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Nerve impulse propagation in a branching nerve system: a simple model*) 

by 

J.P. Pauwelussen 

ABSTRACT 

Local spatial changes of nerve axon geometry such as diameter increase 

and branching, may cause that action potential waves approaching a region 

of geometric change fail to propagate beyond it. 

In this paper, this effect will be examined for a special kind of 

nonuniformity, within the framework of a simple model: an initial value 

problem for a single nonlinear diffusion equation on an unbounded domain. 

KEY WORDS & PHRASES: nerve pulse propagacion, nonlinear diffusion equacion, 

equilibrium solucions, comparison principle, scabilicy 

*)This report will be submitted for publication elsewhere. 





1. INTRODUCTION 

In this paper we shall investigate the initial value problem 

(1.1)1 XElR\{O}, t > 0 

where 

(1. 2) e, (x) = 
fl 

E: 
lE: E (0 I 1 J 

X < 0 

X > 0 

and 

(1.3) f(u) = u ( 1-u) (u-a) , 0 <a<~-

Our motivation for studying (1.1) originates from the problem of 

propagation of electric excitation along the cylindrical branches of a 

1 

tree shaped unmyelinated nerve axon. Assume the branching system to be of in­

finite extension where the variable x measures the distance along the 

conductor. If we restrict ourselves to the situation of only one branching 

point at x = O, one branch of radius 1 for x < 0 and k branches of radius r 

at the part x > 0 (fig 1.1), this situation can be described by a reaction 

diffusion system of the form [6],[11], 

ut = r(x)u + F(u,w) 
xx 

(1.4) 

wt = G(u,w) X E lR\{O}, t > 0 

where t denotes time, (u,w) takes on values in lR x lR n for some n > 0 and 

r(x) is the diameter of a branch of the nerve at place x, i.e. r(x) = 1 



2 

for x < 0 and r(x) = r for x > O. In (1.4), u represents 

X 

x=O 

fig. 1.1. 

the transmembrane potential minus the rest potential while the auxiliary 
T + variable w = (w1, ••• ,wn) describes the transport of certain ions (K, 

+ -Na ,Cl) through the membrane which covers the neuron. At x = 0, the 

transmembrane potential u is continuous as well as the internal current 

which is proportional to the gradient of this potential times the surface 

area. Hence, at the branching point x = O, u satisfies-

(1.5) u (0-,t) 
X 

2 = kr u (0+,t). 
X 

To remove this discontinuity in u we replace x for x > 0 by -f-- . Then, 
x r k 

in terms of this rescaled variable, the system (1.4) transforms into 

(1.6) 

with 

= e (x)u + F(u,w), 
e: xx 

wt= G(u,w), x E JR \{O}, t > 0 

-3 -2 e (x) given by (1.2) where e: = r k • 
e: 

In the special situation that e: = 1 and thus ee:(x) - 1, the relevant 
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examples of (1.6) [1],[6],[8] all have the property that they allow travelling 

wave solutions, i.e. non-constant solutions which are functions of the 

single argument z = x - ct for some constant c. For E # 1, it was shown 

numerically by RINZEL [14] for an example in which n = 1, and by GOLDSTEIN 

and RALL [6] who treated an example in which n = 2, that action potential 

waves approaching the region of geometric change from the left continue 

to propagate beyond this region if the increase of radius or the amount of 

branching is sufficiently small. However, if r or k is large then action 

potential waves may fail to propagate beyond the branching point. In a 

subsequent paper [11] we shall demonstrate this qualitative behaviour of 

solutions of the system (1.6) under conditions on F and G, covering under 

some conditions, the examples in [14] and [6]. 

In the present paper we shall, as a first step, analyse the simplified 

version (1.1) of (1.6) which is a degenerate case of the system treated 

in [14]. 

Problem I is also of interest in its own right as it arises in 

population genetics [10]. In fact a solution u of Problem I can be interpre­

ted as the frequency of alleles of one type, A say, amongst the total number 

of alleles in a population of individuals of possible genotypes AA, Aa and 

aa, living in a one-dimensional habitat where the heterozygote is 

underdominate, and with different migration rates on either side of the 

point x = O. 

Let us first consider the case of a uniform axon, i.e. E = 1. Then, 

travelling wave solutions will be understood as solutions u(x,t) = w(z), 
1 

z = x - ct, of (1.1) for some c € :R such that w(-00 ) = 1 and w(+00 ) = O. 

As a consequence, w satisfies the equation 

(1. 7) w" +cw'+ f(w) = O, z € :R. 

Note that any translate of w also satisfies (1.7). It can be proved that 

w is strictly decreasing and that the wave speed c is unique and positive, 

see [3] and [7] (fig. 1.2). 
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w 

u 
1 

x=O 

fig. 1.2. 

obviously, if we take for the initial function x(x) = w(x) then u(x,t) _ 

w(x-ct). This is a particular case of the conditions 

(1.8) 

( 1. 9) 

lim inf x(x) > a, 
X -+ -co 

lim sup x(x) - < a 
X -+ +co 

given by FIFE & McLEOD [3], who showed that under these conditions the 

solution u(x,t) of (1.1) for E = 1, converges to w(x-ct+x0) exponentially, 

for some x0 > 0 as t-+ co. 

If E < 1 but 1 - E small then one might expect that the solution of 

Problem I, where X still satisfies (1.8) and (1.9), behaves as a wave, 

travelling from the region wher~ e (x) = 1 towards the-region where 
E 

e (x) =£.Note that w*(z) = w(zv'E) satisfies the equation 
E 

( 1.10) Ew" + c*w' + f(w) = O, Z E ]R, 

where c* = cv'E. We shall find that if x satisfies (1.8) and (1.9), there 

exists an E*E(0,1) such that for EE (E*,1], the solution u(x,t) of (1.1) 

converges to w*(x-c*t+x0) exponentially for some x0 E :JR, as t-+ co. 

If EE (0,1) but E small then it turns out that stationary solutions 

q(x) (i.e. qt= 0) of (1.1) 1 exist which satisfy the boundary conditions 

q(-co) = 1 and q(+co) = O. These solutions are strictly decreasing, see 

FIFE & PELETIER [SJ. In fact, for E <£*there exist exactly two such 

* solutions q_(x) and q+(x) where q_ < q+' where for E > E , such solutions do 

not exist. A sketch of the corresponding bifurcation diagram is given in 

fig. 1.3. 



a 

0 

q(O) 

* 
E 

fig. 1.3. q(O) vs. E. 
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These functions q_(x) and q+(x) will act as a blockade for solutions of (1.1). 

In fact, we shall find among other things that u(x,t) converges to q_(x) 

if (1.8) is satisfied and if x(x) < q+(x). This last condition surely 

implies (1.9) whence we find.that the value of g* is critical. 

The plan of the paper is as follows. In Section 2 we shall show the 

existence of the number g*. In Section 3 we shall formulate a result about 

existence and uniqueness of a solution u(x,t) of Problem I. Section 4 will 

be devoted to a comparison principle which we shall use in Section 5 to 

derive some preliminary stability properties of the functions q_(x) and 

q+(x). We shall find that q_(x) is stable and q+(x) is unstable. Thus the 

lowest branch in the bifurcation diagram fig. 1.3 is the stable one while 

the upper branch is the unstable one. Moreover we shall show the convergence 

* * * of u towards the travelling wave w if€>€ , and if€~€ under the 

condition that x(x) is large enough. 

At the expense of a much more complicated analysis these results will 

be improved in Section 6. Finally, in Section 7 we give some numerical 

results. 
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REMARK. The results in this paper also apply to the case of the more general 
1 

f E C ( JR) , satisfying 

f(0) = f(a) = f(l) = 0, 0 <a< 1, 

f(u) < 0 for 0 < u < a, f(u) > 0 for a< u < 1 

f' (0) cf O cf f' (1), 

J:f(u)du > O. 

2. STATIONARY SOLUTIONS 

Stationary solutions q = q(x) of (1.1) 1 satisfy the equation 

(2.1) 0 e (x)q" + f(q) 
E 

X E JR, 

together with the regularity condition 

(2.2) q and~ continuous at x = 0. 

We shall mostly be concerned with solutions of (2.1) which satisfy the 

boundary conditions 

(2.3) q(-oo) = 1, q(+oo) = 0 

and we shall write shortly·Problem II for (2.1)-(2.3). Let us first consider 

equation (2.1) in case e (x) = constant, e (x) = E say. Introducing 
E E 

formally the function P(q) = ~(q) in this case we find P(q) to satisfy 

the equation 

(2.4) 
f 

P.P + - = 0. q E 

The trajectories for 

shown in figure 2.1. 

(2.1), given by (q,P(q)) where P satisfies 

(We have used the fact that f~f(u)du > 0). 

(2.4) are 
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p 

fig. 2. 1. 

The points (q,P) = (0,0) and (q,P) = (1,0) are saddle points. The stable 

manifolds will be denoted as "stable e: - manifolds". Similarly we may 

introduce "unstable e:-manifolds". We shall mostly be concerned with the 

case P ~ 0, 0 ~ q ~ 1. In this region there is only one stable manifold 

going to (0,0) and one unstable manifold coming from the point (1,0). 

Therefore, if no confusion is possible, the stable e:-manifold refers to 

the one going to (0,0) in the lower half plane and the unstable e:-manifold 

denotes the manifold coming from (1,0), pointing into the lower half-plane. 

(2.5) 

Integration of (2.4) over [0,q0 J with respect to q yields 

1 
e: 

Consider the case P(0) = 0. From (2.5) we see that the value of P(q0 ) < 0 

on the stable e:-manifold is equal to some constant, only depending on q0 , 

times 1/~- By integration of (2.4) over [q0 ,1] we can show the same prop­

erty for the value of P(q0) < 0 on the unstable e:-manifold. Using this 

result we shall prove the following Lemma. 
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LEMMA 2.1. Let 

(2.6) * e: = 

Then 

r f(q)dq 
a 

* (i) If e: > e: there exists no solution of Problem II. 

* (ii) If e: = e: there exists a unique solution of Problem II. 

* (iii) If O < e: < e: there exist exactly two solutions q and q of Problem II 
- + 

which are decreasing and strictly separated and for which the 

inequalities q_(0_) <a< q+(0) hold. 

PROOF. Since on the stable e:-manifold the value of -P(q) grows with 

e:-1 as e:-½, this manifold will intersect the unstable 1-manifold for 

sufficiently small e:. Observe that by the fact that the unstable 1-manifold 

lies strictly below the q-axis for q < 1, if this manifold intersects the 

stable e:-manifold nontangentially, it must do so at least twice. 

Now suppose that such intersections occur at q = a and q = a+, a 

Integration over both manifolds of P(q).P'(q) on (a ,a) yields 
- + 

2 2 = P (a) - P (a+) 

a 

This is only possible if 

a+ 

J f(q)dq = 0. 

a 

a+ 

= 2J f(q)dq, 

a 

£ < 1. 

< a • 
+ 

Hence a < a+ and there are at most two points of intersection of the 

stable e:-manifold and the unstable 1-manifold. The first time these mani­

folds intersect they must do so at q = a where by (2.5) the value of P(a) 

is given by 

a 

P(a) = _,_¾I 
0 

½ f(q)dq) 



Integration over the unstable 1-manifold on (a.1) yields 

1 

P(a) = -(2ff(q)dq)~ 

a 

* and thus e: = e: • 

A solution q(x) of Problem II corresponds with the stable e:-manifold 

for x > 0 and with the unstable 1-manifold for x < 0 where these manifolds 

must match, by (2.2), at some point. As a consequence, (i) and (ii) hold 

* and fore:< e: there exist two solutions q_ and q+ of (2.1)-(2.3) with 

q_(O) =a_< a+= q+{O). 

9 

Since q and q both correspond to the stable e:-manifold for O < q < a 
+ -

there exists a number x0 > 0 such that q+(x+x0 ) = q_(x) for x > O. Thus we 

have that q_(x) < q+(x) if x ~ 0 and similarly that q_(x) < q+(x) if 

X ~ 0. 

* Note that fore:= e:, q_(x) and q+(x) coincide where q_(O) = q+(O) = a. 

The functions q_(x) and q+(x) are sketched in figure 2.2 below. 

1 

x=O 

fig. 2.2. 

We remark that q_(x) and q+(x) are not the only bounded solutions of 

(2.1) and (2.2). For example, the unstable 1-manifold also intersects at 

any q = a0 € (a_,a+) a closed trajectory in the e:-phase plane, enclosing 

the point (a,O). Hence the corresponding solution q(x) of (2.1) and (2.2) 

where q(O) = a 0 , is strictly decreasing for x < O, it approaches the value 
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1 for x + - 00 and it is periodic for x > 0 with a period depending on the 

solution at hand. 

By similar reasoning we can also find stationary solutions which 

approach O for x + - 00 and which are periodic for x > 0 as well as solutions 

which are periodic for both x < 0 and for x > 0 but with different periods. 

These last two types of solution exist for all E: E (0,1). 

REMARK. Since at q =a, the stable E:-manifold and the unstable 1-manifold 

intersect we have, using (2.5) and the corresponding expression for Pon 

the unstable 1-manifold, that 

a_ 

-f f(q)dq 

0 

f(q)dq. 

a 

Differentiation with respect to a yields 

dE: 
da = 

(E:-l)f(a_) 

f~(q)dq 
a_ 

dE: 
It follows that da = 0 for a_= O(i.e. E: = 0) and for a = a (i.e. E * = £ ) • 

and this was used in the bifurcation diagram figure 1.3. Similarly it can 

be proved that dE: 0 if E: = E:* and dE: < 0 if E: = O. 
da+ da+ 

3. EXISTENCE AND UNIQUENESS FOR PROBLEM I 

In [11] we have treated in full detail the existence-uniqueness problem 

for a general system of equations of which (1.1) 1 is a particular case. 

Therefore, in this section we shall only give the result and we refer to 

[11] for further details. 

According to [ 11], a function u: lR x [O ,T) + lR is a solution of 

Problem I on [O,T) if and only if 



(i) uxx, ut € C(lR \{O}x(O,T) ➔ lR) , 

u € C(lRx(O,T) ➔ lR) , 
X 

u € BC(lRx [O,T) ➔ lR), 

(ii) u satisfies (1.1) on lR \{O}x(O,T). 

THEOREM 3.1. Let T > o. Then Problem I has a unique solution u(x,t). More­

over for arbitrary o E (0,T) and any x-interval J, not including an open 

neighbourhood of x = 0 we have for any a E (0,1) 

2+a, 1+a;2 
u € C (Jx(o,T)) 

where c2+a,l+a/2 (Jx(o,T)) means the space of functions u = u(x,t), x E J, 

t E (o,T) where u and ut are Holder-continuous with respect to x and t, 
xx 

respectively, and the corresponding H8lder coefficients are a and a/2. 

4. A COMPARISON PRINCIPLE 

Since the diffusion coefficient e (x) in (1.1) is not continuous and e: 
therefore u and ut need not be bounded or continuous at x = 0, the xx 
results of [12] do not apply directly to the present situation. Still a 

comparison principle can be derived. 

First we shall prove a maximum principle for functions which are 
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smooth for x # O and t > O. However in practical applications it often occurs 

that comparison functions are used which are not smooth along certain 

curves in the (x,t)-plane. In order to deal with these kind of functions 

we require an extended maximum principle which we shall use to prove a 

comparison principle in sufficient generality to cover all the applications 

occurring in this paper. 

To begin with we give a definition. 

DEFINITION. Let Ebe a region in the (x,t)-plane with boundary ;)E. Let 

(x0 ,t0 ) be a point on aE •. Then we say that E satisfies the interior circle 

condition at (x0 ,t0) if at (x0 ,t0) a circle tangent to aE can be constructed 

such that the radial direction from the center of the circle is not parallel 

to the t-axis and the set of points (x,t) inside or on this circle, with 
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t < t 0 is nonempty and lies entirely in E. 

THEOREM 4.1. Let for T > 0 

( 4 .1) ~ E BC (JR x (0,T] -+ JR) n c2 ' 1 (JR \{0} x (0,T] -+ JR) 

where~ satisfJes the inequality 

(4.2) L~ - ~t - e (x)~ - c~ + h(x,t)~ ~ 0, 
E: XX X 

XE JR \{0}, t E (0,T) 

where c is a constant, e (x) is given by (1.2) and h(x,t) is nonnegative 
E: 

bounded. Suppose~ (0±,t) exist and 
X 

(4.3) ~ (0+,t) ~ ~ (0-,t). 
X X 

Moreover suppose that 

(4.4) ~(x,0) ~ 0, X E JR• 

Then ~(x,t) ~ 0 for x E JR, t E (0,T] and if ~(x,0) < 0 on some open subset 

of JR then ~(x,t) < 0 for all x ·E JR, t E (0,T]. 

+ 
PROOF. Introduce the regions v- = {(x,t) I± x > 0, 0 < t ~ T}. The proof of 

this theorem is based on a maximum principle of KRYZANSKI [9] on parabolic 

. ( 1) d' . 1 nb d d d ' · n JR+ I operators in an n+ - imensiona, u oun e amain in JR x . n our 

reformulation of this result we shall restrict ourselves to the one-dimension­

al parabolic operator (n=1). 

( 4. 5) 

We consider the general parabolic inequality 

Lu_ bu +Hu~ 0 
X 

on an unbounded domain Din the (x,t)-plane of which the boundary consists 

of the straight lines t = 0 and t = T and possibly a curve S which is 

nowhere perpendicular to the t-axis. The functions a, band Hare assumed to 

be bounded on D where a(x,t) is positive and bounded away from zero and 

H(x,t) ~ 0. Denote by r the union of sand the part of ao where t = 0. 
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Let u satisfy (4.5} where u e: C ' (D + E.} n C (D u r + :m}. Moreover 

suppose that there exist positive numbers K0 , K1 such that 

(4.6} (x,t} e: Dur. 

Then if for some nonnegative M, u(x,t} ~Mon r it follows that u(x,t} ~ M 

on D. 

This is KRYZAMSKI'S result and specifying it to D = V+ or D = V this 

yields that $(x,t} can only attain a nonnegative maximum on v+ u v- (the 

closure of v+ u V-} at a point (0,t0} for some 0 < t 0 ~Tor at a point 

(x0 ,o} for some x0 e: :m. If we suppose that this maximum is positive, 

the second possibility is excluded by (4.4}. 

Let us assume that $ attains a positive maximum M at a point (0,t0} 

for some 0 < t 0 ~ T. If $ attains this maximum also at some point (x1 ,t1} 
+ 

V or V then it is proved in Theorem 2 in [12; p.168] that $ = M on each 
+ -segment of a line t = t 2 e: [0,t1J which lies in V or V and contains 

the point (x1,t2} (The Interior Point Theorem}. Thus $(x,0} > 0 for some 

x # 0 which contradicts (4.4}. We conclude that 

(4.7} $(x,t} < M, (x,t;} e: v+ u v. 

Observe that for all t 0 e: (0,T], V+ as well as V satisfies the 

interior circle conditon at (0,t0}. We shall now proceed as in the proof 

of Theorem 3 in [12; p. 170]. We construct a disk K of radius R, tangent 

to the t-axis at the point (0,t0}. We denote the coordinates of the 

13 

of 

center of the circle 3K (the boundary of K} by (x0 ,t0} which we shall assume 

to lie inside V+ (see fig. 4.1}. 

t 

fig. 4. 1. 
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We also construct a disk K1 with center at (0,t0 ) and radius< R. Let 

C' be the portion of the boundary aK1 contained in Kand let C'' be the 

open arc of aK in K1 • The arcs C' and C'' form the bounda:ry of a lens­

shaped region E and we assume R to be so small that E and the x-axis are 

disjoint. Denoting by E+ the part of E inside V+ we have by (4.7) that 

~<Mon E+ except at (0,t0). 

In [12] the circle aK and therefore Eis assumed to lie entirely 

inside the domain under consideration, V+ in this case. However, the 

arguments can be used here yielding that* (0,t0) > 0 where a/av is 

derivative in a direction pointing out of E+ and thus in particular 

(4.8) 

same 

any 

We shall refer to this result as the Boundary Point Theorem. In a similar 

way for v- instead of v+ we obtain that 

(4.9) ~x<0-,t0) > 0 

and by (4.3) we have a contradiction. 

It remains to prove the statement about strict inequalities. If 

~(x,0) < 0 on some open interval which, for example has a nonempty inter­

section with the positive x-axis then, by the Interior Point Theorem, 

~(x,t) < 0 in v+. If ~(0,t0) = 0 for some 0 < t 0 ~ T then similar to the 

above analysis this yields that ~x(0+,t0 ) < 0. However, since ~(x,t) ~ 0 

in v+ u v- we must have ~x(0-,t0) ~ 0. By (4.3) we have a contradiction. 

Hence ~(0,t) < 0 and therefore ~(x,t) < 0 in points in v-, close to the 

t-axis. Application of the Interior Point Theorem finally yields that 

~(x,t) < 0 in v- as well. 

THEOREM 4.2. (Extended maximum principle). 

Let for T > 0 

(4.10) ~ e: BC(JRx(0,T]-+ JR) n c2 ' 1 ((JR\{0}x(0,T])\D-+ JR) 

where Dis the union of finitely many, continuous curves in the (x,t) plane, 
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given by x = x.(t) say, fort> 0 and j = 1,2, ••• ,N, such that on both 
J 

sides of these curves, the region (JR \{O}x(O,T]) \D satisfies the interior 

circle condition. Let~ satisfy the inequality 

(4.11) L~:,;; O, X € JR\{0}, t € (0,T), X 'F x.(t), j = 1, ••• ,, 
. J 

where Lis defined in (4.2). 

Suppose~ satisfies the conditions (4.3) and (4.4) and the additional 

condition that 

(4.12) ~ (x.(t)+,t) 2: ~ (x.(t)-,t). 
X J X J 

Then the conclusion of Theorem 4.1 holds. 

PROOF. This proof is similar to the one of the preceeding Theorem if we 

handle points of Din the same fashion as points (0,t), 0 < t:,;; T. 

THEOREM 4.3. (Comparison principle). 

Let for T > O, u and v be two functions such that u-v satisfies the 

conditions (4.3), (4.4), (4.10) and (4.12) for the curves x = x.(t) as . J 

given in Theorem 4.2. 

Moreover suppose that u and v satisfy the inequality 

(4.13) Nu :,;; Nv, X € JR \{O}, t € (O,T), X 'F x. (t) 
J 

where N is the nonlinear differential operator 

(4.14) Nu - ut - e (x)u - cu - F(x,t,u) 
e: XX X 

with ee:(x) and c as in Theorem 4.1 and for a given function 

F E c O ' O ' l ( JR x [ O , T] x JR) • Then 

(4.15) u(x,t) :,;; v(x,t), x E JR, t E (O,T]. 

Moreover if u(x,O) < v(x,O) on some open subset of JR tl1en u(x,t) < v(x,t) 

for all x E JR, t E (O,T]. 
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PROOF. The proof of this theorem is, in a technical sense, similar to the 

proof of Proposition 2.1 in [1]. Define for A> 0 a new function w by 

(4.16) 
At 

w(x,t) = e (u(x,t) - v(x,t)). 

Choosing A sufficiently large (cf. [1]) we can find a bounded positive 

function F 1 (x, t) such that 

(4.17) w •- e (x)w - cwx + F 1 (x,t)w :s; 0. 
t E XX 

The function w satisfies therefo~e all the conditions of the extended 

maximum principle and consequently (4.15) holds. 

DEFINITION 4.1 .. Consider the general differential operator N, given by 

(4.14). We shall call a function~ a lower solution of the equation 

(4.18) Nu= 0 

for 0 < t < T if~ satisfies the smoothness conditions (4.10) and (4.12) to­

gether with (4.3) and N~ :s; 0 for x E JR \{0,x 1 (t) , ••. ,xN(t)}, t E (0,T) with 

the curves x.(t.) as given in Theorem 4.2. 
J 

A function~ is called upper solution of (4.18) if it satisfies the 

same conditions with all the inequality signs reversed. 

NOTATION. We shall write u(x,t;x) for the solution of (1.1). 

By the above comparison principle we can prove an a priori estimate for 

u(x,t;x). 

THEOREM 4.4. 

(4.19) 0:,:; U(X,t;x) :s; 1, XE JR, t ~ 0. 

PROOF. The function ~(x,t) = 0 and ~(x,t) = 1 are lower and upper solution 

for equation (1.1), respectively. Moreover 0 :s; u(x,0;x) = x(x) :s; 1, by 

assumption, and consequently application of Theorem 4.3 yields (4.19). 
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The stationary solutions q+(x) and q_(x) introduced in Section 2, are 

upper as we,11 as lower solution for equation ( 1 .1) • Hence, application of 

Theorem 4.3 yields a first "blocking result". 

* THEOREM 4.5. Let 0 < E < E and assume 

(x(x) :5: q_(x)). 

Then 

(u(x,t;x) :5: q_(x)) 

for all x E lR , t > 0. 

5. STABILIT'Y AND PROPAGATION, A FIRST IMPRESSION. 

* In this Section we shall for EE (0,E ], give some first results on 

the stability and instability of the stationary solutions q (x) and q (x), 
- + 

respectively. In particular we shall estimate the region of attraction of 

q_(x), and examine the behaviour of the solution of Problem I, starting 

high above q_(x). If EE (E~,1) we shall give meaning to the statement that 

the solution u of Problem I travels away from the point x = 0, and give 

conditions on x that u does so. 

In the derivation of our results we shall make use of results of 

ARONSON & W~INBERGER [1], [2] and VELING [16]. 

To begrin with we introduce a few upper and lower solutions. 

Consider for;\ 2': 0 and E < E* the function 

(5. 1) 

the translation of q+ to the left over a distance\. Let the number "o > 0 

be such tha.t 

(5. 2) q\ (0) = a. 
0 
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Since q0 (0) =a+> a, q00 (0) = 0 < a and qA(x) is strictly decreasing with 

respect to A Cq+ (x) < 0 for all x E lR ! ) the number Ao is well defined. We 

shall restrict ourselves to A< Ao• Then qA(x) > a for x :5 0 and therefore 

(5.3) 

Hence 

(5.4) 

q" (x) = 
A 

Thus qA (x) is an upper solution of (1.1) for O :5 A< A0 • In the same way as 

we have shown in Section 2 that q (x) > q (x) for all x E lR we can show 
+ -

that qA(x) > q_(x) for all x E lR, A< A0 • Similarly qA(x) is a lower solu-

tion of (1.1) for A< O. 

Another lower solution can be constructed as follows. The stable 1-

* manifold in the (u,u )-plane intersects the u-axis at some point u = u E 
X * 

(0,1) (see figure 2.1). In fact u* is given by the relation/~ f(u)du = 0 

which follows from (2.5) for£= 1. Trajectories of the equation 

(5.5) u + f(u) = 0 xx 

* intersecting the u-axis at a point u0 E (u ,1) correspond with solutions 

u(x;u0 ) of (5.5) where for some ~O u(x0 ;u0 ) = u0 , which are symmetric with 

respect to the line x = x0 , and which are nonnegative, only on a finite 

interval. We define a function Q = Q(x;x0 ,u0 ) by 

= {u(x,u0) if u(x,u0) ~ O 
Q(x;xo,uo) 0 otherwise 

We shall always choose the point x0 such that Q(x;x0 ,u0) vanishes for 

X ~ 0. 



-------------u=l 
~....---.. -----------UQ 

---- - -u* 

fig. 5. 1. 

Using these upper and lower solutions we are able to examine the 

asymptotic behaviour of the solutions of (1.1) as t + 00 • Thereby we make 

use of the following Lemma which is an extension of a result of ARONSON & 

WEINBERGER [1]. 

LEMMA 5.1. Let; 

2 . . . 
XE C(JR + [0,1]). n C (JR\{0,x1,·••1XN} + [0,1]) 

satisfy the differential inequality 

(5.6) e (x)x" + f(x) ~ o, 
e: 

XE JR\{0,x1 , ••• ,~} 

for real numbers O and x. ~ O, i = 1, ••• ,N. 
l. 
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Suppose x' {x±), x" (x±) exist and x' (x+) - x' (x-) ~ 0 at x E {o,x1 , ••• ,xN}. 

Then u(x,t;x) is for each x a nonincreasing function oft. Moreover 

(5.1) lim u(x,t;x) = q(x), 
t+m 

uniformly in each compact; interval, where q(x) is the largest stationary 

solution of (1.1) satisfying the inequality q(x) ~ x(x). 

PROOF. The proof of this Lennna is given in the same way as the proof of 
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Proposition 2.2 in [1] using however this time the comparison principle 

Theorem 4.3 instead of the comparison principle Proposition 2.1 in [1]. 

(see also Proposition 2.2 in [2]). 

Since x(x) is an upper solution for equation (1.1) it follows by 

Theorem 4.3 that 

(5 .8) u(x,h;x) ~ u(x,O;x) = x(x) 

for all h > O. Now u(x,t;x) is an upper solution of equation (1.1) which 

is smooth fort> 0, except at x = 0. Application of Theorem 4.3 yields 

(5. 9) u(x,t+h;X) ~· u(x,t;x), h > O, X E R. 

Thus for each x, the function u(x,t;x) is nonincreasing int and bounded 

below by zero (Theorem 4.4). Therefore 

(5.10) lim u(x,t:x) - -r(x) 
t+rco 

exists. Now following the proor of Proposition 2.2 in [1] or Proposition 
a¾ (n) . 

2.2 in [2] one can show that n (•,t,X) + T (•) for n = 0,1, uniformly on 

bounded intervals not includigg x = O, and that -r(x) satisfies equation (2.1) 

and is a stationary solution of (1.1). Since ut(x,t;x) ~ 0 and u(x,t;x) is 

uniformly bounded (cf. Theorem 4.4), there exists an M such that for all 

x ~ 0 and t > 0, uxx = (ut-f(u))/eE(x) ~ M. Hence for any pair (x,x0 ) 

with x > x0 we find by integration of uxx that 

+ (-r'(x0 ) - -r' (x)) + M(x-x0 ). 

By this inequality, the continuity of -r' and the uniform convergence of 

u (•,t;x) towards -r' outside x = 0 we can find for any o > O, numbers 
X 

p 0 and t 0. such that for t > t 0 and !xi < p0 , ux(x,t:x) - -r' (x) ~ o. 
Similarly exchanging x and x0 we find that, ux(x,t:x) - -r'(x) ~ -o for 

x near the origin and sufficiently large t, As a consequence, the convergence 
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of u (• t·x) to T' fort+~ is uniform on all compact intervals. In X , , 

particular u (•;t,x) is bounded on any compact interval and integration of 
X 

u 
X 

leads in the same way as above to the uniform convergence of u(•,t;x) 

to T fort ➔ 00 on all compact intervals. 

Finally we note that for every stationary solution d(x) of (1.1) 

where a(x) ~ q(x) it follows by Theorem 4.3 that T(x) ~ a(x). 

REMARK 5.2. Similarly one can show that if e (x)x" + f(x) ~ 0 for 
E: 

x E JR \{O,x1 , ••• ,xN} where xi ,f:- 0 and x' (x+) - x' (x-) ~ 0 at x = xi or O then 

u(x,t;x) is nondecreasing int for each x. Moreover as t + 00 , u(x,t;x) tends 

to the smallest stationary solution of (1.1), which is greater than or equal 

to x(x). 
The following theorem gives a first asymptotic stability result for the 

stationary solution q_(x) and, at the same time estimates its region of 

attraction.owe shall use the functions Q(x;x0 ,u0) and qA(x), introduced 

earlier in this section. 

Recall that Q(x;x0 ,u0) ,f:- O, only on a finite interval in (-00 ,0), that 

the maximum of Q, u0 lies in the interval (u*, 1) where· u* is defined by 

u* 

f f(v)dv = 0 

0 

and A< AO where AO is given by (5.2). 

THEOREM 5.1. Let O < E: ~ E:*. 

* Suppose there exist numbers u0 E (u ,1) and x0 such that 

(5.11) 

and there exists A E (O,A0 ) such that 

(5.12) 1 

(5.12,2 

Then 

X (x) ~ qA (x) 

X (x) ~ q_ (x) 

if E: < E:* 

if E: * = E • 
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(5.13) lim u(x,t;x) = q_(x), 
t-+<><> 

uniformly on closed intervals. 

PROOF. As we have seen above, Q(x;x0 ,u0 ) is a lower solution and qA(x) for 

E < e* and A€ (0,A0), and q_(x) for E = e* are upper solutions of 

equation (1.1). Except for the decreasing stationary solutions of (1.1), 

all the nonconstant stationary solutions of (1.1) have periodic parts for 

x > 0 or for x < 0, where in the last case the maximum over (-00 ,0) is less 

than u*. Therefore, the only stationary solution of (1.1), lying between 

Q(x;x0 ,u0) and qA(x) for A E (0,A0) and E < e* is q_(x) and (5.13) is now 

a consequence of Lemma 5.1. If E = e* we take q_(x) instead of qA(x) leading 

to the same result. 

For E < e*, a sketch of a domain of attraction of q_ is given in fig 

5.2. (In the sense that functions which take values in the shaded region 

belong to the domain of attraction). 

1 

0 

fig. 5.2. 

Solutions of (1.1) where x(x) ~ qA(x) for some A< 0 are attracted by 

u = 1. This is shown in Theorem 5.2 below. 

THEOREM 5.2. Let 0 * < E < E • 

Suppose there exists a number A< 0 such that 

(5.14) x(x) ~ qA (x), X € lR. 



Then 

(5.15) lim u(x,t:x) = 1 
t-r<X> 

uniformly on closed intervals. 

PROOF. The only stationary solution of (1.1), taking values in [0,1] and 

above q+(x) is the function u = 1. Relation (5.15) now follows by Lemma 

5.1. 

* If E > E then no decreasing stationary solutions of (1.1) exist. 
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Moreover there exist in this case no stationary solutions lying entirely 

* aboveQ(x;x0 ,u0) for any, u0 E (u ,1), x0 and below u = 1. (cf. Proof Theorem 

5. 1) • 

Therefore, if x(x) 2:: Q(x;x0 ,u0 ) then the solution of (1.1) must tend 

to 1 as t ➔ 00 , by Lemma 5.1. Thus we have proved the following Theorem. 

* THEOREM 5.3. Let E < E ~ 1. 

* Suppose, there exist numbers u 0 E (u , 1), x 0 , such that 

(5.16) 

Then 

(5.17) lim u(x,t;x) = 1, 
t-r<X> 

uniformly on closed intervals. 

Both under the assumptions of Theorem 5.2 and those of Theorem 5.3 we 

have seen that u(x,t;x) ➔ 1 as t + 00 • What we really expect is that u 

"travels awa.y" from the point x = O. 

In orde,r to state this precisely, recall that there exists a unique 

* wave speed c = c for which the equation 

(5 .18) V' t 
EV + f(v), 

xx 
X E JR, 
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has a solution of the form v(x,t) = w(x-ct) with w(-00 ) = 1 and w(+00 ) = 0. 

Also sign c* = sign /~f(u)du > 0. Moreover, modulo translation there exists 

* precisely one such solution and we can define a unique representative w by 

requiring w*(O) = 1/2. 

DEFINITION 5.1. We say that utravels away from x = 0 if u(x,t;x) tends, 

as t ➔ 00 , to w*(x-c*t+K), uniformly for x 2 x* > 0 for some K > 0, x* > 0. 

To prove that, under certain conditions, u travels away from x = 0 

we shall use a recent result of VELING [17] which is based on earlier work 

of FIFE & MCLEOD [3]. 

LEMMA 5.2. Let u (x,t) be a solution of the problem 

(5.19) u == E:U + f(u) 1 X 2 0, t 2 0 
t xx 

(5.20) u(0,t) = <P ( t) , 0 :-;; <P (t) :-;; 1, 

u(x,,0) = X (x) , 0 :-;; x(x) :-;; 1, 

where <P(t) and x(x) satisfy the conditions 

(5.21) 

(5.22) 

(5.23) 

( 5. 24) 

<Pt Holder continuous'for t 2 0 

X Holder continuous for x 2 0 
xx 

<P(0) = X(0) 

<Pt(0) = £Xxx(0) + f(x(0)) 

lim sup X (x) < a 
X ➔ ro 

11-q, <tl I -yt 
:<,; Me for some M,y > 0 and all t 2 O. 

Then there exist constants K > b, w > 0, z 0 such that 

(5.25) I * * -wt u(x,t) - w (x-c t-z0 ) I < Ke uniformly for x 2 O. 

Since the conditions (5.21), (5.22) on u(0,t) and u(x,0) in our case, 

are in general not satisfied we shall frequently apply Lemma 5.2 for 



* * x ~ x > 0, t ~ t > O. As a result (5.25) holds in that case for 

* * t ~ t, uniformly in x ~ x. However in order to apply Lemma 5.2 we have 

* * to show that u(x ,t;x) tends to 1 exponentially as t + 00 for some x > O, 

and this does not follow immediately from the last two theorems. 

Under different but still satisfactory conditions on x(x) we shall 

establish the convergence of u(•,•;x) tow* in Section 6. 

In the present Section we shall indicate, by a simple example how we 

shall use Lemma 5.2 in the treatment of this behaviour of u(x,t;x) once 

it tends to u = 1. 

The technique is that we search for a lower solution u(x,t) of (1.1) 

which is equal to one of the functions w1 (x-ct) and wE(~-ct), satisfying 

the equation 

(5.26) Ew E + cw E + f(wE) = o, 
zz z z = x-ct 

for E = 1 and E = E, respectively. In this Section we choose E = 1 for 

z < 0 and E = E for z > 0 and we require that w1 (-oo) = 1, wE(+00) = O. 

Thus we are looking for a function u(x,t) = w(z) where w(z) satisfies 

(5.27) e (z)w + cw + f(w) = O. 
E ZZ Z 

Let us first consider equation (5.27) fore (z) = constant, e (z) = E 
E E 

say as we have done for the case c = 0 in Section 2. Introducing formally 

P(w) = w (w) we find that P(w) satisfies the equation z 

(5.28) pp + £ p + ! = o. 
W E E 
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Again the points (w,P) = (0,0) and (w,P) = (1,0) are saddle points and only 

one stable manifold of (0,0) and one unstable manifold of (1,0) lie in the 

region P < O, 0 ~ w ~ 1. As these manifolds now depend on c we shall refer 

to them as scable (E,c)-manifold and unscable (E,c)-manifold or, more 

generally, if we consider different functions f, scable (E,f,c)-manifold 

and unscable (E,f,c)-manifold. 
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* Now suppose E < E < 1. Then by the continuity of trajectories 

of (5.28), and thus also of P (w) with respect to c we have that for c 
w 

sufficiently :small the stable (E,c)-manifold and the unstable (1,c)-

manifold have no points in common and furthermore, there exist unique numbers 

w ,w * E (0,1) such that the stable (E,c)-manifold and the unstable (1,c)-
c C 

manifold have horizontal slope at w = w and w = w *,respectively.Denote 
C C 

these points of horizontal slope by (w ,P) and (w *,P *). Since, for c > 0 
C C C C 

sufficiently small, P * < P and f > 0 in an interval including a, w and 
C C W C 

w *, it follows by taking P = 0 in (5.28) that 
C W 

( 5. 29) a< w < w *• 
C C 

The manifolds under consideration are sketched in figure 5.3. 

w 
z 

,, 

(E:,c)-manifold 

1 
w 

(1,c)-manifold 

fig. 5. 3. 

The solution of (5.27) we are looking for and which we shall denote by 

~(z) is now chosen such that it corresponds with the unstable (1,c)­

manifold for z; < 0 and w > w*, and with the stable (E,c)-manifold for 
- C 

z > 0 and w < w* (the dotted line in fig. 5.3). We mention that since for the 
C 

solution P(w) of (5.28) we have Pw(w) = w /w, positive slope of the 
zz z 

trajectories correspond to negative w • Thus zz 

(5.30) w < o, 
-zz 

z < o. 



REMARK 5.3. It is well known (see for example [3]), that ~(z) tends to 

1, exponentially as z + - 00 • 
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REMARK 5.4. Along the line x = ct in the (x,t)-plane we have, by definition 

of w that 

(5.31) w (x-ct+) ~ w (x-ct-) 
-'X -'X 

and thus we can apply Theorem 4.3, the comparison principle, in case w is a 

lower solution. 

we are now able to make a first attempt to give sufficient conditions 

on x(x) such that the solution u(x,t;x) of (1.1) travels away from x = 0. 

THEOREM 5.4. Let£*<£< 1. 

Suppose x(x) satisfies the conditions 

(5.32) 

(5.33) 

x(x) > ~(x), 

lim sup x(x) < a. 
x+m 

X € ]R 

Then u travels away from x = O. 

PROOF. By (5.27) and (5.30) it follows for u(x,t) = w(x-ct) that 

(5.34) u (x,t) - e (x)u (x,t) - f(u(x,t)) 
t £ xx 

{ 
0 , x < 0 or x > ct 

= [e (x-ct)-e (x)]w (x-ct) = (l ) ( t) 0 0 < t £ £ ZZ -£ W X-C < 1 X < C • zz 

Thus u(x,t) is a lower solution of (1.1) and therefore, using (5.32) it 

follows that 

(5.35) u(x,t:x) ~ ~(x-ct), 
+ 

XElR,tElR. 

* Since fort+ 00 , ~(x-ct) for fixed x (x = x > 0, say) tends to 1 exponentially 

and u(x,t:x) ~ 1 it follows that u(x*,t:x) tends to 1 exponentially. Appli-



28 

cation of Lemma 5.2 now yields the desired result. 

The above theorem is of course not such a strong result but all the 

techniques we need in the next Section to prove stronger results on 

* convergence tow are present here. In that sense, this theorem gives a 

first i~pression of the proofs of some of the theorems in Section 6. 

6. STABILITY AND PROPAGATION 

In Section 5 we established some results on the qualitative behaviour 

of the solution u(x,t;x) of (1.1), using simple upper and lower solutions. 

In this Section we shall extend these results. To be precise we shall prove 

the following theorems. 

For the definitions of the function Q(x:x0 ,u0 ) and the numbers 

x0 ,u0 ,u*, occurring in the theorems we refer to the preceding Section. 

THEOREM 6.1. (Extension of Theorem 5.1) 

* Let O < E :s; E • 

Suppose 

(6.1) x(x) < q+(x), X E JR 

and one of the following conditions is satisfied. 

(6.2) 1 

(6.2) 2 

Then 

(6. 3) 

lim inf x(x) > a 
X + - oo 

Q(x;x0 ,u0) :s; min{x(x),q_(x)} for some u0 E (u*,1), x0 • 

lim u(x,t;x) = q_(x) 
t+oo 

uniformly on closed intervals. 

THEOREM 6.2. (Extension of Theorem 5.2). 

* Let O < E < E • 



Suppose 

(6.4) 

Then 

(6.5) lim u(x,t;x) = 1 
t-+<><> 

X € JR• 

uniformly on intervals (-00 , K], K € JR • 

Moreover if 

(6.6) lim sup x<xY < a 
X ➔ co 

then u travels away from x = O. 

THEOREM 6.3. (Extension of Theorem 5.4). 

(6. 7) 

Then 

(6.8) 

Let e: * < e: < 1 • 

Suppose 

lim inf x(x) > a. 
X ➔ - co 

lim u(x,t;x) = 1 
t-+<><> 

uniformly on intervals (-00 ,K], K € JR. Moreover if 

(6.9) lim sup x(x) < a 
X ➔ co 

then u travels away from x = O. 
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Note that this theorem does not imply Theorem 5.3. In [3] it was 

proved that the solution of (1.1) fore:= 1 tends to a travelling wave if 

the conditions (6.7) and (6.9) are satisfied. In that sense, this result 

is extended by Theorem 6.3. 

Finally we prove the exponential stability of q_(x) in the supremum 
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norm. 

* THEOREM 6.4. Let O < € < €. 

Then there exist positive constants o,µ,K such that llx-q_ll 00 :,; o implies 

(6.10) t ~ 0~ 

In the proofs of the above theorems we shall frequently make use of 

phase plane properties of equations of the form 

(6.11) Ew + cw + g(w) = 0, zz z Z E :R 

where EE {e,1}, c ~ 0 and g is a third order polynomial having zeroes 

a,B,1, a< B < 1 where g' (a) < 0. A useful tool in phase plane considerations 

is the following Lemma, due to ARONSON & WEINBERGER [2, Lemma 4.1]. 

LEMMA 6.1. For j = 1 and 2 let p,(q) denote a real-valued continuous func­
J 

tion defined on [a1 ,a2J which satisfies the differential equation 

(6.12) 

(6.13) 

or 

(6.14) 

Using this Lemma one can study how the (E,g,c)-manifolds leaving (1,0) 

(the unstable one) or going to (a,0) (the stable one) in the phase plane of 

(6.11), lying below thew-axis, vary with g or with c. The results are stat­

ed in Lemma 6.2 and Lemma 6.3. 



LEMMA 6.2. Consider two cubics Fi (w), i = 1,2 with zeroes ai, Si, 1, 

a. < S. < 1 where F.' (a.) < O. Suppose 
1 1 1 1 

(6.18) a 1 < w < 1. 

Let EE (O,l]. 

Then for c E JR, the stable (E,F 1,c)-manifold lies below the stable 

(E,F 2 ,c)-manifold as long as the latter lies below thew-axis in the 

(w,w')-plane. The unstable (E,F 1 ,c)-manifold lies above the unstable 

(E,F 2 ,c)-manifold as long as the former lies below thew-axis. 

PROOF. Introducing formally P(w) = w (w) where w satisfies the equation 
z 

(6.11) we find that P(w) satisfies the equation 

(6.16) EP 
w 

< a.2 then the first part of this lemma follows by application of 
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If a 1 

Lemma 

slope 

6.1 to equation (6.16) for g(w) = Fj(w), j = 1,2. If a. 1 = a. 2 then the 

of th1~ stable (E,F 1 ,c)-manifold at w = a 1 is less than that of the 

stable (E,F2 ,c)-manifold at w = a. 1 and application of Lemma 6.1 on an inter­

val [a.1 + £ 0 , 1] for some sufficiently small positive £ 0 again yields the 

first part of this lemma. 

The other part is proved analogously. 

LEMMA 6.3. 

Let 

(6.17) 

Then the stable (E,g,c 2)-manifold lies below the stable (E,g,c 1)-manifold 

as long as the latter lies below thew-axis. The unstable (E,g,c2)­

manifold li«9s above the unstable (E,g,c 1)-manifold as long as it lies 

below the w·-axis. 

PROOF. Similar to the proof of Lemma 6.2 using the fact that the slopes of 

both the stable (E,g,c)-manifold at (a.,O) and the unstable (E,g,c)-
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manifold at (1,0) are monotone functions of c. 

* PROOF OF THEOREM 6.1. We consider first the case e E (0,e ). 

As in the proof of Theorem 5.1 we shall prove Theorem 6.1 by means of upper 

and lower solutions, satisfying (6.1) and (6.2) instead of X, and which 

enclose x(x). Since the case min{x(x),q_(x)} ~ Q(x;x0 ,u0 ) has already 

been treated in Theorem 5.1 we shall only consider the situation that 

lim inf x(x) > a. 
X -+ -oo 

We shall construct functions $(x) 1 q+(x), ~(x) 1 0, satisfying for 

some to> 0 

max{x(x),q_(x)} < $(x) ~ q+(x) 

(6.18) 
0 ~ ~(x) < min{u(x,t0 ;x), q_(x)} 

and 

e (x)$ + f($) ~ 0, 
e xx 

(6.19) 

e (x)~ + f(~) ~ 0, e xx 

2 for some x 1-x4 E JR where$ E C(JR -+ [0,1]) n C (JR \{o,x1,x2 }-+ [0,1]) and 
2 

~ E C(JR ➔ [0,1]) n C (JR \{0,x3,x4}-+ [0,1]). Moreover j' (x±) and $"(x±) 

exist and $'(x+) - $'(x-) ~ 0 for x E {0,x1 ,x2} and ~•(x±), ~"(x±) exist 

and~• (x+) - ~•(x-) ~ 0 for x E {0,x3 ,x4}. Then the only stationary solution 

of (1.1) between ~(x) and $(x) is q (x) and application of Lemma 5.1 yields 
, -

(6.20) lim u(x,t;$) = lim u(x,t:~) = q_(x). 
t-+oo 

Since u(x,t0 ;x) E (~(x), $(x)) we must also have 

(6.21) lim u(x,t;x) = q_(x). 
t-+oo 

Construction $(x). 

Consider for o > 0 the function 



33 

(6.22) g(u) = f(u) + ou(l-u), 

where, in order to have g'(O) < 0 

(6.23) -a+ o = f'(O) + o < O. 

To begin with we shall find for o sufficiently small a function w such that 

(6.24) e (x)w + g(w) = o, 
E XX 

(6.25) w(-w) = 1, w(+w) = o. 

Clearly w satisfies (6.19) 1• 

Denote a+0 as the largest point of intersection of the stable (e:,g,0)­

manifold and the unstable (1,g,0)-manifold. 

_/_/ 

:71 
, 

~ (1,f,0)-manifold 
/ 

,/- (1,g,0)-manifold 

(e:,g,0)-manifold 

__ (e:,f,0)-manifold 

Fig. 6. 1. 

For o small enough there exists a solution q(x) E c 1 (JR) of 

e (x)q" + g(q) = o, X 'F 0 
E 

(6.26) q(O) 
0 = a + 

q(-w) = 1, q(+w) = 0. 
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The values of q+' and q' at q+ = u and q = u will be denoted by R+(u) and 

R(u), respectively. These functions satisfy the equations (cf. (2.4)) 

{ 
-f/E 0 < u < a+, 

R R = + +,u -f a+ < .U < 1, 

(6.27) 0 

I -g/E 0 < u < a 
R R 0 

+ = l. u -g a < u < 1. 
+ 

The corresponding manifolds are sketched in fig 6.1 (cf. Lemma 6.2). 

We shall first confine ourselves to a treatment of the (E,f,0) and the 

(E,g,0) manifolds. On the (E,f,0)-manifold we have 

( 6. 28) 

where 

(6.29) 

2 ½ 
=-[--F(u)] 

E 

u 

F(u) = I f(T)d-r. 

0 

0 < u < a 
+ 

(Integrate (6.27)). On the (E,g~0)-manifold we find similarly 

(6.30) R(u) 
2 2 1 1 ½ = -[- E {F(u) + ou (2 - y-1>}] , 0 

0 < u < a+ 

Consider the inverse functions l;+(u), l;(u) of q+(x), q(x), respectively 
0 

for 0 < u < a (see fig. 6.2). 
+ 

Define 

(6.31) 

Then 

(6.32) 
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0 1 

fig. 6.2. 

0 
We shall now show that ~u(u) > 0 for u E (O,a+) and ~(u) < 0 for 

O < u < u for some {i not depending on o E (O,o0 ) for o0 sufficiently 
0 

small. Also we shall show that a+ - a+ = o (o) • Then for p O > 0, by reasons 

of continuity there exists a number M > 0 such that for any p E (O,p 0) there 

exists a o O > 0 such that for O < o < o O a solution 1/1 of 

(6.33) 

satisfies 

(6. 34) 

e (x) lj," + g (lj,) = 0 , 
e: 

ij,(-oo) = 1, lj,(+oo) = 0 

q+(O) - p $ lj,(O) < q+(O) 

q+ (x) - p $ 1j, (x) , 

X ~ M. 

Let us first estimate a+ - a+o• 

The number a+ follows from 

a+ 1 

(6.35) I f(.)d. + e: f f(.)d. = 0 

0 a+ 

X E JR, 

0 $ X < M 
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and a+0 follows from 

(6.36) 

ao 
+ 

J [f (T) 

0 

1 

+ oT(l-T)]dT + E J [f(T) 

0 
a+ 

Subtracting these two relations we find 

(6. 37) ( 1-E) a+J 

0 
a+ 

f(T)dT 

a+ 

= o[ J T(l-T)dT 

0 

For o1 sufficiently small we have 

+ OT(l-T)]dT = o. 

+ E 

1 

f T(l-T)dT]. 

0 
a 
+ 

a+ . 

(6.38) J f(T)dT ~ r[a+-a~J, r > 0 independent of o € (O,o 1). 

ao 
+ 

Combining (6.37) and (6.38) we find that there exists a number A> 0, not 

depending on o E (O,o 1) such that 

(6.39) 

Next we estimate~ (u). 
u 

Using the relation 

(6.40) 0 :s; h < 1 

0 
it follows for O < u < a+ and o small enough that 

(6. 41) 

1 1 
R(u) = R+ (u) 

ou2 c.!. - .!.u) 
{ 

2 3 
1 +-----

2F(u) 

2 1 1 
ou (2 - 3 u) 

2 ~ 4F(u) [- 3 F(u) J 

-~ 
} 
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and using 

(6.42) F (u) 
2 = -!.:iau (l+O(u)), u ➔ 0 

it is obvious that there exist numbers o2 , K > 0, such that for O < o:;:; o2 

(6.43) <P {u) = 
u 

1 
R(u) 

Ko 
~ 

u 

Finally we show the existence of u. 

For sufficiently small o3 we have 

(6.44) 

Since by (6.43), <P (u) > 0, a sufficient condition for <P(u) < 0 is 
u 

(6.45) 

and therefore also 

a+o 

(6.46) I <Pu(u)du > 

u 

implies <P(u) < 0. Now choose 

(6.47) 

then, by (6.43) this yields (6.46) and thus <P(u) < 0. In a similar way we 

can treat ~he (1,f,0)- and (1,g,0)-manifolds (the case x < 0) and as a 

result we may extend (6.33), (6.34) to: 

Let p0 > 0. Then there exist numbers M,N > 0 such that for any p E (0,p 0 ) 

there exists a o0 > 0 such that for O < o < o0 a solution 1jJ of (6.33) 

satisfies 
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q+ (0) - p :,; 1/J (0) < q+ (0) 

(6.48) q+(x) - p :,; 1/J (x) - N < X < M, 

q+(x) :,; 1/J (x) I X :,; -N, X ~ M. 

Replacing 1/J(x) by q+(x) if 1/J(x) ~ q+(x), we find that 1/J(x) satisfies the 

desired conditions for some x 1 ,x2 , if we take p 0 sufficiently small. 

Construction ~(x). 

The unst~ble (1,f,0)-manifold corresponds with the decreasing 

solution of 

(6.49) q"(x) + f(q) = 0, 

q(-L) = 0, q(-00 ) = 1 

X :,; - L 

where LE JR. Take L > 0. Similar to the proof of Lemma 4.1 in [3] one can 

find functions µ(t), s(t), µ(t) + 0, s(t) + s 0 > 0, (t+oo) such that 

(6.50) 

satisfies 

(6.51) 

v(x,t) - q(x+s(t))-µ(t) 

V - V - f(V) :,; 0, 
t xx 

X:,; - L - s(t) < 0 

v(x,O) < min{x(x), q-(x)}. 

The stable (1,f,0)-manifold intersects the line q' = 0 for 

* q = u E (0,1) (see Section 5). The trajectory, intersecting the q-axis 

at a value q = u0 E (u*,1) corresponds with a solution Q(x,x0 ,u0 ) of 

equation (6.49), vanishing at points x = x3 and x = x4 for some x3 < x4 < 0 

say, taking at most the value q = u0 at x = x0 • Then since s(t) is bounded 

and µ(t) + 0, if x4 << -L there exists a time t 0 such that 

(6.52) 

By Theorem 4.3 we have u(x,t0 ;x) ~ v(x,t0 ) which yields (6.18) 2 for 



w(x) = Q(x;xo,uo>· 

If e: = e:* then q+(x) = q_(x). If we choose w(x) = q_(x) then clearly 

w(x) is an upper solution. The remaining part of the proof in this case 

* is identical to the corresponding part fore:< e: • 

PROOF OF THEOREM 6.2. 

Consider for o > 0 the function 

(6.53) g(u) = f(u) - ou(l-u) 

where o is so small that 

(6.54) 

1 

f g(u)du > 0. 

0 
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Similar to the proof of Theorem 6.1 one can show that for p0 > 0 there exist 

numbers M, N > 0 such that for any p € (O,p0) there exists a o0 > 0 such 

that for O < o < o0 a solution w of 

(6.55) 
e (x)w + g(w) = 0 e: xx 

w(-oo) = 1, w(+oo) = 0 

exists which satisfies 

(6.56) 

q+(O) < w(O) ~ q+(O) + p 

q+(x) < W(X), - N < X < M 

q+(x) ~ W(X), X ~ - N, X ~ M. 

Basic for the proof of Theorem 6.1 are the qualitative properties of 

the (1,g,0)- and (e:,g,0)-manifolds. These properties remain the same for 

the (1,g,c)- and (e:,g,c)-manifolds for c > 0 sufficiently small. Therefore, 

adding a term cw'(x) to the left hand-side of equation (6.55) does not 

affect the above statements about w if c is sufficiently small. 

To be more precise we have for Po> 0, numbers M, N > 0 such that 

for any p € (O,p 0) there exists a o0 > 0 such that for O < o < o0 and 
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sufficiently small c > 0, a solution$ of 

(6.57) 
e (x)$ + cw + g($) = 0 e: XX X 

$(-m) = 1, $(+m) = 0. 

exists which satisfies (6.56). 

The function v(x,t) = $(x-ct) satisfies v < 0 if 0 < x < ct and xx 
therefore for xi {0,ct} we have 

vt - e (x)v - f(v) = e: xx 

= [e (x-ct) - e (x)]v +g($)-f($) ~ 0. 
e: e: xx 

Choose p so small such that $(x) < x(x). 

Application of the comparison principle Theorem 4.3 yields 

(6. 59) $(x-ct) ~ u(x,t;x), X E lR, t ~ 0. 

It is well known that $(x-ct) tends to 1 exponentially as x-ct + - 00 • If 

x(x) satisfies (6.6) we have by application of Lemma 5.2 that u travels 

away from x = 0. 

PROOF OF THEOREM 6.3. Introduce for o > 0 the cubic 

(6.60) g(u) = f(u) - o(l-u), 

which has zeroes 1 and 

(6.61) a= ~a - ~/4.2+4o, 

(6.62) 

We shall assume o to be small such that 

(6.63) 

1 

fg(u)du > 0. 

a 
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We shall consider solutions of the equations 

(6.64) Ew + cw + g(w) = 0, zz z EE {e:,1} 

and restrict ourselves to those values of c > 0 and o for which the stable 

(e:,g,c)-manifold and the unstable (1,g,c)-manifold have no points in 

common for a~ w ~ 1. We have now the situation sketched in the phase 

plane picture fig. 6.3. 

(1 , f , 0 ) -man • 
(e:,f,0)-man. 

// (1,g,c)-man. 

(e:,g,c)-ma.u......__,.-___ a_...,...,.'-+-=+----'-1-----,1----w 
I / 1 

I / 
' "- I :,/ / "-, -..._ _ _L--: / 

'-, : ,/ .......... ___ L_-, 
/ 

,fig. 6. 3. 

By Lemma 6.1 and 6.2 the stable (e:,g,c)-manifold and the unstable (1,g,c)­

manifold lie between the stable (e:,f,0) manifold and the unstable (1,f,0)­

manifold. 

It was demonstrated in Section 5 that for c sufficiently small there 

exist unique numbers w, w * E (0,1), satisfying a< w < w * such that 
C C C C 

the stable (e:,f,c)-manifold and the unstable (1,f,c)-manifold have 

horizontal slope at w = w and w = 
C 

The existence of such numbers 

w *, respectively. 
C * 

w, w satisfying S < w < w *, for the 
C C C C 

stable (e:,9,c)- and the unstable (1,g,c)-manifold respectively can be 

shown in the same way. Denote by we:(z) and w1 (z) the solutions of (6.64) 

for E = e:, corresponding with the stable (e:,g,c)-manifold and for E = 1, 

corresponding with the unstable (1,g,c)-manifold, respectively. Then 
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w > o, W E (a,w ) 
E,ZZ C 

( 6. 68) w < 0, W E (w *, 1) 
1,zz C 

w (w=w ) = w (w = w *) 
E,ZZ C 1,zz C 

We introduce a new function Uc(t} by 

(6.66) Uc(O) = 

and 

(6.67) = 

w 
C 

Jw 1 (z) , 

lw (z), 
C 

z < 0, 

z > o. 

0. 

The crucial tool of this proof is the following result. 

If conditions (6.7) is satisfied then there exist numbers K,µ > 0, z 0 

such that 

(6.68) t~0,xElR, 

Before we shall prove this we shall first demonstrate how it enables us 

* to show the convergence of u(x,t;x) towards w (z). It is well known that 

w1 (z) tends to 1, exponentially as z ➔ - 00 • Therefore, applying (6.68) 

for any x = x* and since u(x,t;x) ~ 1 we find that u(x*,t;x) tends to 1 

exponentially as t ➔ 00 • Suppose (6.9) is satisfied. Then, by Lemma 5.2, 

u(x,t:x) travels away from x = 0. 

Proof of (6.68). Writing 

(6.69) v(z,t) = u(x,t), z = x-ct 

we find v(z,t) to satisfy 

(6. 70) 
v = e (z+ct)v + cv + f(v) 

t E ZZ Z 

v(z,0) = x(z). 

We shall follow the proof of Lemma 4.1 in [3]. 
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Bounded functions s(t) and q(t) (q(t) positive) will be chosen such that 

(6. 71) ~(z,t) 
C 

- max[a, U (z+l;(t)) - q(t)] 

forms a lower solution for equation (6.70). 

The proof of this lemma differs from the proof of Lemma 4.1 in [3] in 

the sense that here we have to deal with the discontinuous coefficient 

e (z+ct). e: 
Choose 

C6. 72) 1 - q0 E Ca, lim inf xCx)). 
X-+ -00 

Take z* so that UcCz+z*) - q0 $ xCz) for all z. This is possible for suff­

iciently large z*, because of C6.7). 

Introduce 

C6. 73) \P(u,q) 
= {[f(u-q) - f(u)]/q, 

-f'Cu) , 

q > o, 
q = 0. 

Then~ is continuous for q ~ 0, and for O < q $ q0 we have 

a< 1-q0 $ 1-q < 1, so that ~Cl-q) > 0. Taking q = b we get ~(1,0) = 

-f' Cl) > o. 
As a consequence there exists a numberµ> 0 such that we have ~Cl,q) ~ 2µ 

for O $ q ~ q0 and by continuity, there exists a o0 > 0 such that ~(u,q) ~ 

µ for 1 - o0 $ u $ 1, 0 $ q $ q0 • In this range we have, still following 

[3] 

C6. 74) fCu-q) - fCu) ~ µq. 

Sets = z + l;(t), then we find that, if v > a, 

Nv:= v - e (z+ct)v - cv - f(v) 
- -t e: -zz -z 

(6. 75) 

c' c" c' c 
= U · Cs)l;(t) - q(t) ee:(z+ct)U Cs) - cu Cs) - f(U Cs)-q) 

c' " 
= U Cs)l;(t) - q(t) - [e (z+ct) - e CsCt))]Uc Cs) + 

e: e: 
+ [g(Uc(s)) - f(UcCs))] + [f(Uc(s)) - f(Uc(s) - q)], t ~ 0 

z -:/- -l; (t) 
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We shall first estimate the term [e (z+ct) - e (~)Jue"(~) in (6.75). 
€ € 

Let ~O > 0 be defined by the relation 

(6. 76) * = w • 
C 

Taking w = 0 and w = w * in (6.64) we see that g(w *) = O(c), c + 0. Thus 
ZZ C C 

we have also g(w) = 0(c) for we~ w ~ we*· For -~0 < ~ < 0 this leads to 

(6. 77) 
c" 

[e (z+ct) - e (~)Ju (~) = 
€ € 

-[e (z+ct) - e (~) J. 
€ € 

[cue'(~) + g(Uc(~))J 

= O(c). 

For~= z + ~(t) outside (-~0 ,0), the inequalities 

e (z+~(t)) - e (z+ct) ~ 0, 
€ € 

(6. 78) 

e (z+~(t)) - e (z+ct) ~ 0, 
€ € 

together with (6.65) imply 

(6.79) [e (z+ct) - e (~) J uc" (~) ~ 0, ~ e: JR \(-~0 ,oJ. 
€ € 

C 
using (6. 74), (6. 77) and (6. 79), (6. 75) reduces for u e: [1-o 0 ,1J, 

q e: [0,qoJ, ~ ~ 0 to 

(6. 80) Nv ~ uc' (~) t(t) - q(t) = DcI(~) - o[l-Uc(~) J - µq 

for some D > 0 where 

(6.81) -- {al I ( ~) 
w < Uc(~) < w * 

C C 

elsewhere. 

we shall find a function ~(t) for which ~(t) ~ 0. Then we finally obtain 



from (6.80) for~# 0 

. 
(6.82) Nv ~ - q - µq, 

provided o0 is small enough. 

Choose q(t) = q0 exp [-µt(2) which results in 

(6.83) Nv ~ - -} q0 exp [- ~t], 1 - o0 ~ uc ~ 1. 

By possibly further reducing the size ofµ and o0 it follows analogously 

that 

(6.84) 
µ [ µt] Nv ~ - 2 q 1 exp - 2 , 

for some q 1 > O. 

C 
Now consider the intermediate values a+ o0 ~ U ~ 1 - o0 . Here we know 

that uc' (~) ~ - B for some B > O, only depending on o0 . Moreover, we 
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C C 
have from the boundedness of fu that f(U) - f(U -q) ~ Kq for some K > 0. 

Thus for z # -~(t) 

(6. 85) Nv ~ -Bl(t) - q(t) + DcI(~) - o(1-Uc(~)) + Kq 

~ - Bt(t) - q(t) + Kq 

for c/o small enough. 

Setting 

(6. 86) ~(t) = 
q0 (µ+2K) + 

2µB (e -1) * + z 

for some z* E JR we find ~(t) to be increasing and to approach a finite 

limit as t ➔ =.Together with (6.85) this gives 

(6.87) 
1 - !!.t 

Nv ~ - 4 B(µ+2K)e 2 

Now we have shown that for every T > 0, x # ct - ~(t), v > a, v(x-ct,t) is a 
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lower solution of equation (1.1) for 0 ~ t ~ T. In the point z = x-ct = -~(t) 

we have v (-~(t)+,t) > v (-~(t)-,t). We conclude that -z -z 

(6.88) ~(x-ct,t) ~ u(x,t;x), t::?: 0, X E :R. 

Therefore 

u(x,t;x) 
C 

::?: u (x-ct+~ (t)) - q (t) _ ~ t 
2 

C 
::?: U (x-ct+~( 00)) - max{q0 ,q1}e 

for all x e: :R , t ::?: 0 and this completes the proof. 

Proof of Theorem 6.4. The first part of this proof is a modification of the 

corresponding part of the proof of Theorem 5 in [4]. 

Write 

(6. 90) u(x,t:x) = q_(x) + v(x,t). 

Then v satisfies the equation 

(6.91) 

where 

(6.92) 

vt = e (x)v + f' (q_(x))v + h(x,v) 
€: xx 

h(x,v) - f(q_(x)+v) f(q_(x)) - fu(q_(x))v. 

we note that 

(6.93) 

where 

(6. 94) 

llh(•,v)II 
00 

M =~sup {f (u) lu E [0,1]} = ~(l+a). 
uu 

Consider first the linear eigenvalue problem in L2 (:R) 



(6. 95) 

where 

A _ v + Q(x)v = AV 
V XX 

Q(x) 
f' (q_ (x)) 

- --e-cxr­
e: 
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From [15, Ch. V] and [16. Ch. XVI] we deduce that the spectrum of A consists 

of a continuum in the interval (-00 ,µ*J and a (possibly empty) discrete 

set of eigenvalues, in the interval (µ*, ii) where, by definition 

µ*=max {Q(+oo), Q(-00)} = max 

( 6. 96) 

µ sup { Q(x) J x E JR }. 

{f'(O) I f'(l)} 
e: 

(In [15], [16] most results are stated under the assumption that Q is 

continuous; however, the relevant proofs remain valid if Q is piecewise 

continuous) • 

We shall show that the entire spectrum is on the negative half-line and 

bounded away from zero. Sinceµ*< 0 we still have to prove this statement 

for the discrete spectrum in (µ*,µ). 
. 2 

Let \i be the largest eigenvalue and let v 0 E L (JR) be the correspond-

ing eigenfunction. Since A is self-adjoint, the spectrum cr(A) is bounded 

from above and the operator L, defined by L¢ = ¢t - A¢ satisfies a strong 

maximum principle it follows from Theorem XIII.44 in [13] that v 0 (x) 

does not vanish anywhere. We shall take v 0 > 0. 

Thus we have 

(6.97) 

The function q_(x) satisfies the equation 

(6.98) q-11 + f(q_) 0 
e (x) = • 

e: 

Using these relations we find that 
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(6.99) 

0 == J [ v; (x) q_' (x) + q: (x) v O (x) ]dx 

JR 

-I I ( ) ( )[fl (q_(X)) 
- A0 ]dx -Jv0(x) -- q_ X VQ X e (X) 

JR 
E: 

JR 

AO J q~(x)v0 (x)dx -(1 -
1 
-) v O (x) f (a ) . 
E: -

JR 

f(q_(x)) 
dx 

(x) e 
E: 

Since v 0 (x) > 0, q~(x) < 0, f(a_) < 0 and E: E (0,1) it follows that AO< 0. 

An immediate corollary is the linearized stability of q_(x). By means of 

the comparison principle Th. 4.3, using appropriate comparison functions 

one can extend this to the exponential stability, expressed by (6.10). 

However since this part of the proof is similar to the corresponding part 

of the proof of Theorem 5 in [4] we shall omit it here. 

7. NUMERICAL RESULTS 

We calculated, numerically, the solution u(x,t) of (1.1) for 

( 7. 1) f(u) 

( 7. 2) x(x) 

u(1-u) (u-½) · 

18 
[100 (x+20)] 

100 
-20 S X S lSTr -20 

elsewhere 

for several values of E: using an algorithm of VERWER [18]. Note that for 

this examples*= 5/32. For E: = 0.1, 0.2, 0.3 the results are shown in 

figures 7.1, 7.2 and 7.3, respectively. We plotted u(x,t) fort varying 

from Oto 70 with steps 10. From the figures we see that for E: = 0. 2 and 

E: = 0.3, the solution propagates from left to right while for E: = 0.1, the 

solution is clearly blocked. 

Note that for E = 0.2 the solution can be seen to slow down a little around 

the point x = 0. This effect has also been observed in [6] for a more 

realistic model in the sense of nerve conduction. 



::::, 

::::, 

0 

or---------=--. 

0 ., 

0 

"' 

0 ... 

C, ., 

fig. 7.1. Solution u(x,t) of (1.1) fore= 0.1 

and t = 0(10) 70 

-20.00 -16-00 12 .oo 16 .oo 20 .oo 

fig. 7.2. Solution u(x,t) of (1.1) fore= 0.2 

and t = 0(10) 70 
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::::, 

0 

"' 

-20 .oo -16 .oo -f2 .oo 

fi<J. 7.3. Solution u(x,t) of (1.1) for£= 0.3 

and t = 0(10) 70 
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