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On the Van der Pol relaxation oscillator with a sinusoidal forcing term
by

J. Grasman

ABSTRACT

Asymptotic approximations of subharmonic solutions of the periodically
forced Van der Pol relaxation oscillator are constructed with singular per-
turbation techniques. These approximations are locally valid and may take
the form of a two variable expansion in one region and a boundary layer type
of solution in a next region. Integration constants are determined by averag-
ing and matching conditions. The congtruction of the approximations brings

about certain restricting conditions on the amplitude of the forcing term.
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1. INTRODUCTION

In this paper we study the Van der Pol equation with a sinusoidal forc-

ing term

2
(1.1) X Ly & x = (ov+B)cost,
22 at

for large values of the parameter v and with 0 < a < 2/3. Using singular

perturbation techniques we construct a formal asymptotic approximation of the
2m(2n-1) -periodic solution with n = O(v). In the process of constructing such
approximation we arrive upon a set of conditions for o, B and v. These condi-

tions are such that for a given o, the parameter B lies on an interval
(1.2) B (a) < B <B (a).
-n n

These intervals overlap, so that for B on the interval (gn(a),§n+1(a)) two
solutions with period T = 27(2n*l) may coexist. In earlier studies [3,4 and
5] asymptotic solutions for the caseé o =0 and o = 2/3 have been constructed.
In our analysis of the present problem we see that in the asymptotic solution
elements of both cases can be distinguished. A periodic solution of (1.1) has
é behaviour that is characteristic for singularly perturbed type of problems.
Locally the solution has a boundary layer type behaviour like one meets in
problems of fluid mechanics. On the other hand the solution also passes a
large time interval, where a two time-scales expansion can be made. Finally,
we distinguish a sequence of points, determined by the intersections with the
lines x = %1, where the local behaviour of the solution is analyzed by a
stretching procedure in both the dependent and independent variable. For a
complete picture of the different regions which are successively passed
through by the solution we refer to Fig. 1.1. Integration constants in local-
ly valid asymptotic solutions are determined by éveraging conditions and by

matching pairs of local solutions of adjacent regions.



Fig. 1.1. Regions with a local asymptotic solution
2. ASYMPTOTIC SOLUTION FOR REGION A

In this region the solution exhibits an oscillatory behaviour of period
2m in the regular time scale and, at the same time, a slow decrease of its
average value. In order to analyze the solution asymptotically we introduce
an additional time variable T = (t-t.-m)/v with t

0 0
der the following two-variable expansion for the solution (see COLE [1]).

= 7/Z(mod) 2w and consi-

(2.1) X = xo(t,r) + v-lxl(t,T) + v—2x2(t,T) + ... .

Substituting (2.1) into (1.1) and equating the terms with equal powers of v
we obtain a recurrent system of differential equations for xi(t,r). The first

equation reads

9x
2 0 _
(2.2) (xo—l) Yol o cost

or



1 3 L
(2.3) 3 xO - %Xy = o sint + CO(T)

having a solution of the form

1 3 . 3
(2.4) Xq = 200s[§-arccos{§-a sint + 5 CO(T)}].

The second equation of the iterative scheme becomes

82x0 2 axo 9% 90X
(2.5) 3t2 + (x0—1)(7;F~+—§EQ + 2x0x1 7;;-+ xO = B cost

or, after integration with respect to t and with the use of (2.3),

2 9% f -
(2.6) (xo—l)x1 =-——§E-— J Go(t,T)dt + B sint + C1(T)
t0+ﬂ
with
(2.7) Go(t,T) = xo(t,r) + BCO/BT.

The integral of G, in the right-hand side of equation (2.6) is secular

0
in the sense that for (t—to—ﬁ) =+ ® this term would increase in order of mag-
nitude so that (2.1) would not hold for a large time interval. This secular-
ity is banished by choosing the constant of integration in t such that on the

average over a 2m-interval G, disappears:

0

TVH2T

(2.8) J Go(t,T)dt =0
™V

or

BCO i TVH2T ) )
(2.9a) T = o J Xo(t,T)dt.

™V

Since at time t0-+ﬂ the solution starts at the value x = 2, C0 satisfies the

initial value



(2.9Db) CO(O) = 2/3 - a.

The solution will leave the region A at a time tm =t +2m as it ap-

0

proaches the line x = 1, which occurs when C. reaches the value -2/3+0. From

0
(2.9) it follows that in the slow time scale this will be for

-2/3+0 27
-1
(2.10) T(a) = 27 J {.f xo(t,co)dt} dco.
2/3-a 0
"Finally, the third equation reads
a"xo ale , ok ox, ox, 0%,
(2.11) 236t oe2 gD ) b 2xgxy )
5 ox
+ (x1-+2x0x2)ja;-+ Xy = o,
so according to (2.6) we have
, x, %, [ f 36, _ o,
(2.11) (xo-l)x2 =37 75;—+ J { J T;F-dt-Gl}dt - XX,
t0+'rr t0+‘ﬂ
with
(2.12) G1 = x, + acl/ar.

The term 3GO/3T satisfies the averaging condition and behaves as a+b/(xé—1),

therefore its integral is not secular. The averaging condition

TVH2T
(2.13) J Gl(t,T)dt =0,
™V
yields a linear differential equation for C1:

TVH2T TVH2T

2C C
1 1 1 _ -B sint
(2.14) Pps + P J 5 dt = o J —5——:dt.
x -1 x -1
TV 0 ™V 0



Let Cl(O) = C, ., then we have

10
T ¥v+2n
C, (1) = exp{=— 1 dtar}
1 2 2
0 Tv 0
T T TV+2T TV+2T
_ B 1 - sint p
[Clo 5o J exp{21r f f 2, dtdr} 2, dtdr]
0 0 v o ™v %o

and so

(2.15a) Cl(T(a)) = q(a){Clo-Bp(a)},

T (o) T TVH2T TVH2T
_ 1 1 1 sint

(2.15Db) pla) = o J exp{zﬂ J J x2_1 dtdr} J x2_1 dtdr,

0 0 TV 0 T™v 0

T(a) Tv+2m

(2.15c) gla) = exp{:l J 1 atar).

2m .2

x -1
0 TV 0

As t approaches the value t. + T(a)v each time for t = t = t_. + 2mm the

0 0
solution gets closer to the line x = 1. In a v—l/z-neighbourhood of (x,t) =

(1,t ) x. would behave as
m 0
_ -1/2 . _ 1 _ 2 -1 ' e 1/2
(2.16a) Xy = 1+v v(t;v), v = {2 a(t t ) +cO(T)(tm ty Tv) }

and x, as

-—a(t-t ) B+c1(T)

(2.16Db) X = 5 - T T="T(a).
4v

. . . . -1 .
Clearly, the asymptotic expansion is not valid anymore, as v x1 increases

in order of magnitude. Just before the solution enters such regions we have
that asymptotically

v - VE e v P o e (T (e~ Ty et ) T 2/033,
m 0 m m

0

and so



x~ 1+ v-1/2[_% ‘/2—&'(1:—tm)\)-1/2 +
(2.17)
1 . I o\ -1.1/2 :
*‘2 /EEH—B-cl(T) CO(T)(tm ty~T Tv) }(t t) Y /VEEJ.

3. ASYMPTOTIC SOLUTION FOR REGION Am

-1/2 neigh-

Let us assume for a moment that the solution has passed a v
bourhood of a point (x,t) = (1'tm-1) and returns to the interval (1,2). Since
the two variable expansion (2.1) is not valid anymore and the solution again
approaches the line x = 1 at time t = tm' we introduce for the time interval

t <t < tm the expansion

m-1

(3.1) x(t;v) = x _(t) + v—lx (£) + ... .
mO m

Similar to (2.1) we obtain a recurrent system of differential equations for

x ,(t), 1=1,2,... . The first two equations read

mi
dx

2 mO _

(3.2a) (xmo—l) Fra o cosF,
dx dx d2x
2 ml mO mO0
- = - - + .
(3.2b) (xmo 1) at + XmO 3t Xy 5 xmO B cost
dat
Integration yields
1.3 = o (m)
(3.3a) 3 xmo xmO = o cint + CO
t
dx

2 _ m0 =y 4T . (m)

(3.3b) (xmo—l)xm1 T f xmo(t)dt + B sint + C1 .
t
m-1 (m) 5
Since for t = tm x approaches the value 1, we have CO =a-3, so that
(3.4) x (t) = 2 cos{l-arccoscé o sint + é—a - 1},
: mO 3 2 2

As t approaches tm from below (3.1) behaves asymptotically as

1 -1
(3.5a) xx 1 - 5-/5& (t=t ) + v K/ (t=t ),



__1 _~(m)
(3.5Db) K =-5+ (¢, +B+ In)/¢553
th
(3.5¢) I = J x (t)dat.
n m0
t
m-1

Consequently, also the expansion (3.1) looses its validity as t1~tm.

4. ASYMPTOTIC SOLUTION FOR REGION Bm

e investigate the local behaviour of the solution in a v—l/z—neighbour-
hood of (x,t) = (1,tm) by introducing the transformations
(4.1ab) £ =t +&v /2 x=14+v (5)v /2,
m m
. . . . . . . . -1/2
Substituting (4.1) into (1.1) and multiplying this equation with v we

obtain, after taking the limit v = ,

dzv;nO dvmO
(4.2) + 2 v = af.
d£2 mO dg&

The function vmo(g) expresses the local limit behaviour of the solution for

v > o, In order to match the solution of region Am it must satisfy
1

(4.3) Vo8 =-% &V2a + K /E, £ > -,

see (3.5). The function

- e 1 -— — =4
(4.4) v () = aDKm( aa)/DKm( atg), a = /20,

satisfies (4.2) as well as (4.3). In (4.4) Du(z) denotes the so-called para-
bolic cylinder function of order u (see WHITTAKER and WATSON [9, p. 347])
with

u(u-1)

222

(4.5) Du(z) = exp(—%—z2)zu{1 - + ...}

for z » «. Assuming that Km > 0 the function Vmo(E) will be regular for



finite &, while for § »> «

1
(4.6) v o(8) &5 EV20 - (K +1)/E,
as
ol g2y My - BE=D)
(4.7) Du(z) = exp ( 72 Yz {1 222 + ...}
V2m

(u+1)gHQ) + ...}

2z

1 2 .y _—u-1
=) exp(4 z"+umi) z {1 +
for z - -». On the other hand, at region Am+1' the solution is approximated

by

(m+1)

1 1
(4.8) x(t) = 1 + 3 @E(t_tm) + 5+ (C

—B)//ﬁ}/(t—tm)

as t1~tm. Thus, the local solution (4.4) of Bm matches the local solution of

Am+1 if

(4.9) k_++= @-c™) /.

ﬁsing (3.5b) we find that

c(m+1) _ C(m)

(4.10) 1 1 - I

Let for some m, say m = n,

(4.11) K

IA
o

<K <1I /Y/2o.
n n

n-1
Then the parabolic cylinder function DKn(—aE) vanishes for certain value (s)
of the argument. Let & = Eo be the lowest zero. For E-fgo we have that

-1 1 2.2

2.1
(4.12) v (B) m (E=E() T + 3 a”(7 a’g

1
3 -k -3) (E-E,),

SO V g becomes singular and the solution rapidly decreases as & approaches

&



5. ASYMPTOTIC SOLUTION FOR REGION C

At this point the solution enters the boundary layer region C with local

coordinate

1/2)v.

(5.1) n = (t-t -g,v
Assuming that the solution can be expanded as

-1 -2
(5.2) X = Wo(n) + v Wl(n) + v W2(n) + ...,

we arrive at a recurrent system of equation for the coefficients Wi:

2
(5.3a) E“Y9-+ (W2—1)-(§Yg =0,
dn2 0 dn
d2W1 5 dw1 dWO
(5.3b) ;;5—- + (wo—l) —aT+ 2W0W1 Fn - O0,... .

According to (4.12), (5.2) matches the solution for region Bn if for n »> -«

' 2
(5.4ab) W. =~ 1+ 1/n, WwonLatdk azgg

1
(0 4 -Kn__Z—)n'

Condition (5.4a) is satisfied by the class of solutions

W +2
1 1 0
+ = log =-n+ H_,
1 WO 3 1 W0 0

(5.5a)

while because of (5.4b) the integrated equation (5.3b) must have the form

aw
1 2 _ 21 2.2 1,
(5.5b) G * W-hwy = a%(g a%E -K -3

As n > « the solution leaves the boundary layer region at exponential rate

and for t - tn - gov—l/z small, but independent of v, (5.2) behaves asympto-
tically as

_ 1 21 2.2 _1 -1 _ -1/2
(5.6) x=-2+3za (4 a go K 2)\) + O(exp{ 3(t-—tn gov yvh .
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6. CONDITIONS FOR 27 (2n-1) -PERIODIC SOLUTIONS

As the solutions of period T = 27 (2n-1), we are looking for, are sym-

metric, that is

6.1) x(t) = —x(t—% T,

we have completed the local approximations. Transposing (5.6) to the comple-

1/2

mentary phase and substituting t = t -+ﬂ-+£ov_ in (2.1), we obtain the

0
periodicity condition

-1/2 -3/2 -1 -1/2 -3/2
(6.2) xo(to+ﬂ+gov ,Eov ) + v x1(t0+ﬂ+gov ,gov )
_ 1 21 2.2 _1 -1
= 2 3 a (4 a EO Kn 2)v
or
1
(6.3) Kn + 5= (B+C10)/V2a.

From (4.9) and (4.10) it follows that

(m)
- C1

‘ 1, _
(6.4) /Ta(xn+5) =B + (w1 T .

Comparing (2.17) with (3.5) we see that for n-m + «, but at the rate such

that n-m = o(v), there exists a matching relation between C1(T) and Cim):

c (m)

(6.5) 1

- I = C1(T) + c(') (M (tm-tO—Tr—Tv)

or, as In = —2nC6(T),

(m)
<

(6.6) =c,(M - (m-%)xn + (2n)"1anv.

Substituting (6.6) into (6.4), while using (2.15), we obtain

1

1, 1 -
(6.7) /Ta(xn+5) = (1-pq)B - qC,y + (=3I - (21) InT\).
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From (6.3) and (6.7) we derive

(6.8a) B = {/2—a‘(Kn+%) (1+q(a)) - G_(0)}/S(a),
1 -1
(6.8b) G (a) =TI (){(n-=)-(2m) "T(a)v}
n n 2
(6.8¢c) S(a) =1 + gla) - pla)g(a).

Since Kn may range from O to In/V2a, a periodic solution of period 2m(2n-1)

is possible for
(6.9) {5 /2d(1+q(@) - 6_(2)}/S(@) < B <
1
< {ca /EEH-IH)(1+q(a))-Gn(u)}/S(a).
7. CONCLUDING REMARKS

The formal asymptotic analysis of the Van der Pol relaxation oscillator
with a periodic forcing term as we presented in this report forms the last
part of a series of studies on this problem, see [3, 4 and 5]. In [3] and
[5] solutions of period 2m(2n-1) were found under given conditions for B for
the special cases o = 0 and o = 2/3. If for a = 2/3 we consider the range of
B given by (6.9) we observe that this special case, studied in [5], is com-
pletely covered by the results of this report. As In(2/3) = 6v3, T(2/3) =
p(2/3) = 0 and g(2/3)

0, the conditions on 80/3 read

11 47
(7.1) 3/3(T§—n) < B < 3/3(—1§-n).

2/3

For a = 0 we have In(O) =27, T(0) = 3/2 - log 2, p(0) = 0 and g(0) = 1/2,

SO
(7.2) (3-21log2)v - 2m(2n-1) < 380 < (3 -2log2)v - 2m(2n-2),

which for BO -+ o matches the conditions on this parameter given by inequali-

ties (21) and (22) of [3].
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It is our intention to write a final report in which we compare the

~asymptotic conditions on o, B and v with numerical results on this problem,

see FLAHERTY and HOPPENSTEADT [2]. For that purpose some integrals such as

In(a) and T(a) need to be evaluated by numerical integration or (if possible)

by an analytical expression. Moreover, we will attempt to relate our formal

asymptotic results with the outcome of topological-analytical work by

GUCKENHEIMER [6] and LEVI [7].
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