul:= (-xxu3+(v+j)xu2)/(a+j);

u3:= u3-u2; u2:= ul; if jikmax then u[j] := axu2;
if j=kmax then uprime:= axu3

end; u[O]:= -xxu3+vxu2;
if kmax=O then uprime:= ax(u3-u2)

end else

begin real ar,br,cr,c,er,mO,ml,mr,pO,pl,p2,q,ul,u2,u3,v,w;
integer k,n,r; boolean large x;
procedure recursion;
begin p2:= (brxpl-arxpO)/cr; er:= erxar/cr;

r:= r+l; if large x then mr:= mrx(l+c/r); v:= er/p2;
b r : = b r+ 2 ; c r : = c r+ 1 ; p O : = p 1 ; p 1 : = p 2

end recursion;
n:= entier(a); if a=n then n:=
large x:= x)6.5 and a#b;

n-1; a:= a-n; kmax:= kmax+n;

if large x then mr:= 1 else
begin mr:= O; if a=b then

begin mO:= a; ml:= 1 end else
begin mO:= O; ml:= v:= 1;

do for r:= l,r+l while v)mlxeps
begin v:= vxx/r; mO:= mO+v; v:= vx(a+r)/(b+r); ml:= ml+v

end
end;

end;

v:= exp(-x)xgamma(a+l)/gamma(b+l);
mO:= vx(b+axmO); ml:= vxml

c:= a-b; er:= 2+c; br:= x+a+cr; pO:= 0~
v : = p 1-: = e r : = 1 ; r : = 0 ;

for ar:= a+r while r< kmax do recursion; w:= pOxpl/er;
for ar:= a+r,ar+l while vx(wlpO+mrx(2+a/r))~eps ~ recursion;
c : = 1 +c; v: = x+ c; u2: = 1; w: = 0;
u3:= -2xr/(x+sqrt(xx(x+4xr)));
for r:= r-1,r-1 while r) 0 do
begin if large x then

begin w:= w+mrxu2; mr:= mrx(r+l)/(c+r) ~;
ul:= (-xxu3+(v+r)xu2)/(a+r); u3:= u3-u2; u2:= ul;

if r>n and r< kmax then u[r-n]:= u2;
if r=kmax then uprime:= u3

end;
ul:= -xxu3+vxu2; u3:= u3-u2; v:= a; k:= n-1;
if kmax=O then uprime:= u3; kmax:= kmax-n;
w:= if large x then x+(-a)/(ax(w+cxu2)+ul)

x+(-b)/(ulxml-u3xm0);
for r:= 0 step 1 until k do v:= v/(a+r);

25

else

if n=O then beg!~ k:= l; u[O]:= wxul end else
w:= vxw; uprime:= wxuprime;
for r:= k step 1 until

end chu;

k:= O;

kmax do u[r]:= wxu[r)

real procedure uabx(a, b, x, eps, uprime);
real a, b, x, eps, uprime;
begin real al, c, p, q, r; integer j, n;

n:= if a< 0 then entier(a) else O;
if n<O and a=b then

value a, b, x, eps;

array u[O:O];
q:= al:= a-n; u[O]:= 1;

begin g al)O then chu(al,al,x,O,eps,u,q);
p : = u [0] ; r : = p- q ;

for j:= 1 step 1 until -n do
begin r:= xxr; q:= (al-j)xp; p:= r-q end

end else -- ---
begin if al> 0 then chu(al,b,x,O,eps,u,q);

c : = 1 + a 1 - b+ x ; a 1 : = a 1-1 ; p : = u [0] ;
for j:= 1 step 1 until -n do
begin r:= (c-j)xp-xxq; q:= (al-j)x(q-p); p:= r end;

end; uabx:= p; uprime:= q
end uabx;

ACKNOWLEDGEMENT

The author is pleased to acknowledge the help of R. Montijn, who

tested and programmed various versions of the procedures, and of J.P.

Hollenberg who computed the arrays bx, bb of the ALGOL 60 program.

REFERENCES

ABRAMOWITZ, M.A. & I.A. STEGUN (1964), Handbook of mathematical functions,

Nat. Bur. Standards Appl. Math. Ser. 55, Washington D.C •.

(.,

26

CAMPBELL, J.C. (1980), On Temme's algorithm for the modified Bessel func­

tion of the third kind, (Submitted for publication).

GAUTSCH!, w. (1967), Computational aspects of three-term recurrence rela­

tions, SIAM Rev.~, 24-82.

GAUTSCH!, w. (1977), Evaluation of the repeated integrals of the coerror

function, ACM Trans. Math. Software l, 240-252.

OLVER, F.W.J. (1967), Numerical solution of second-order linear difference

equations, J. Res. NBS 71B, Nos. 2 and 3, 111-129.

SLATER, L.J. (1960), Confluent hypergeometric functions, Cambridge Univ.

Press.

TEMME, N.M. (1975a), Numerical evaluation of functions arising from trans­

formations of formal series, J. Math. Anal. Appl.~' 678-694.

TEMME, N.M. (1975b), On the numerical evaluation of the modified Bessel

function of the third kind, J. Comput. Physics ..!2_, 324-337.

TEMME, N.M. (1979), On the expansion of confluent hypergeometric functions

in terms of Bessel functions, Report TW 192/79, Mathematical

Centre, Amsterdam. To appear in J. Comput. Appl. Math.

--

