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On the Van der Pol relaxation oscillator with a sinusoidal forcing term 

by 

J. Grasman 

ABSTRACT 

Asymptotic approximations of subharmonic solutions of the periodically 

forced Van der Pol relaxation oscillator are constructed with singular per­

turbation techniques. These approximations are locally valid and may take 

the form of a two variable expansion in one region and a boundary layer type 

of solution in a next region. Integration constants are determined by averag­

ing and matching conditions. The construction of the approximations brings 

about certain restricting conditions on the amplitude of the forcing term. 

KEY WORDS & PHRASES: Van der Pol equation, relaxation oscillation, subhar­

monic entrainment, singular perturbation 





1 

1. INTRODUCTION 

In this paper we study the Van der Pol equation with a sinusoidal forc­

ing term 

{1.1) 
d 2 2 dx ~ + v{x -1)- + x = {av+S)cost, 
dt2 dt 

for large values of the parameter v and with O <a< 2/3. Using singular 

perturbation techniques we construct a formal asymptotic approximation of the 

2~{2n-1)-periodic solution with n = O{v). In the process of constructing such 

approximation we arrive upon a set of conditions for a, f3 and v. These condi­

tions are such that for a given a, the parameter f3 lies on an interval 

(1. 2) f3 {a) < f3 < f3 {a) • 
-n n 

These intervals overlap, so that for f3 on the interval {8 {a),8 1 {a)) two -n n+ 
solutions with period T = 2~{2n±1) may coexist. In earlier studies [3,4 and 

5] asymptotic solutions for the cases a= 0 and a= 2/3 have been constructed. 

In our analysis of the present problem we see that in the asymptotic solution 

elements of both cases can be.distinguished. A periodic solution of {1.1) has 

a behaviour that is characteristic for singularly perturbed type of problems. 

Locally the solution has a boundary layer type behaviour like one meets in 

problems of fluid mechanics. On the other hand the solution also passes a 

large time interval, where a two time-scales expansion can be made. Finally, 

we distinguish a sequence of points, determined by the intersections with the 

lines x = ±1, where the local behaviour of the solution is analyzed by a 

stretching procedure in both the dependent and independent variable. For a 

complete picture of the different regions which are successively passed 

through by the solution we refer to Fig. 1.1. Integration constants in local­

ly valid asymptotic solutions are determined by averaging conditions and by 

matching pairs of local solutions of adjacent regions. 
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Fig. 1.1. Regions with a local asymp~otic solution 

2. ASYMPTOTIC SOLUTION FOR REGION A 

In this region the solution exhibits an oscillatory behaviour of period 

2n in the regular time scale and, at the same time, a slow decrease of its 

average value. In order to analyze the solution asymptotically we introduce 

an additional time variable T = (t-t0-n)/v with t 0 = n/2(mod) 2n and consi­

der the following two-variable expansion for the solution (see COLE [1]). 

(2.1) -1 -2 
x = xo(t,T) + v xl (t,T) + v x2(t,T) + .••. 

Substituting (2.1) into (1.1) and equating the terms with equal powers of v 

we obtain a recurrent system of differential equations for x. (t,T). The first 
1 

equation reads 

(2.2) 

or 
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(2. 3) 

having a solution of the form 

(2. 4) 
1 3 3 

x 0 = 2cos[ 3 arccos{2 a sint + 2 c0 (T)}]. 

The second equation of the iterative scheme becomes 

(2.5) 

or, after integration with respect tot and with the use of (2.3), 

t 

(2.6) I - -
Go(t,T)dt + 8 sint + cl (T) 

with 

(2. 7) 

The integral of G0 in the right-hand side of equation (2.6) is secular 

in the sense that for (t-t0-i) + 00 this term would increase in order of mag­

nitude so th.at (2 .1) would not hold for a large time interval. This secular­

ity is banished by choosing the constant of integration int such that on the 

average over a 2'IT-interval G0 disappears: 

(2. 8) 

or 

(2. 9a) 

TV+2'IT 

f G0 (t,T)dt = 0 

TV 

TV+2'IT 

I x0 (t,T)dt. 

TV 

Since at time t 0 + 'IT the solution starts at the value x = 2, c0 satisfies the 

initial value 
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(2.9b) cOco) = 2/3 - a. 

The solution will leave the region A at a time tm = t 0 + 2mn as it ap­

proaches the line x = 1, which occurs when c0 reaches the value -2/3+a. From 

(2.9) it follows that in the slow time scale this will be for 

-2/3+a 27f 

(2.10) T(a) = 27f I { I 
2/3-a 0 

Finally, the third equation reads 

(2.11) 

2 2 
cl x 0 cl x 1 

2 -'-- + -- + 
ata, at2 

so according to (2.6) we have 

-
3x0 ax 1. 

t t 
oG0 = _ 2 

f { f 
2 

.(2.11) (xo-1) x2 = --- - -- + - dt-G }dt - X1XO oT clt OT 1 
to+1r to+1r 

with 

(2 .12) 

2 
The term 3G0/3T satisfies the averaging condition and behaves as a+b/(x0-1), 

therefore its integral is not secular. The averaging condition 

(2.13) 

TV+27f I G1 (t,T)dt = 0, 

TV 

yields a linear differential equation for c1 : 

(2.14) 

TV+27f 
ac1 + S:_ f 
OT 21r 

TV 

1 --at 
2 

X -1 
0 

TV+27f 
-8 =-
27f I 

TV 

s;nt dt. 
X -1 

0 



Let c 1 (0) = c 10 , then we have 

T TV+2'1r 

= exp{;; f 
0 

f 
TV 

1 -- 2- dtdT} 
X -1 

0 

T T TV+2'1r 

- JL J exp{-1 J J 2'11" 2'11" 
0 0 TV 

1 -- 2- dtdT} 
X -1 

0 

and so 

(2.15a) c 1 (T (a)) = q (a){c10 - Sp (a)}, 

TV+2'1r 

J 
TV 

sint dtdT] 
2 

X -1 
0 

T Ca) T 

exp{211r J 
0 

TV+2'1r TV+21r 

(2.15b) p (a) 
1 =-

2'11" J 
0 

T(a) TV+21r 

(2. 15c) q (a) = exp{;; f f 
0 TV 

I + dtdT} f 
- xo-1 TV TV 

1 - 2- dtdT}. 
x -1 

0 

s;nt dtdT, 
X -1 

0 

Ast approaches the value t 0 ·+ T(a)v each time fort= t = t 0 + 2nm the 
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-1/2 m 
solution gets closer to the Line x = 1. In av -neighbourhood of (x,t) = 

(1,tm) x0 would behave as 

(2. 16a) 

and x 1 as 

(2. 16b) 
-a(t-t) 

m 
X = 

1 4v2 
T = T(a). 

-1 Clearly, the asymptotic expansion is not valid anymore, as v x 1 increases 

in order of magnitude. Just before the solution enters such regions we have 

that asymptotically 

1 ~ -1/2 -1 1/2 r:. v Ri -- v2a(t-t )v - C' (T) (t -t -1r-Tv) (t-t ) v /v2a 2 m O m O m ' 

and so 
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(2.17) 

3. ASYMPTOTIC SOLUTION FOR REGION A 
m 

Let us assume for a moment that the solution has passed a v- 112 neigh­

bourhood of a point (x,t) = (1,t 1) and returns to the interval (1,2). Since 
m-

the two variable expansion (2.1) is not valid anymore and the solution again 

approaches the line x = 1 at time t = t, we introduce for the time interval 
m 

t 1 < t < t the expansion m- m 

(3 .1) 
-1 

x(t;v) = xm0 (t) + v xm(t) + •••• 

Similar to (2.1) we obtain a recurrent system of differential equations for 

x. (t), i = 1,2, •••• The first two equations read 
mi 

(3.2a) 
2 dxmO 

(xm0-1) ~=a cost, 

(3. 2b) 

2 
d xmO 

= - - xmO + 8 cost. 
dt2 

Integration yields 

( 3. 3a) 

(3. 3b) 

= a cint + C {m) 
0 

dxmO =----dt 

t 

I 
tm-1 

Since fort= tm x approaches the value 1, we have C~m) = 

(3. 4) 
1 3 3 

= 2 cos{3 arccos(2 a sint + 2 a - 1)}. 

Ast approaches t from below {3.1) behaves asymptotically as 
m 

{3. Sa) X ~ 1 - -2
1 v'2ti {t-t) + V-lK /{t-t ), 

m m m 

so that 



(3 .Sb) 

(3. Sc) 

t m-1 

(-C(m) +$+I )/ili, 
1 n 

xm0 (t)dt. 

Consequently, also the expansion ( 3. 1) looses its validity as t + t • 
m 

4. ASYMPTOTIC SOLUTION FOR REGION B 
m 
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-1/2 We investigate the local behaviour of the solution in av -neighbour-

hood of (x,t) = (1,t) by introducing the transformations 
m 

(4.1ab) X = 1 + V (~)v-112 , 
m 

Substituting (4.1) into (1.1) and multiplying this equation with v-112 we 

obtain, after taking the limit v + m, 

(4. 2) 

The function vmO(~) expresses the local limit behaviour of the solution for 

v + m. In order to match the-solution of region A it must satisfy 
m 

(4.3) 

see (3.5). The function 

(4. 4) vm0 (~) = -aD~ (-a~)/DK (-a~), 
m m 

satisfies (4.2) as well as (4.3). In (4.4) Dµ(z) denotes the so-called para­

bolic cylinder function of orderµ (see WHITTAKER and WATSON [9, p. 347]) 

with 

(4.5) 
1 2 µ µ(µ-1) 

D (z) = exp(--4 z )z {1 - -'--'"'-"-- + ••• } 
µ 2z2 

for z + m. Assuming that Km~ 0 the function vm0 (~) will be regular for 



8 

finite~, while for~ ➔ 00 

(4.6) 

as 

( 4. 7) 

for z ➔ -oo 

by 

(4.8) 

D (z) 
µ 

exp (-¾ z 2 ) z µ { 1 - µ ( µ-2
1) + ... } 

2z 

h1r 1 2 -µ-1 (µ+1) (µ+2) 
r(-µ) exp(4 z +µ1ri)z {1 + 2z2 + ... } 

On the other hand, at region A 1 , the solution is approximated 
m+ 

as t t t • Thus, the local solution (4. 4) of B matches the local solution of 
m m 

A l if m+ 

( 4. 9) 

Using (3.Sb) we find that 

( 4. 10) c(m+1) = 
1 

C (m) - I • 
1 n 

Let for some m, say m = n, 

(4.11) K l :5: 0 < K :5: I /fia. 
n- n n 

Then the parabolic cylinder function ~(-a~) vanishes for certain value(s) 

of the argument. Let ~ = ~O be the lowest zero. For ~ t ~O we have that 

( 4 .12) 

so vmO becomes singular and the solution rapidly decreases as~ approaches 

~o· 
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5. ASYMPTOTIC SOLUTION FOR REGION C 

At this point the solution enters the boundary layer region C with local 

coordinate 

(5 .1) 

Assuming that. the solution can be expanded as 

(5. 2) X 

we arrive at a recurrent system of equation for the coefficients W.: 
l 

(5. 3a) 

(5. 3b) 

') 
d'-w0 
-2+ 
dn 

2 
d w1 
-2+ 
dn 

According to (4.12), (5.2) matches the solution for region B if for n + - 00 

n 

(5. 4ab) w0 :::::: 1 + 1/n, 

Condition (5.4a) is satisfied by the class of solutions 

(5 .Sa) 

while because of (5.4b) the integrated equation (5.3b) must have the form 

(5. Sb) 
aw 

1 --+ 
dn 

As n ➔ 00 the solution leaves the boundary layer region at exponential rate 

and fort - tn - s0v-l/2 small, but independent of v, (5.2) behaves asympto­

tically as 

(5. 6) X = 
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6. CONDITIONS Jli'OR 21T ( 2n-1) -PERIODIC SOLUTIONS 

As the solutions of period T = 21r(2n-1), we are looking for, are sym­

metric, that is 

(6. 1) x(t) 
1 = -x (t - 2 T), 

we have completed the local approximations. Transposing (5.6) to the comple­
-1/2 

mentary phase and substituting t = t 0 + 1r + ~0v in (2.1), we obtain the 

periodicity condition 

(6. 2) 

= 2 1 2 1 2 2 1 -1 - 3 a (4 a ~O - Kn - 2) v 

or 

(6. 3) 

From (4.9) and (4.10) it follows 0 that 

(6. 4) = S - c(m) + (n-m+l)I . 
1 n 

Comparing (2.17) with (3.5) we see that for n-m-+ 00 , but at the rate such 

that n-m = o(v), there exists a matching relation between c 1 (T) and Cim): 

(6. 5) 

Substituting (6.6) into (6.4), while using (2.15), we obtain 

(6. 7) 
-1 

(21r) I Tv. 
n 



From (6.3) and (6.7) we derive 

(6. 8a) 

(6.8b) 

(6. 8c) 

S = {&(Kn+½) (l+q (a)) - Gn (a) }/S (a), 

G (a) 
n 

s (a) = 1 + q(a) - p(a)q(a). 
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Since K may range from Oto I/&', a periodic solution of period 2TI(2n-1) 
n n 

is possible for 

(6. 9) 

< { (2
1 -12ci'+ I ) (l+q(a)) - G (a) }/S(a). 

n n 

7. CONCLUDING REMARKS 

The formal asymptotic analysis of the Van der Pol relaxation oscillator 

with a periodic forcing term as we presented in this report forms the last 

~art of a series of studies on this problem, see [3, 4 and 5]. In [3] and 

[5] solutions of period 2TI(2n~1) were found under given conditions for S for 

the special cases a= 0 and a= 2/3. If for a= 2/3 we consider the range of 

S given by (6.9) we observe that this special case, studied in [5], is com­

pletely covered by the results of this report. As I (2/3) = 613, T(2/3) = 
n 

p(2/3) = 0 and q(2/3) = 0, the conditions on s213 read 

(7.1) 

For a= 0 we have I (0) = 2TI, T(0) = 3/2 - log 2, p(0) = 0 and q(0) = 1/2, 
n 

so 

(7.2) (3 - 2 log 2)v - 2TI(2n-1) < 3130 < (3 - 2 log 2)v - 2TI(2n-2), 

which for s0 + 00 matches the conditions on this parameter given by inequali­

ties (21) and (22) of [3]. 
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It is our intention to write a final report in which we compare the 

asymptotic conditions on a, /3 and v with numerical results on this problem, 

see FLAHERTY and HOPPENSTEADT [2]. For that purpose some integrals such as 

I (a) and T(a) need to be evaluated by numerical integration or (if possible) 
n 

by an analytical expression. Moreover, we will attempt to relate our formal 

asymptotic results with the outcome of topological-analytical work by 

GUCKENHEIMER [6] and LEVI [7]. 
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