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Dips and slidings of the forced Van der Pol relaxation oscillator 

by 

J. Grasman 

ABSTRACT 

Local approximations of solutions of the periodically forced VanderPol 

relaxation oscillator are constructed with singular perturbation techniques. 

In this report we deal exclusively with specific solutions that for some 

period of time follow the unstable branch of an equation being a local ap­

proximation of the oscillator. This report is meant as a supplement to Re­

port TW 207. 

KEY WORDS & PHRASES: Van der Poi equation, reZaxation osaiZZation, singuZar 

perturbations 





1. INTRODUCTION 

In this paper we consider the Van der Pol equation with a sinusoidal 

forcing term 

') 

(1. 1) 
d'-x 2 dx 
-- + v (x -1)- + x = (av+S)cost 
dt2 dt 

for large values of the parameter v and with O <a.< 2/3. In a preceding 

report [1] we constructed asymptotic approximations of subharmonic solutions 

with period T = 21r(2n-l). In order to deal with other type of solutions, as 

described by LE~TI [2] for a modified Van der Pol oscillator, we first have 

to investigate a specific behaviour of the solution that may occur around 

the line x = 1. Usually when the solution passes the line in a downward di­

rection, it crosses swiftly the unstable region lxl < 1. However, it is ob­

served in el,~ctronic experiments [3] and also analyzed rigorously for the 

modified Van der Pol oscillator [2] that the solution, instead of crossing 

the unstable region, may just dip and return to the region x > 1. Another 

possibility is that the solution continues in a slow motion for some time 

in the unstable region but then abruptly makes a sliding and approaches 

quickly the 1i1alue x = -2. In this report we analyze these two cases as well 

as a critical case in which the solution stays over a full period of the 

forcing term within the unstable region. 

In Figure l we show the characteristic regions of the x,t-plane where 

the solution may exhibit various types of behaviour. In the following sec­

tions we will analyze the local behaviour asymptotically. 

2. ASYMPTOTIC SOLUTIONS FOR REGION A 
n 

The solution passes the region A in the time interval (t 1,t) and n n- n 
is expanded as 

( 2. 1) X (t;v) 
n 

+ • • • • 

Substituting (2.1) into (1.1) and equating equal powers of v we obtain a re­

current syst1:mi of differential equations for xnk (t): 
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Fig. 1. Characteristic regions 

2 dxnO 
(xnO - 1 )~ = ClCOS t 

2 

~ region C 

\ 
I B 
1 , n+l ,; 
I, 

r'/ 

IL ~ I, 

(2.2b) 
2 dxnl dxnO 

(xnO- l )~ + 2xn0 ~ xnl 
d xnO 

= - dt 2 - xnO + 8cost,... • 

Integration yields 

(2. 3a) 

(2.3b) 

= "'sint + c(n) 
u. 0 ' 

t 

I 
t n-1 

Since for t + tn- l and t t tn the solution approaches the line x = 1, we have 

(2.4) 



Consequently, the solution of (2.3a) above the line x = 1 reads 

(2.5) xn0(t) = 2cos{½ arccos(; asint +; a-1)}. 

As t + t (2.1) behaves asymptotically as n 

(2. 6a) 

(2.6b) 

(2.6c) 

1 r:::- -1 
X ~ 1 - -2 t2a(t-t) + V K /(t-t ), n n n 

Kn = -½ + (-C~n) +S+I) //Za, 

t n 

I = f xn0(t)dt. 

tn-1 

3 

In the preceding report [1] we analyzed the case K IO and independent n 
of v. Now we assume that 

(2.7) K (v) = k exp(-av) n 

with lkl having an upperbound independent of v. This choice of K will lead n 
to a local behaviour which in our terminology we denote by dipping and slid-

ing of the solution. If for a moment we take k = O, the expansion (2.1) re­

mains regular and at the point t = t the solution will smoothly switch to 
n 

a different expansion with a leading term 

(2.8) xn+l,O(t) = 2cos[½(arccos{t asint + ~ a-1}+41r)] 

being the second branch of (2.3a) with can) given by (2.4). This solution 

will hold asymptotically for some region Z +lover some time interval (tn,t*) 
* . * n 

with tn st s tn+l' where t depends on the value of a in (2.7). 

We will deal with a regular asymptotic solution x(t;v) of the form 

(2.1), which has two distinct representations: (2.2) - (2.5) with C~n) such 

that K = 0 fort< t and fort> t a representation given by (2.8) and n n n 
an equation for ~+l,l(t) of the type (2.3b) with 

(2.9) c(n+l) = S - .!. ffa 
-1 2 
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We will account for the fact that k # 0 in (2.7) by considering this as a 

perturbation of the regular asumptotic solution x(t;v) starting from a neigh­

bourhood oft= t • 
n 

3. ASYMPTOTIC SOLUTION FOR REGION B n 

The local behaviour of the solution in a neighbourhood of (x,t) = 

(1,t) is analyzed by introduction of the local variables (v,t): 
n 

(3. I a) 

(3. lb) 

t t -1/2 = + tv n 

x = i(t +Ev- 112 ;v) + v(t)8(v), 
n 

-1/2 with 8(v) = v exp(-av) and with x being the regular expansion valid in a 

0(1)-neighbourhood oft= t as described in the foregoing section. Substi­
n 

tution in (I.I) yields the following equation for v(t) after equating terms 

of order 0(6(v)v): 

(3. 2) 
2 

~l v2 - tlza ddv - ffa v = 0. 
dt t 

Furthermore, from (2.6a) it follows that v must satisfy 

(3. 3) v(t) ~ k/t fort ➔ -oo 

The function 

(3.4) 

meets these requirements. In (3.4) D (z) denotes the so-called parabolic 
µ 

cylinder function of orderµ (see WHITTAKER and WATSON [4, p.347]) with 

(3.5) 
I 2 µ 1 -2 

Dµ(z) = exp(-4 z )z {1- 2µ(µ-l)z + ••• } 

for z ➔ 00 • On the other hand, as for z + -oo 
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(3.6) 1 2 µ 1 -2 
Dµ(z) = exp(- 4 z )z O -zii(µ-l)z + ••• } 

r.::-t -1 1 2 -µ-1 1 -2 -t'L,rf(-µ) exp(4z +µ,ri)z {l+z(µ+l)(µ+2)z + ••• }, 

we find that for~ ➔ m 

(3.7) 

From this asymptotic behaviour we may conclude that fork# 0 the perturba­

tion will grow rapidly. 

4. ASYMPTOTIC SOLUTION FOR REGION Z l n+ 

As we pointed out in Section 2 we assume that the solution consists of 

two parts the regular part x and a perturbation due to the fact that k ~ O, 

so 

(4. 1) X = x(t;v) + V(t,v). 

Substitution in (I.I) yields for the leading part v0 of V(t;v) 

d2V 
dt20 + v ddt {(~+l;O(t)-l)VO} = O. (4. 2) 

Integration gives 

(4.3) 
dVO 2 ,S -1 /2 
dt + v{~+l,O(t)-l}V0 = -2kv'°I v o(v), 

where the right-hand side follows from matching conditions between v0(t) and 

v(~) given by (3.4) and (3.7). From the conditions we also derive the value 

of the integration constant in the solution 

(4 .4) 

Iii" 1/2 v0(t) = exp{-vA(t) }[C - 2kv2 v o 

t 

A(t) = J 
t n 

2 - -
{~+l ,O(t)-1 }dt. 

-t=t 

_f 
t=t n 

exp{vA(t)}dt], 
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It is easily verified that we must have 

(4·.5) 

Let the constant a of (2.7) be such that for some t 

(4.6) * -A(t ) = a, * t < t < t 1· n n+ 

* = t 

* Then, as t approaches t, the asymptotic solution (4.1) looses its validity 

and the solution enters the boundary layer region C. 

5. ASYMPTOTIC SOLUTION FOR REGION C 

We introduce the local coordinate 

(5. 1) * n = (t-t )v 

and assume that the solution can be expanded locally as 

(5. 2) 

Applied to equation (1.1) thts yields the recurrent system 

(5. 3a) 

(5.3b) 

d2W 2 dW0 
__ O + (W -1)- = 0, 
dn2 o dn 

* a;cost , ••• 

From (4.1) it follows that for~+ --cc,, 

ditions 

W. have to satisfy the matching con-
1 

(5.4a) * r--r:;. * 2 w0 ~ ~ - kvna;/2 exp{-((~) -l)n}, 

(5.4b) 
* 1 wt ::::: a;cost + -----,,,--

(x *>2-1 (x*/-1 
.::0 0 

* t 

f ~+l,O(t)dt 
t n 

. * + 8s1nt + 

c<n+l)} 
-1 , 
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* * where~= ~+l,O(t) given by (2.8). Using (5.4a) we obtain, integrating 

(5.3a) once, 

(5.5) 

* -* where y0 < -1 and x0 > 1 are the two other roots of the algebraic equation 

(5 .6) l W3 = .!.cx*)3 * 3 0 - WO 3 .::0 - ~, 

Carrying out the integration of (5.5), while using (5.4a), we obtain 

(5. 7) 

Using (5.4b) we may replace (5.3b) by 

(5 .8) 
dW1 
--+ 
dn 

Consequently, fork> 0 and n + m the 

(5. 9a) 

(5. 9b) 

* t 

f * C(n+I) !n+t,O(t)dt + Ssint + _ 1 • 

t 
n 

coefficients of (5.2) behave as 

* t 

f !n+t,O(t)dt 
t n 

. * + Ssint + 

C(n+I)} 
+ -1 • 

In this way the system arrives at a region A, as described in report [I], 

where a two-variable expansion for the solution can be made. The asymptotic 

behaviour (5.9) is such that the present boundary layer solution for region 

C matches this two variable expansion. 

Fork< 0 and n + m the coefficients of (5.2) behave as (5.9) with y~ 
-* replaced by x0 • 
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Fig. 2. Two trajectories for a= 1/3, 8 = O, v = 15: 

x(n/2) = 1.8711914, x'(n/2) = -0.0521795 (dipping) 

x(n/2) = 1.8711901, x'(n/2) = -0.0521795 (sliding) 

6. ASYMPTOTIC SOLUTION FOR REGION An+l 

ing 

The asymptotic expansion for this region takes the form (2.1) with lead­

term xn+l,O(t) identical to (2.5) and with a second term satisfying 

dx t 

(6. 1) J xn+l,O(t)dt + 8sint + C~n+l). = -
n+l,O 
dt 

* t 

Consequently, this asymptotic solution matches the solution of region C, if 



(6. 2) c/n+l) = C (n+l) 
1 -1 

* t 

I in+l ,O(t)dt. 

t 
n 

Using (2.9), (6.1) and (6.2) we deduce that for t t t 1 the expansion for n+ 
region (6.1) behaves as 

(6. 3) 

with 

(6.4) K 1 n+ 

* t 

= { f ;+1,o<t)dt + 
t 
n 

t n+l 

I 
t* 

x 1 0 (t)dt}//2a. 
n+' 

Clearly, the solution now enters the region B 1 in a regular way as K n+ n+l 
is positive and bounded away from zero. This case is analyzed in [1, Sec-

9 

tions 4 and 5]: Starting from B 1 the solution crosses the unstable inter-n+ 
val -I < x < 1 and will arrive at the point x = -2, where it takes up with 

the two-variable asymptotic solution of region A described in [1, Section 

2]. 

7. THE CRITICAL CASE 

Let us now consider the case 

(7 .1) K (v)exp{-vA(t 1)} ➔ 0 n n+ as v ➔ 00 • 

Then the solution follows the branch (2.8) within the region Zn+l until it 

arrives in a. neighbourhood of the point (x,t) = (1,tn+I), where 

(7. 2a) :x. ~ . ~ 

(7. 2b) H = 

1 (l+H//2a)v-l 
+ - IZa(t-t ) - ----..,........-....a...,--

2 n+l (t-t 1) 

tn+l 

I 
t 
n 

n+ 

x 1 0 (t)dt. 
-n+ ' 
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For a region Bn+l of order O(v- 112) in a neighbourhood of (x,t) = (1,tn+l) 

we introduce local variables v and~: 

(7. 3ab) -1/2 x = 1 + v(~)v , -1/2 
t = tn+l + ~v • 

Substituting (7.3ab) into (1.1) and multiplying this equation with v-112 we 

obtain, after taking the limit v ~ m: 

(7 .4) 

On the other hand, because of (7.2), we have the matching condition 

(7. 5) 1 r:::- r:::- -1 v0 (~) z 2 ~v2a - (l+H/v2a)~ • 

A solution of (7.4) satisfying (7.5) exists and has the form 

(7.6) a= 4/za and b = H/a2• 

Since bis positive the parabolic cylinder function Db(a~) will have at 

least one zero. Let~= ~O be the point where the smallest zero arises, then 

as ~ + ~O the local solution behaves as 

(7. 7) 

From this result we conclude that the solution leaves the region Bn+l 
in a way identical to the regular case as described in [ 1, Section 4]. Thus, 

we have completed our analysis of the critical case, as the solution passes 

a well-known boundary layer region on its path to the value x = -2 in exact-

ly the same way as in [1]. 

8. THE TRANSITIONAL CASE 

Finally, we consider the case where 

(8.1) -1/2 1 -1 1 r::.- 2 r:::- -1 
A(tn+l+~v ) ~-a+ 2v lnv + {~2a ~ -2(1+H/v2a)ln~}v • 
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* This forms the transition from the cases where t < tn+l to the critical 

case. We analyze the local behaviour of the solution near (x,t) = (1,t 1) n+ 
by introducing the local variables 

(8.2ab) -1/2 x = 1 + v(~;v)v , -1/2 
t = tn+l + ~v • 

The following matching condition holds for this local solution 

(8.3) 1 .... 4,----;::; r 2+2b 1 .... 2 -1 v ::::: 2 a~ - k t a / 2 rn ~ exp (-2 a~ ) - (I +b) ~ 

with a and b satisfying (7.6). The limit function v0(~) = limv-+a> v(~,v), 

satisfying equation (7.4) and matching relation (8.3), becomes a transition­

al expression: 

D' (a~)-CD' (-a~) 
.... b . b (8.4) VQ = a . 

Db (a~) +CDb (-a~) 

with 

(8.5) 

This solution is singula.r -for ~ = ~O satisfying 

(8.6) 

Then for ~ + ~O we have 

(8. 7) ( ) -1 1 .... 2(1 .... 2 2 b l)(i:- ) ~-~o +3a 4a~o- -2 ..,-~o-

Consequently the solution arrives in the boundary layer region in a 

similar manner as for the critical case and the regular case with Kn+l posi­

tive and independent of v. 
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