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Heteroclinic waves of the Fitz-Hugh-Nagumo equations*) 

by 

J.P. Pauwelussen 

ABSTRACT 

In this paper we study the existence and analyze the stability of 

heteroclinic wave solutions of a piecewise linear version of the Fitz­

Hugh-Nagurno system of reaction-diffusion equations .. 

KEY WORDS & PHRASES: FitzHugh-Nagumo equations, heteroclinic waves, 

stability 
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1. INTRODUCTION 

In the mathematical theory of nerve impulse propagation, the system of 

reaction diffusion equations 

(1.1) 

au a2u - = -- + f(u) - w, 
at ax2 

aw 
at= au - yw, XE :JR, t > 0, 

referred to as the FitzHugh-Nagumo equations has attracted a great deal of 

attention. Here a and y a~e positive parameters and f is usually chosen to 

be the cubic f(u) = u(l-u) (u-a) with a E (0,~). 

The equations (1.1) were first suggested by FitzHugh [14] and Nagumo 

et.al. [17], for y = 0, as a simplification of the Hodgkin-Huxley equations 

[15]. These authors were interested in homoclinic travelling wave solutions 

of (1.1), i.e. bounded solutions of the form (u(x,t) ,w(x,t)) = 
(U(x+ct,W(x+ct)) for some c E lR with (U(z) ,W(z)) ➔ (0,0) as z ➔ ± 00 

If 

(1. 2) 
2 

.2.. > (1-a) 
y 4 

then the point (0,0) in the (u,w)-plane is the only equilibrium state. 

In this case travelling wave solutions are of a very special kind. They 

consist of one or more repeated so-called p~lses of which one specific 

example is shown in fig. 1.1 and which are all very much alike. 

u 

fig. 1. 1: A single pulse. 
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In fact the results of Feroe [11],[12] and Evans, Fenichel, Feroe [9] 

indicate that a wide class of such wave trains is possible such as homo­

clinic waves which consist of exactly n of these pulses for any n E :N. 

Moreover a large variety of infinite wave-trains including periodic wave 

solutions, is possible. 

If the restriction (1.2) is dropped, other kinds of wave solutions may 
. 2 

arise. For example, if we take o = O, the only bounded solution w of (1.1) 

is w = 0 and the system (1.1) reduces to 

(1. 3) 
au a2u -- + f(u). 
at - ax2 

This equation, which also appears in population genetics [2] has two stable 

equilibrium states u = 0 and u = 1. It is well known that (1.3) has wave 

solutions u(x,t) = U(z), z ·= x+ct+x0 for x0 E lR and a unique speed c such 

that U (- co) = 0 and U ( + co) = 1. These waves are stable in an appropriate 

sense, see Fife & Mcleod [13]. Moreover c is positive and except for the 

freedom of translation, U is unique and strictly increasing, see [13] and 

Aronson & Weinberger [2]. In view of this result it is reasonable to 

expect for small o > 0 the existence of such heteroclinic waves connecting 

both the two stable equilibrium states present in this case. Indeed, by a 

singular perturbation approacn, Carpenter [3] proved this to be the case 

if both o and y are small parameters and of the same order. 

In their paper "Bistable transmission lines" [18], Nagumo et.al.· 

introduced an interesting electrical analogue of the system (1.1). They 

considered bistable lines which are constructed by cascading many two 

terminal circuits of a specific type through interstage coupling resis­

tance. The occurrence in (1.1) of the nonlin~ar term f(u) is due to the 

presence of tunnel diodes in the basic circuit. Nagumo et.al. distinguished' 

between two types of transmission lines corresponding to equation (1.1) 

and (1.3) respectively, and they investigated the existence of heteroclinic 

waves, numerically as well as experimentally. 

In this paper we shall follow Mckean [16] and replace f by a piece­

wise linear function 
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(1.4) f(u) = F[-u + H(u-a)] 

where His the Heavyside step function. With this choice off we can 

actually calculate the wave solutions of (1.1) explicitly as sums of 

exponentials in x + ct for some c E JR for u < a and for u > a and which 

are matched at the points where u =a.We shall specialize to those wave 

solutions for which u takes on the value a only once. Then we find three 

typical wave forms of which the u-components are shown in fig 1.2. They 

all satisfy boundary conditions of the kind u(- 00 ) = O, u(+ 00) = .;i where u 

will be defined in the next section. The u-component of the wave solution 

of the first type is strictly decreasing and we shall denote this solution 

by wave of type A. For the second type u grows from u = 0 at x = - 00 to 

a maximum value and then decreases towards u = u at x = + 00 • We shall refer 

to this solution as wave of type B. Finally u may oscillate round u = u, 

approaching u at x = 00 and this solution will be denoted by wave of type C. 

HETEROCLINIC NAVE 
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HUHDCLINIC NAY! 

.. 

HETEIIOC'L fNfC NAVE 

fig. 1.2.: Heteroclinic waves of type A,B and c. 



5 

For F = 1, the expression (1.4) for f has been used before by 

Rinzel & Keller [19] who where interested in homoclinic solitary impulse 

solutions and periodic solutions. Their results indicate the existence of 

two single pulse solutions, a fast one and a slow one, and they proved the 

instability of the slow pulse. Feroe [10], exploring a method due to Evans 

[7] demonstrated the stability of the fast pulse in an appropriate sense. 

In this paper we shall derive similar results for the heteroclinic waves. 

In Section 2 we shall study the existence of waves of the types shown in 

fig. 1. 2. Among other things we show that, in general, waves of type A 

have a smaller speed than the waves of type B if they exist, with waves of 

type C having intermediate speed. Also it appears that for small a/y2 , 

all heteroclinic waves are stable in an appropriate sense while if we 

increase a/y2 , unstable waves arise. This is a typical result of Section 

3 where we deal with the question of stability. 

Finally, to avoid confusion, we distinguish between theorems and 

assertions where the latter are based on numerical evidence whereas the 

validity of the former can be proved rigorously by analytical means. 

2. EXISTENCE 

With f given by (1.4) and a/y < (1-a)/a the system (1.1) has two equi­

librium points (u,w) = (0,01 and (u,w) = (u,w) = (yF/(yF+a), aF/(yF+a)), 

see fig. 2. 1. 

w 

w 

...... __,;~,;....----------~----~----u u 

fig. 2.1. 



6 

We shall seek travelling wave solutions (U(z),W(z)), z = x + ct with 

U (- oo) = W (- oo) = 0, 

(2. 1) 

U (+ oo) = y W(+ oo) 
a = u 

and 

(2.2) U(O) = a. 

Then U satisfies the differential equation 

(2. 3) 

u"' u" (c - Y) - u• (F+y) - uo+Fy = 
C C 

-- { 0 - Fy 
C 

U < a, 

U > a. 

By assumption U(z) - a vanishes only at one point, i.e. at z = 0 where as a 

result of the discontinuity off, the following jump conditions must be 

satisfied 

U(O+) - U(0-) = 0, 

(2. 4) U' (0+) U' (0-) = 0, 

U"(0+) - U"(0-) = - F. 

Solutions of equation (2.3) for U < a are linear combinations of ex­

ponentials exp(a.z), i = 1,2,3 where a. is a zero of the polynomial 
1 1 

( 2. 5) P (a) = a 3 - a 2 (c - y) - a(F+y) - ]._(o+Fy). 
C C 

The general solution of (2.3) for U > a is found by subtracting from 
-Uthe general solution of (2.3) for U < a. 

Since a 1a 2a 3 = (o+Fy)/c>0, P(a) has one positive real zero, a 1 say and 

since a 1a 2 + a 1a 3 + a 2a 3 = -(F+y) < 0, two with negative real part. By 

the requirement of boundedness at z = ± 00 , a solution U of (2.1)-(2.3) has 



7 

the following expression 

) a.lz U(z = ae , z < o, 
(2. 6) 

U (z) z > o. 

Substitution of (2.6) into the jump conditions (2.4) yields 

(2. 7) 

leading to 

(2 .8) 

a= A2 + A3 + YF 
o+yp 

+ a.3A3, a.la= a2A2 

2 
a. 1 a - F = 2 2 

a.2A2 + a.3A3, 

F 
[1 + A3 = 

(al -a.3) (a.2-a3) 

F [1 + a = 
(al-a.2) (a.1-a3) 

ala.2y 
], 

o+yF 

a.2a3y 
J. o+yF 

The "zero" a off depends on c through the numbers a.., i = 1,2,3. Using 
l. 

(2.8) 3 it is much easier to calculate a as a function of c than the other 

way around and the result is shown in the figures 2.3a - 2.3f for several 

values of o,y and where F = .25, .5,1,2,4 (from low to high). The dotted 

lines correspond to the waves of type C while the solid lines correspond 

to the A-waves and B-waves in the way depicted in fig. 2.2 below. 

A 
a 

' ,c 

' ....... -. B 

C 

fig. 2.2-
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Thus A-waves are found for smaller wave speeds than c-waves and finally 

B-waves. 

fig 2.3a.: a vs.c for a= 0.02 and y = 0.1. 

,,--... ,., 
I ' 

' ' ' ' ' ' ' ', 

fig 2. 3b.: 

',, 
........ .... ....... ...__ ___ 

-----
2.00 t..llO 

SPEED' C 

a vs.c for a= 0.04 and y = 0.1. 

a.co 
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fig. 2.3c. a vs.c for cr = 0.2 and y = 0.1. 

a: 

I 

SPEED C 

fig 2.3d. a vs.c for cr = 0.5 and y = 1. 
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a: 

! ... 
---... -... .... .... .... .. .. .... .... ----....... ... ... ,, 

.................. ... ......... 
...... ... ... ...... ... ... --..... ... .............. --------..... ................ ... ...... ___ ------ .......... ----------.... .. .. ___ .... ___ _ 

---- ----- -------------------. 
___________ ::::::--------:::::::::::::::::---------------· 

fig. 2.3e. a vs.c for a= 1 and y = 1. 

---------- ---.. _ -.. .... -.. 

---------------.... -.. .. _ 

.... ...... .... .... .... .... .. .. .... 
.... .... .... .... .... .... .... .... 

.. .. .. .. .. .. .. .. .. .. -.. .. .... .. .. .. .. ____ .............. ____ _ 
-.. .... .... .. .. 

.. .. ---... ---...... ..... ._._"'"' 
......... ............ 

.... .... .... 

--········-·--------- .... __ _ --............ .. ........ 
------... -----­ ... ...... _ ...... ....... __ ----.. -.... ----.......... --------.. 

·········-··········--·-···· ····-·-··· ................ . ......... .,. ····"'-••·- ..... , 
................................ ~ .... ::--·-----·-···-·· 

---·------·-···· ... 
fig. 2.3f.: a vs.c for a= 3 and y = 1. 
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As indicated in the figures 2.3 the occurrence of the several types of waves 

depends strongly on the choice of the parameters o,y and F. Let us first 

consider the a vs.c-curves for small c > 0. Substitution of an expansion for 

a. in powers of c in (2.5) leads to 

/p 0 
½c(l .£.) 2 

al = + -+ - + O (c ) , 
y 2 

/2+.£.+ 

y 

(2. 9) ½c (1 .£. ) 2 
a.,) + O(c ), .. y 2 

y 

'1... + oc 2 - 2 +o(c). 
C 

y 

If we insert this result into (2.8) 3 we find 

(2 .10) 
F 

a=---
0 

2 (F + - ) 
y 

we formulate this result in a first Theorem. 

2 
THEOREM 2.1. For small c > 0 the function a(c) increases with c if o > y 

whereas it deicreases if o < y 2 • In addition a(0) = F 0 • 
2 (F + - ) 

y 

This theorem is clearly demonstrated in fig. 2.3d - 2.3f. Moreover these 

pictures indicate the following behaviour of a= a(c). 

2 
ASSERTION 2.:t. If o ~ y, the function a(c) is strictly decreasing for all 

2 * c > 0 whereas for o > y it has a unique maximum at some point c = c > 0. 

For c = 0 U(z) satisfies the equation 

(2.11) U'' + f(U) - .£.u = 0. 
y 

Since a(0) = 
F 

0 
2(F + 

is exactly the value of a for which 

y 
u 

f [ f ( V) - ~ V] dv = 0 , 

0 

there exists an increasing solution of (2.11) which satisfies the boundary 
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condition (2.1) (see [13]). Hence the wave is of type A. This result can be 

extended to the following theorem 

THEOREM 2.2. E'or small positive c any heteroclinic wave is necessarily of 

type A. 

PROOF. The discriminant V of a third order polynomial 

P(x) 
3 = X 

with real coefficients a 0 ,a1 .a2 is defined by 

where 

see Abramowitz & Stegun [1]. If V < 0 then P(x) has three real zeroes whereas 

for positive V two of the zeroes are complex conjugates. For the polynomial 

given in (2.5) we find for small c > 0 that 

V = L [Fy + cr] + 0 ( l ) 
27c4 c 2 • 

Hence a 2 ,a3 E lR. Moreover by substitution of the expressions (2.9) into 

(2.8) it follows that A2 and A3 are of the same sign for c+0. Consequently 

U(z) given by (2.6) cannot have a maximum for z = 0 which proves this Theorem. 

Next we turn to the situation for large c. Then we find for a 1 the 

asymptotic expansion 

(2 .12) a = C + !:_ + 0 (_!,_) 
1 C 2 

C 

and for a 2 and a 3 the estimate 



(2 .13) 0 (_!_) 
2 

C 

where µ_,i = 1,2 is a solution of 
l 

(2 .14) 
2 

µ + (F + y)µ + (o + Fy) = 0. 

Substitution of (2.12) and (2.13) into (2.8) yields that A2 and A3 are of 

different sign for large c and real a 2 and a 3 • As a result we state the 

following Theorem. 

THEOREM 2.3. For large c the heteroclinic waves are of the following type 

(i) B if F ~ y -2 ✓cr or F ~ y +2 ✓o, 

(ii) c if y -2ra < F < y +2ra. 

PROOF. The discriminant V of (2.14) is 

V = (F - y) 2 - 4o 

13 

2 
which yields part (ii). In case that o ~ (F~y) the waves have a maximum for 

z > 0 because of the fact that A2A3 < 0 for large c. Consequently, these 

waves are of type B. 

In fig. 2.3a we had chosen o = 0.02 and y = 0.1 whence for large c the 

waves are of type B if F ~ 0.383. Therefore except for the lowest one the 

curves in the picture are solid lines for large c. In fig. 2.3b the waves are 

of type B if F ~ 0.5 and therefore again the lowest curve will remain a 

dotted line for all c > 0. The critical value for Fin fig. 2.3c is 0.994. 

Finally we note that by substitution of (2.12) and (2.13) into the 

expression (2.8) 3 for a it follows that a(c) ➔ 0 if c ➔ 00 as indicated in 

fig. 2.3a-f. 

This observation together with theorem 2.1 yield the following result. 
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2 
THEOREM 2.4. Leto> y. Then there exists an E > 0 such that for all 

a E (a(0), a(0) + E) there exist two heteroclinic wave solutions to the 

system (1.1) which satisfy (2.1) and (2.2). 

3. STABILITY 

We introduce in ( 1 .• 1) the moving coordinates ( z, t) , z = x + ct. Then 

(1.1) transforms into 

ut = u - cu + f(u) - w, 
zz z 

(3.1) 

wt = -cw + 0U - yw. 
z 

The wave solution (U,W) in a stationary (i.e. time-independent) solution 

of (3.1). The formal linearization of the system (3.1) about (U,W) is given 

by 

( 3. 2) 

u 
zz 

- cu 
z 

+ F[-1 + o(z) ] u - w, 
u' (0) 

-CW + 0U - yw, 
z 

where o is the Dirac delta function and where we have used that o(z) = 

U' (0)o (U(z)-a). 

In a series of papers [4] - [7] Evans shows for smooth f that the 

stability of a homoclinic travelling wave, defined in a certain sense is 

ensured if the linearization (3.2) about this solution of (3.1) has no 

solution of the form 

(3. 3) (u(z,t) ,w(z,t)) 
At 

e (u0 (z) ,w0 (z)) 

with (u0 ,w0 ) bounded and for Re A> 0. 

If a solution (u(z,t) ,w(z,t)) of the form (3.3) exists for Re A> 0 

then the wave solution (U,W) is unstable. A review of these papers can be 

found in [BJ. Exploiting Evans' methods but for f given by (1.4), Feroe 

[10] determined the stability character of the homoclinic waves. The object 
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of this section is to use techniques similar to those of Evans and Feroe 

to study the stability of the heteroclinic solutions. In correspondence 

with Evans' results we say that a wave solution is stable if the system 

(3.2) has no solution of the form (3.3) with Re A> 0 and (u0 ,w0) bounded, 

whereas a wave solution is called unstable if such a solution of (3.2) 

does exist. In the latter case we shall call A an eigenvalue. 

REMARK. Essential for the work of Evans is the value off' near the resting 

points of which there was only one in his case. In the present paper, with 

f given by (1.4) there are two resting points. Because f' has the same 

value at both points, Evans' results are also applicable to these hetero­

clinic waves. 

For the system (3.2) to have a solution of the form (3.3), (u0 ,u0,w0) 

must satisfy the equation 

:(:!) 
0 1 0 uo 

(3. 4) A+F 1 I = C uo 
cr 

0 - A+y 
C C WO 

for z ~ 0, together with the jumpconditions 

uo (0+) = u0 (0-), 

u~(0+) u~(0-) 
F 

(3. 5) = = - - u (0) 
Cl a 0 ' 

1 
w0 co+) = w0 (0-). 

The condition (3.5) 2 is obtained if we integr~te (u0 - cu0)exp(-cz) over 

an interval (- E1 ,E2), Ei > 0, and let Ei + 0 where we use equation (3.4). 

Since the equation (3.4) is homogeneous we might as well put u0 (0) = 1. 

Observe that for A = 0, (3.4) and (3.5) are satisfied by (U' ,U" ,W'). 

Solutions of equation (3.4) are linear combinations of the exponentials 

X. exp(8.z) where 8., i = 1,2,3 are the zeroes of the third order polynomial 
1 1 1 

P(8;A) 
(3 .6) 

3 1 2 2 - B + - (y+A-C )8 -(F+y+2A)8 
C 

1 2 
- -(A +A(F+y)+cr+Fy), 

C 
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and X. is given by 
l. 

(3. 7) X. = 
l. 

(J 

f3. c+A+y 
l. 

It was shown in [5] that for Re A~ 0 P(f3;A) has exactly one zero with 

positive real part to be denoted by s1 , and two with negative real part. 

The remaining part of this section will have the following structure. 

First we search for a solution of (3.4) which is bounded on (- 00 ,0). Then 

we extend this solution over the point z = 0 and investigate for what A it 

remains bounded in (0, 00). Thus we search for solutions of which the u0-

component is of the following type 

z < 0 

(3 .8) 

and we look for zeroes of B1 =.B1 {A). Substitution of (u0 ,u0,w0 ) into the 

jump conditions (3.5) leads after a great deal of calculations to 

(3. 9) 

In [7] Evans introduces a function D(A) which in our terminology is given 

by 

(3.10) D (A) 

and which satisfies the following properties: 

o1 • D(A) is analytic for Re A~ O. 



D3. ReD (A) + 00 as I 11.I + co, Re A ;;,: o. 

D4. D (°X) = D(A). 

Since A= 0 is an eigenvalue we have D(0) = o. 
From the equation 

P(B;11.) = 0, 

the following expansions for B1 ,B 2 and B3 follow 

2 

Bl = fi + ½c - F + \c 0 ( 1) , . + 
21T 

(3.11) B2 - Ii+ ~c + 
F + ¼c2 

+ 0(1), = 
21-:;:-

B = 
A .r. + ocl11.l- 1>, cl11.I + 00 , Re A 0) ;;,: 

3 C C 

where we choose jarg 11.I < w. Substitution of (3.11) into (3.9) and (3.10) 

yields 

(3 .12) D (11.) 

from which n3 immediately follows. In addition we find 

= 0(1), (Re A ;;:: 0) • 

We introduce a new function E(A) by 

(3.13) E(A) = 

17 

and we shall search for its zeroes in the open right half plane Re A> 0. 

This function is analytic for Re A;;:: 0, the zeroes of E(A) and D(A) coincide 
- --for AF 0, we have E(A) = E(A) and it follows by o5 that Re E(A) + 00 as 

111.I + 00 , Re 11.;;,: o. 
We plotted the curve {E (iµ)I µ ~€ lR} for several values of F ,c,cr and y. 
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Three examples are shown in fig. 3.1a - fig. 3.1c. It appears that in 

general these curves do not intersect the origin (and thus A= 0 is a zero 

of D(A) with multiplicity one). The number of zeroes of D(A) with Re A> 0 

is now given by the winding number around the origin of the image under E 

of the imaginary axis. The curves in fig. 3.1a and fig. 3.1b wind once 

which reflects the existence of an unstable mode. 

I ,10 I ,IO 1,10 1,40 

fig. 3.1a: Plot of E(iµ), µ E lR for F = 1, a= 3, y = 1 and 

C = 0.125. 
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,i 
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-4.00 -s.u ---1.eo 

19 

.oo 
RE E 

fig. 3.1b: Plot of E(iµ), µ E JR for F = 1, er = 0.2, y = 0.1 and 

C = 0.1. 

g 
,i 

1.10 1.,0 1.,0 ,.oo 
RE E 

s.so ,.,a ,.10 

fig. 3.1c: Plot of E(iµ), µ E JR for F = 1, er= 0.5, y = 1 and 

C = 0.1. 
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The curve in fig. 3.lc does not wind which indicates that D(A) has no 

zeroes with positive real part and thus, that the wave is stable. 

Observe in fig. 2.3f that the parameter values in case of fig. 3.la 

are such that the function a= a(c) is increasing at this value of c while 

in case of fig. 3.lc the function a= a(c) is decreasing at the value of 

c (see fig. 2.3d). This result is not coincidental. As with the homoclinic 

waves [19], the numerical results indicate that the slope of a= a(c) is 

crucial in the determination of stability of the heteroclinic waves and they 

make the following conjecture plausible. 

ASSERTION 3.1. Let c 0 ~ 0. 

(i) If the function a(c) is decreasing at c = c 0 then the corresponding 

heteroclinic wave is stable. 

(ii) If the function a(c) is increasing at c 

wave is unstable. 

c 0 then the corresponding 

* REMARK. If we let c grow towards the value c = c where the slope of a(c) 

is horizontal (the knee of the curve as Rinzel and Keller call it) the 

zero of D(A) with positive real part and A= 0 coincide. The heteroclinic 

wave is then called neutrally stable. 

2 
COROLLARY. If o ~ y then all heteroclinic wave solutions with positive 

speed are stab}e. If a> y2 then there exists a number c* > 0 such that 

* * a heteroclinic wave is stable if c > c and it is unstable of O < c < c. 

DEMONSTRATION. From Assertion 2.1 and Assertion 3.1. 
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