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Prelude to Hopf bifurcation in an epidemic model: analysis of a 

characteristic equation associated with a nonlinear Volterra integral 
. * 

by 

• • 0. Diekmann & R. MontiJn 
• 

ABSTRACT 

We discuss a simple deterministic model for the spread, in a closed 

population, of an infectious disease which confers only temporary i,1,1riunity. 

The model leads to a nonlinear Volterra integral equation of convolution 

type. We are interested in the bifurcation of periodic solutions from a 

constant solution (the endemic state) as a certain para111eter (the population 

size) is varied. Thus we are led to study a characteristic equation. Our 

main result gives a fairly detailed description (in ter1ns of Fourier 

coefficients of the kernel) of the traffic of roots across the imaginary 

axis. As a corollary we obtain the following: if the period of i111111unity 

is longer than the preceding period of incubation and infectivity, then 

the endemic state is unstable for large population sizes and at least one 

periodic solution will originate• 

KEY WORDS & PHRASES: epidemic modeZ, temporary irrorrunity, nonlinear 
voiterra integral equation, characteristic equation, 

Hopf bifurcation 

This report will be submitted for publication else,-vl1ere. 
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1. A SIMPLE DETERMINISTIC EPIDE:t-1IC MODEL 
• 

Consider a population divided into two classes Sand I. The class S 

consists of those individuals who are susceptible to a certain infectious 

disease and the class I of those who experience the consequences of an in­

fection. We distinguish the members of I according to the time elapsed 
' 

since they were infected. In particular, let i(t,l) denote the density= 

at time t, of those men1bers of I which have class-age T. lve assu1,1e that: 

(i) The population is demographically closed and all changes are due to 

the infection mechanism. In other words, 

( 1 • 1 ) S(t) + I(t) = N, 

whe.re N denotes the population size. 

(ii) The interaction of infectives and susceptibles is of ''mass-action'' 

type, with a weighted average over the age-structured class of in­

fectives. More precisely, there exists a nonnegative function A(T), 

describing the infective ''force'' of an individual which was infected 

T units of time ago, such that 
CX) 

( I • 2) i(t,O) = S(t) A(-r) i(t,T) d-r. 

0 

(iii) The infective ''force'' reduces to zero after a finite time: there 

exists a least positive n1111·1ber Tl < 00 such that the support of A is 

contained in [O, T 1]. 

(iv) The d:i:sease confers only temporary i1n1011nity: there exists a number 

-r 2 ~ -r 1 , such 

again exactly 

that every infected individual becomes susceptible 
• 

t 2 units of time after 

On account of (iv) we can rewrite (I.I) as 

T2 

( l • 3) S(t) + i(t,T) dT = N. 

0 

• • its contagion. 
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Noting that i(t,T) = i(t-T,0) and eliminating S(t) from (1.2) and (1.3) we 

obtain 

(I. 4) i(t,O) = (N - i(t-1',0)dt) A(-r)i(t--r,O)d-r, 

0 0 

which upon the transfor111ation of variables 

( 1. 5) 

leads to 

(1.6) 

x(t) 

b(t) = T 2A(r 2t)( 

y = N A(t)d-r, 

0 

I 

0 

-1 
A(-r)d-r) , 

1 

• 

x(t) = y 1 - x(t--r)d-r b(-r)x(t-T)d-r. 

0 0 

We remark that this and similar models have been discussed before in the 

literature. In particular we refer to [l,8,12,13,14,15,16,17,19] and the 

references given there. 

2. A NONLINEAR VOLTERRA INTEG EQUATION 

Let b: JR + lR be a nonnegative and measurable function such that its 

support is contained in [0,1] and 

1 • 

(2. I) 1 • 
• 

0 

The nonlinear autonomous (i.e., translation invariant) Volterra integral 
• equation 

t t 

(2.2) = (1.6) x(t) - y 1 x(-r)d-r· 

t-1 t-1 



• 

admits the constant solutions 

-
(2.3) = 1 

-1 
y • 

If we (formally) linearize the equation about such a constant solution 

and if we, subsequently, substitute the function exp(At), we obtain an 

equation for A which is called the charaeteristic equation. The location 

of the roots of the characteristic equation in the complex plane (as well 
. 
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as the variation of this location with variations in y) yields information 

about the qualitative behaviour of solutions of (2.2) near the constant 

solution. In order to make this statement more precise it is advantageous 

to have a theory which associates with (2.2) a nonlinear semigroup of 

operators on some functions space such that, for instance, the principle 

of linearized stability and the Hopf bifurcation theorem can be derived 

in a standard manner. In [6] a specific semigroup construction has been 

introduced (see [5] for the linear case). A detailed elaboration of some 

qualitative items within that context is in preparation [7]. 

However, we note that other approaches are possible and, in fact, 

have been studied in the literature. In particular the Hopf bifurcation 

theorem has drawn a lot of attention, see [2,3,4,8,9,10,11,20]. As we will 

indicate more clearly later, the present paper forms a good combination 

with Gripenberg [8]. 
- -

The characteristic equations corresponding to x
1 

and x
2 

are, respec 

tively, 

(2.4) y b ( A) 1 , 

(2.5) b(A) + (1-y) 
1-e ---- = I • 

A 

-
Here b denotes the Laplace transforrn of b: 

I 

(2.6) 

0 

If O < y < 1 all roots of (2.4) lie in the left half plane (l.h.p.). Indeed, 

by the nonnegativity of b, all roots satisfy ReA ~~,where~ is the unique 
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real root and if y < 1 

(2.5) has at least one 

(r.l1.p.). If 

then~< O. Similarly, one deduces that for y < 1 

root, viz. a real one, in the right half plane 
- - the real 

root of (2.4) moves into the r.h.p. (and will stay there for ally> 1), 

the real root of (2.5) moves into the l.h.p. and, at least for Y > l but 

y-1 small, all roots of (2.5) lie in the l.h.p .• Consequently, if y passes 
• 

through one bifurcation and exchange of (linearized) stability take place. 

-
I .,f,. X 
I I 

I 
I 
I 
I 
l 
I 
I 
I 

• I S 

• I 
I 
I 
I 

• I 
; 
I 
I 
I 
• • • 

u 

s 

u 

- -The graph of x 1 and x 2 

➔ y 

is endemic. As the population size reaches a critical value (i.e., as y 

passes through one) this state becomes positive, and thus biologically 

meaningful, and at the same time it takes over the stability of the state 

x 1 in which the disease is absent from the population. This is the well 

known threshold phenomenon. 

The following question naturally arises: does the endemic state x~ 
✓, 

retain its stability as y is furtl1er increased? First of all, we observe 
-

that A= 0 is a solution of (2.5) if and only if y = 1 (note that 6(0) = 1). 

Consequently, stability will be lost if and only if a pair of complex 

conjugated roots crosses the imaginary axis (note that nonreal roots occur 

in conjugated pairs and that no roots can enter the r.h.p. from infinity). 

Such a crossing will, presuir,ably, be attended with a Hopf bifurcation (i.e., 

the origination of a periodic solution). In the next section we shall study 

the traffic of roots of (2.5) across the imaginary axis when y increases. 

• 
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3. IMAGINARY ROOTS: THE MAIN RESULT 

Putting A= x + iy and splitting (2.5) into its real and its imaginary 

part we obtain the system of two real equations 

(3. l) f. (x, y, y) 
1. 

- 0 

where by definition 

(3.2) f 1 (x,y,y) = 

(3.3) 

, - 1 2 1 = , 
• 

1 1 

b(T)e-XT cos(yT)dT + (1-y) -xT 
e cos(y,:-)d-r -1, 

0 1 

b ( T) e XT sin (YT) d T - ( 1 -y) -x-r 
e sin ( y T) d T • 

0 0 

In search for purely imaginary roots we concentrate on solutions with 

x = 0 and y =I 0. 

Suppose (O,y,y) is a solution of (3.1). We note that necessarily 

y ~ 2nn, n E Zl \ {O}, since for those values of y 

l 

f
1
(0,y,y) = b(T)cos(yT)dT -1 < O. 

0 

So we can use the second equation to express yin tern1s of y: 
1 

0 
b(-r)sin(yT)d-r 

(3.4) y = 1 + • 
1 

sin(y-r)d-r 

Q 

• 

Substitution of this expression into the first equation yields an equation 

for y alone 

(3.5) K(y) a , 

where by definition 
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I 1 1 1 

b(T)cos(yT)dT sin(yT)dT -· b(T) sin(yT) dT cos(yT)d-r 

(3.6) K(y) = _ 1 + _o ________ o _______ o __________ o ___ _ 
I 

sin(yT)dT 

0 

Conversely, suppose y ~ 2nn satisfies ·(3.5) then, defining y by (3.4), 

we obtain a solution (O,y,y) of (3.1). We conclude that we can find all 

solutions of (3.1) with x=O and y IO by finding all solutions of (3.5) • 
• 

In order to facilitate the for1:nulation of our results we introduce 

some notation. The Fourier coefficients b of bare defined by 
n 

(3.7) b = 2 n 

I 

b(T) sin(2nnt) dT. 

0 

+ 
The intervals I­

n are defined as follows 

(3.8) 

I = ((2n-I,) n, (2n+l),r) 
n 

+ 

-
I = ((2n-l)~,2n~) 

n 

Our first result gives infor111ation about the zeros of K. 

~~- If b = 0 then K has no zero in I. If~ on the contrary b f o --- n n ~ n 
then K has preciseZy one simple zero in I, say y. If b > O then 

_ n n n 
Yn E n O, whereas if b < O then y E < o. n n n n n 

PROOF. Using well-known trigonometric identities we rewrite 

(3.6) as 

1 , 

(3.9) K(y) = - l 0 - • 

sin( ½Y) 
. . 



+ --We observe that K(y) - K(-y),b_ - -b, I - - I 
n n -n n and 

-
I -n 

-- I + s . 0 n 
we restrict our attention to nonnegative n. 

In In\ {2nTI} the equation K(y) - O is equivalent 

to 

(3. 1 O) y = m(y) 

where by definition • 

1 

(3. 11) m(y) b(T) sin((T-½)y) dT}. 

0 

Clearly m((2n-l)n) > (2n-l)n and m((2n+l)TI) < (2n+l)TI.Moreover, 
l 

2 
m' (y) 

• 

{ (T-½)b(T)cos((T 

4 

- 4 

< 1. 

0 

1 - { 

l 

1 -

1 

0 

1 

0 

1 

0 

b ( T ) s in ( ( T 

I 

l 

0 

UT 

(here we use the Cauchy-Schwarz inequality with respect to the measure 
I 

b(T)dT in both numerator and denominator, the fact that O b(T) dT = 1 

for TE (0,1)). So we are in a position to 

apply the contraction mapping theorem and to conclude that m has a unique 

fixed point in 

Since 

I . 
n 

m(2nn) = 2n,r 2arcsin(½b ) , n 

7 
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the fixed 

equals 2nn 

From 

and, as 

- + • lies • if b > 0 and • if b point in I in I n n n n 
< O, whereas it 

if b - o. 
n 

• (3.9) and the properties of b we deduce that 

1 
-

K((2n+l)n) = -1 + -
0 

y -·~> 2n1r, 

· b I 
n 

K(y) = -1- -- + 

• 
I 
I 
I 
I 
I 

• • I 
I 
I 
I 
I 

• • I 
I 
I 

y-2nn 

I 21fll 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

b > 0 
n 

0 

b(r)sin((T-!)(2n+l)n)dt < 0 -• 

(1-2t)b(-r) cos(2n11T) dT + o(l). 

• 

I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 2,rn 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
• 

b < 0 
n 

• The graph of Kon the interval I . n 

y+ 

This implies that K1 (y) > 0 if b > 0 and K'(y) < 0 if b < 0 (note that 
n n n n 

K' (y ) :/: 0 since m' (y ) :/: 1 ) • n n 
Finally, if b - 0 then 

n 

K(2n1r) -1 + 

1 

( l-2t)b(T) cos (2nirT)dt < 0. D 

0 
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We are now ready to state the main result. 

THEOREM. As y incPeases from one to infinity, exactly as many pairs of 

conjugated roots of the characteristic equation (2.5) pass the imaginary 

axis as there are n E :N for which b > O. They cross from left to right 
n 

with 
n n 

Moreover~ they are simple. · 

PROOF. For sy1c11netry reasons we can restrict our attention to the upper 

half plane. As noted before, any crossing of the positive imaginary axis 

must take place in I for some n E "N. According to the Le1111:na, a root of n 
(2.5) lies, for some value of y, in I if and only if b # 0. The first 

n n 
equation of (3.1) implies that 

( 1-y) 
sin(y) 

y 
= 1-

1 

0 

and consequently the corresponding value of y will be greater than one if 

and only if y E I which in turn, by the Ler,11na, will be the case if and n, 
only if b > 0. 

n 
In order to obtain some more inforcitation about the crossing we want 

to solve(3.I) by the implicit function theorem for x and y as a function 

of y, starting from such a point on the imaginary axis. We observe that 

with 

Since 

af 
1, 2 (o,y,y) = C d 

ax,y -d C ' 

1 

C - -
T b(T) cos(yT)dT - (1-y) 

d = 

0 

1 

0 

T b(T)sin(yT)d-r 

K' (y) = d - C 

cos(y) 

(1-y) 

:/= o, 
1 

1. 

0 

l 

0 

T cos(yT)d-r, 

T sin(yT)dT. 
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it cannot happen that both c and dare zero. So the roots are simple and 

we can solve indeed for x and y as a function of y. Along this curve we 

have 

' . . .. . 

and thus 

• 

-------
-1 af 

1 2 , 
ax,y ay 

-
-1 =---~ C -d 

d C 1 

ax 
ay 

1 = ------2 
C + 

1 

y 

I - cos (y) 
y 

cosy - I 

K' (y) > 0 
□ 

We remark that a similar result relates the zeros of K corresponding to 

b <Oto pairs of roots of (2.5) which cross the imaginary axis from right 
n 

• 

to left when y increases from minus infinity to one. 

4. A DESCRIPTION OF TRAJECTORIES OF ROOTS IN THE COMPLEX PLANE. 

In this section we shall give a description in words of the typical 

features that appear from a computer study of the roots of (2.5) in the 

case where the kernel is a block function on [a, 8] with O < a. < f3 < I 

(see l10NTIJN [ 18]). 

If y increases beyond one, one real root moves into the l.h.p. and 

at the sa1:ne time one real root originates at minus infinity and starts to 

move in the positive direction. If y is further increased, these roots 

collaps, take off into the complex plane and move back to the imaginary 

axis. Whether they cross or not depends on the value of b 1 • As y tends 



to infinity they tend to± 2~i. 

Similarly, other couples move towards the imaginary axis. Whether 

they cross or not depends on the sign of some b. If they cross, they 
n 

make an excursion into the r.h.p., but inevitably they turn back and move 

towards the imaginary axis again. The Theorem implies that roots cannot 

cross from right to left. As y tends to infinity aZZ roots settle down 
• 

asymptotically at some integer multiple of 2ni. 

Using the as a variable one can 

deduce that all the points ± 2n1r.i,n E lN, occur as limits of roots as 

y > + 00 • Detailed elaboration shows that± 2n~i will be approached 

from the r.h.p. if b > 0 and from the l.h.p. if b < 0. It is suggested 
n n 

by the Theorem and the numerical results that, in the case b = 0, the 
n 

approach is from the l.h.p •. 

5. INTERPRETATION AND DISCUSSION OF THE RESULTS 

The Theorem implies that x 2 retains its stability if and only if 

b s O for all n E JN (which is the case if, for instance, b is synni1etric n 
about½). 

I 1 

If b > 0 for some n E IN we are in a position to apply a Hopf bifur-
n 

cation theorem. Unfortunately, it is not clear to us whether roots can pass 

the imaginary axis simultaneously and ''in reso11.ance'' (i.e., some being 

integer multiples of others). We think this will ''generically'' (with respect 

to the kernel b) not happen, but we do not know how to prove it. However, 

we do know that at most finitely many roots can pass simultaneously 

(equation (2.5) involves analytic functions and we can apply the Riemann­

Lebesgue le11,,11a). So there is always a largest one which then, according to 

the Theorem, satisfies all the assumptions of the usual Hopf bifurcation 
• 

theorem. In particular, under mild assumptions on b, a variant of 

Gripenberg' s theorem [8] is directly applicable (''variant'' because one of 

the kernels is the characteristic function of [0,1] which is not absolutely 

continuous as he requires; however, his proof can easily be adapted to cover 

this situation as well). We conclude that at least one periodic solution 

bifurcates if at least one b > 0 and that countably many periodic solutions 
n 

bifurcate if countably many b > 0 (note that all b > 0 if, for n n 
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instance, bis decreasing). 

The period T of the bifurcating periodic solution corresponding to 

some b > O will, at least initially, satisfy the inequality 
n 

1 
n 

< T < 
1 

n-½ 
• 

• 

So the period will in general be less than one with only one possible 
• except1.on. 

Only the first bifurcating periodic solution can possibly be stable 

for parameter values near to the bifurcation value. Gripenberg [8] gives 

a for1nula to deterrnine the stability character, at least in a (forioal) 

linearized sense. N11r1terical evaluation of his forraula for various choices 

of the kernel b proves that both stability and instability are possible. 

However, it seems that the situation in which the first bifurcating periodic 

solution is stable occurs more frequently. 

Our result shows that the endeioic state may or may not remain stable 

when the population size increases. In terms of the original variables 

we have 

Tl 

A(T) • 21TUT 
d T s1.n 

·; 1' 2 
0 

b --n 
Tl 

A(T) dT 

0 

Since A(T) ~ 0 and sin(T) > 0 for O ~ T ~ 1r, it follows directly that 

b 1 , ••• ,bk > 0 if 

So, 

any other 

1 
< 

2k 

~ 2 T 1, the 

property of 

• 

endemic state will loose its stability, irrespective 

the infectivity function A. 

shows that one can always destabilize the endemic 

This corollary clearly 

state by both lengthening 

• 
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the i1an1unity period and increasing the population size. Similar conclusions 

have been drawn by Hethcote, Stech and Van den Driessche [12] and Stech and 

Willia,11s [ 19] for related but somewhat different models. 

The fact that all roots approach the imaginary axis as y ➔ + oo 

indicates that, although the endemic state may indeed retain its stability, 

nevertheless the stability becomes marginal. It seems possible that the 
• 

domain of attraction shrinks and that equation (2.2) has lots of periodic 

solutions for large values of y even when b ~ 0 for all n. In that case 
n 

they do not bifurcate from x 2 , but they may originate from ''free'' bifur-

cations. Moreover, by analogy with the well-known difference equation 

x 1 = y (1-x )x, we are led to conjecture that (2.2) exhibits chaotic n+ n n 
behaviour for large values of y. In spite of the simplicity of the model, 

the qualitative behaviour of solutions is possibly fairly complicated. 

These remarks are speculations and many questions remain. We hope to be 

able to say more about equation (2.2) at a later time. 
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