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Existence and uniqueness for a nonlinear diffusion problem arising in 

neurophysiology 

by 

Joop Pauwelussen 

ABSTRACT 

In this paper we discuss existence and uniqueness for a nonlinear 

reaction-diffusion problem which arises in neurophysiology as a model for 

impulse propagation along nonuniform nerve axons. 

KEY WORKS & PHRASES: Existence, uniqi1eness, reaction-diffusion equations, 

neurophysioZoqy 





1. INTRODUCTION 

In our study of propagation of potential waves along nonuniform nerve 

axons we examined in two papers [3] [4] the qualitative behaviour of solu

tions of the following system of equations. 

u = e (x)u + F(u,w), 
t e: xx 

(I. 1) 

wt= G(u,w), X E JR \ {Q}, t > 0 

where 

(1.2) -- { 1 e (x) 
e: 

e: 

X ~ 0 

X > 0, 

where (u,w) takes on values in JR x ]Rn for some n > O, and F and G are 

Lipschitz continuous in u and w. We treated (I.I) in the framework of an 

initial value problem with initial conditions 

(1.3) 
u(x,O) = x(x), 

w(x,O) = 1/J(x), 
X E R. 

for a bounded continuous function x while 1/J is bounded and Holder continuous. 

The variable u(x,t) represents the departure of the transmembrane 

potential from its resting value at time t and place x on the axon. The 

auxiliary variable w describes the process of the transport of ions 

(K+,Na+,Cl-) across the membrane which can be regarded as the "engine" 

for impulse conduction. The function e (x) describes the nonuniformity of 
e: 

the nerve axon. A small value of e: means a large increase of cross-section 

area for increasing x. 

In this report our main goal will be to verify that a unique classical 

solution of (I.I) and (1.3) exists. This will be done in Section 2 under 

the assumption of apiori boundedness, where we shall postpone the proofs of 
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intermediate (technical) results to Appendix A. In another appendix, Appen

dix B, we shall verify the apiori boundedness for those examples which are 

of interest in [3] and [4]. 

2. EXISTENCE AND UNIQUENESS 

We start with a few definitions and notations. 

DEFINITION 2 .. I. Let for m,n E N D c ]Rm and ijJ:D ➔ ]Rn where 1jJ = 
T 

(iµ 1 ,1/J 2 , • •. ,1/J11) • Then we shall call 1jJ bounded if and only if 

(2. I) 
n 

- sup L 
XED i=I 

I 1/J. ex) I 
i 

< oo. 

NOTATION 2.1 .. Throughout this Section we shall use the notation Ck+a,m+S 

(Q ➔ R), k,m E {0,1,2, ••. }; a,S E [0,1) for the set of functions u = u(x,t), 
. + . . l o • defined on Q c ]R x ]R and taking values in R c R , -l.- E N for which 

k 
h a u · ··1d · · h were k is Ho er continuous wit exponent 

amuat 
a, with respE:!.ct to t if a > 0 and -- is Holder continuous in x with ex

axm 
l ponent S, if S > 0. C(Q ➔ R) for the set of functions u:Q ➔ R where R c R 

and Q c ]R. or Q c JR x ]R+ , which are continuous on Q. BC(Q ➔ R) for the 

set of functions u E C(Q ➔ R) which are bounded. 

m NOTATION 2. 2. For a set V c R , m E N we shall denote the closure of V by 

v. 
In this section we shall investigate existence and uniqueness for the 

initial valu4:!. problem 

(2.2) 

{ ut = e/x)uxx 

wt= G(u,w), 

+ F(u,w) 

XE ]R\ {O}, t >. o. 

(2.3) u{x,O) = x(x), w(x,O) = 1/J(x), XE R 

as introduced in Section I and denoted here as Problem P1. 



n DEFINITION 2.2. The vector function (u,w) :ll x [0,T) + 1l x E. is called 

a cZassicai soiution of P1 on [0,T) if and only if 

(i) u E BC(lR X [0, T) + JR) 

u E C(lR X (0,T) + lR) 
X 

uxx'ut E C(lR \{0} x (0,T) + lR) 

w,wt E BC(R x [0,T) + Rn) 

(ii) (u,w) satisfies (2.2) and (2.3). 

The plan of this section is as follows. First we reformulate P1 as 

a set of integral equations, denoted as problem P2• Using contraction 

arguments we shall prove local existence and uniqueness for P2• Then we 
V . 

shall show by means of a regularization result due to Ladyzenskaja et.al. 
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[2], that this solution of P2 is also a solution of P1• Finally, using an 

apriori estimate for solutions of P1 we shall extend the local existence to 

global existence. 

In [6] Schonbek discusses among other things, questions of existence 

uniqueness and regularity for the FitzHugh-Nagumo equations in the quarter

plane {(x,t)lx > 0, t > 0} with bounded Neumann boundary data at x = 0. 
-1 

However, in the present situation u (0+,t) may behave as 
X 

t 2 fort+ 0 (see 

Proposition (2.1)). We shall therefore give the proof of existence and 

uniqueness for P1 in full detail, in spite of the fact that most of the 

techniques used, are similar to those of [6]. A more detailed application 

of these techniques can be found in [SJ. In order not to disturb the main 

argument of this Section we shall give the proofs of our intermediate 

results, called propositions, in Appendix A. 

For the derivation of the integral equations in P2,_ we shall make use 

of the Green function U(x,~;t) for the Neumann problem in the quarter 

plane {(x,t)lx > 0, t > 0} for the heat equation, given by 

U(x,~;t) = K(x-~,t) + K(x+~,t) 

where 
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K(z,t) = --
2 ✓:;;:-t 

2 
z 

exp [- 4t ]. 

Note that U(-x,-E;t) = U(x,E;t) = U(x,-E;t) for all x E :R., t > O. In what 

follows we shall use the notation 

If we write 

H(u)(t) = u (O,t) 
X 

f(u,w)(x,t) = F(u(x,t),w(x,t)), 

g(u,w)(x,t) = G(u(x,t), w(x,t)). 

L+ h(x,t) 

s+ (x,t) 

+co 
t 

= + I I 
0 0 

= + e (x) 
E 

U(x,E;e (x)(t-T))f(u,w)(E,T)dEdT 
E 

t 

J U(x,O;eE(x)(t-T)) h(T)dT 

+co Q 

= + I U(x,E;eE(x)t)x(E)dE 

0 

then u(x, t) :may be expressed as (cf. [6]) 

(2.4) u(x,t) = R± [u,w](x,t) - L± H(u)(x,t) + S ± (x,t), (± x > O). 

Integration of the second equation (2.2) 2 with respect to time yields 

t 

(2.5) w(x,t) = ~(x) + J g(u,w)(x,T)dT. 

0 

Continuity o:f u(x,t) at x = 0 requires (from (2.4)) 

(2.6) 

t 

21 J _H..,_( u_,_)_,(_T ,_) r [I + vddT = 
/.rr(t-T) 

0 
co 0 

= f K(E,Et)x(E)dE - J K(E,t)x(E)dE + 

0 
t 00 

+ f J 
0 0 

-co 

t 0 

K(E,E(t-T))f(u,w)(E,T)dsdT - I J K(t,t-T)f(u,w)(t,~)dEdT. 

0 -co 
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Equation (2.6) can now be solved for H(u)(t) in terms of u,w and X• If we 

change the order of integration in (2.6) and calculate the Laplace transform 

of (2.6) we arrive at 

(1 + t'£) ii (E_) 

zip 
0 

oc 

0 

(2.7) - l J x(;)p-½ exp[;✓p]d; + 
-00 

00 0 

+ ½ j f (;,p)(pE)-l exp[-; 1'%]d; - ½ f f(;,p)p-½exp[;lp]d; 

0 -00 

where f denotes the Laplace transform of a function f (we surpressed u and 

win the notation) with respect to its last variable and where we have used 

the identities [1] 
00 

<;)½ exp[-2(ap)½J = J 
0 

00 

-pt 
e 

It 
a exp[- -]dt t , 

1 ½ J -3/2 -pt a2 
exp[-ap 2 ] = ½a~- t e exp[- 4t ]dt. 

0 

If we multiply (2.7) by zip and invert we finally find 

2/; (l+ft)H(u) (t) = 

00 0 -3/2 

f 
;2 + t-3/2 f 

2 t ;x(;)exp ;x(Oexp[- !t ]d; [- -]d; 
£ 4£t 

0 -00 

00 t 
;2 

(2.8) + ! J J ;(t--r)-3/2 J f(u,w)(;,-r)d-rd; + exp[- --

0 0 
4£(t--r) 

0 t 
;2 

+ J J ;(t--r)-3/2 f(u,w)(;,-r)d-rd;. exp[-4(t--r)J 
-00 0 

+ 

For convenience we shall denote the right-hand side as 2/;(1+/e)H[u,w](t). 
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After substitution of the expression (2.8) for H into (2.4) we arrive at 

the equatbn 

(2.9) ± X > 0. 

which, together with (2.5) will be denoted by Problem P2• We define a 

solution of P2 in the following way. 

DEFINITION 2.3. The vectorfunction (u,w):lR. x [O,T]-+ lR. x ]Rn is called a 

solution of P2 on [0,T] if and only if 

(i) (u,w) E BC(lR. x [0, T] -+ lR. x lR.n) 

(ii) (u,w) satisfies (2.5) and (2.9). 

Let us first list some properties of H[u,w](t). We split Hin a part H0(t). 

which does not depend on u and w, and a remaining part H1[u,w](t): 

-3/2 , ,. -J H0 (t) = t [2Y~(I + YE)J . 

(2. IO) 00 0 

[! f sx(s)exp(- 1:t)ds + f sx(s)exp(- ::)dsJ, 
0 -oo 

(2. I I) H1[u,wJ(t) = H[u,wJ(t) - H0(t). 

2 PROPOSITION.2.1. Let h0 =----.Then the following properties hold. 
/;(l+v'E) 

(i) 

(ii) 

IHo(t)I ~ ho llxlllR., 
~ 

t > 0 

t > 0 

(iii) Leto> O. For T > o > 0 and ac(O,½) there exists a number 

K = K(o,T,a) > O suah that for all t 1 E (O,T) and t 2 E (o,T) 

(2.12) 

(2.13) 

IHo<t2) - Ho<t1)I ~ K lt2-t1I, 
✓ti 

IH1[u,w](t2) - H1[u,w](t 1)1 ~ Klt2-t1 la. 



Observe that by the Lipschitz continuity of F there exists for each 

constant M > 0 a constant LM > 0 such that fort> 0 and for any pair of 

vector functions (u1,w1), (u2,w2) satisfying 

(2. 14) U(u.,w.)11:JR [O Js:M, 
1 1 X , t 

i = 1,2, 

we have 

The following proposition is a consequence of ~his observation and (2.8) 

PROPOSITION 2.2. Under the aondition (2.14) we have 

We need the above estimates in the proof of local solvability of P2• 

As a preparation for this proof we isolate from the right-hand sides of 

(2.5) and (2.9) the parts which do not depend on u and w: 

± X > 0, 

(2. 15) 

X E :JR. 

Define 

(2. 16) 

We shall operate in the following function space, defined for t 0 > 0 

F = { ( u, w) E BC ( E. x [ 0 , t OJ + :JR x ]Rn ) I 
to 

7 
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which is a complete metric space with respect to the norm D•II 
lR x co, t 0 r 

On Ft we consider the following operator r. 
0 

f[u,w] 1 = R±[u,w] - L± H1[u,w] + u0 , 

t 

+ J 
0 

g(u,w.)d., 
J 

± X > 0, 

j = 1,2, ••• ,n. 

Obviously, fixed points of r in Fto are solutions of Problem P2 • Now the 

following proposition holds. 

PROPOSITION 2.3. 

(i) There exists a time t 0 = t 0 (~) such that r as a mapping from Fto into 

Ft0 is well defined. 

(ii) There exists a number N > O, N = N(~) such that for any pair 

(ul,wl),(u2,w2) E Fto· 

(2.17) 

LEMMA 2.1. There exists a time t 0 = t 0 (~) such that Problem_ P2 has a unique 

solution on [O,t0J. 

PROOF. By Proposition 2.3 there exists a number t 0 > 0 such that r is a 

contraction on Fto• Hence r has a unique fixed point in Ft0 which is a 

solution of P2 on [O,t0 J. 

We shall show that this solution of P2 is smooth enough to be a 

solution of P 1, in two steps. First we· shall show that it is a generalized 

solution of P1 as specified below. Then it follows in a standard way that 

it is also a classical solution of P1• 

Let I be a bounded open interval of lR with O i I and let~= Ix (O,T) 

for T > O. Consider the differential equation 

(2.18) Lu= u - e (x)u = h(x,t) . t e: xx 

where ee: is given in (1.2) and h E C(QT). 



9 

DEFINITION 2.4. By a generalized solution of the equation Lu= hon~ we 

mean a function u:QT + R with the properties 

(i) 

(ii) 

u,ux EC(~) 

1 1 - -For all n E C ' (QT + ll) with n(x,t) vanishing on I\I x(O,T) 

and n(x,O) = 0 on I we have 

t 

J u(x,t)n(x,t)dx - j J u(x,T)nt(x,T)dxdT + 

I O I 
t 

+ff [e (x)u (x,T)n (x,T) - h(x,T)n(x,T)]dxdT = O. 
E X X 

0 I 

Let us first verify that u is c1-smooth. 

PROPOSITION 2.4. Let (u,w) be the solution of P4 on [O,t0J. Then 

u E C(ll x (O,t0J + ll) and u (0±,t) = H[u,w](t) for t > o. 
X X 

THEOREM 2.1. Let (u,w) be the solution of P2 on [O,t0J. Lett E (O,t0) and 

T = t 0-t. Then for h = f 0 (u,w), u(x,t+t) is a generalized solution of the 

equation. Lu= hon~-

PROOF. It is quite standard to prove that u, given by (2.4) satisfies (2.19) 

for Ic (-00 ,0) or Ic (0, 00), t-€ (t,t0). Part (i) in Definition 2.4 for 

u(x,t+t) follows from Definition 2.3(i) and Proposition 2.4. 

Now let u be a generalized solution of Lu= h in~= Ix (O,T), where 

0 I I. It is well known [2;p.224] that if for some a> 0 

then 

(2.20) 

PROPOSITION 2.5. Let a> 0 be a H8lder exponent for the initial funation 

w(x) = w(x,O) and let t E (O,t0). Let I be a bounded open interval such that 
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O i I. Then 

(i) w( •, t) is Holder continuous with exponent a. on JR for aZZ 

t E co,t0). 

(ii) For all SE (O,I), u(x,•) is Holder continuous with exponent S 

on (t,t0) for all x EI. 

(iii) wt E C(lR X [O, to] ➔ ]Rn). 

By this proposition and the Lipschitz continuity of F we have that f(u,w) E 

E ca.,a./2 (1 x (t,t0) for any t E (O,t0) and I as above. This implies that the 

f h 1 . f . . 2+a.,l+a./2( (~ )) u-component o t e so ut1on o P2 is in C Ix t,t0 . 

We shall now state a local existence result for Problem P1• 

THEOREM 2.2. The unique solution (u,w) of P2 on [O,t0J is also a solution 

of P1• Moreover if a. is a Holder exponent for $(x) then fort E (O,t0) and 

any x-interval I, O i I we have 

u E c2+a.,I+a.l2 c1 x (t,t0) ➔ JR), 

(2.21) 
a I ~ n 

w E c ' (I x (t,t0 ) ➔ lR ) , 

with wt Lipschitz continuous -int for x EI. 

PROOF. By (2.20) and the corollary to Proposition 2.4, u satisfies (2.21) 1 

for all t E (O,t0) and I c ]R, when O l I. Since t and I are arbitrary, the 

smoothness of u and u, required in Definition 2.2 follows. The smooth-. xx t 
ness of ux follows from Proposition 2.4. Since (u,w) solves P2, u and ware 

continuous on JR x [O,t0J and by (2.5), the same results hold for wt. By 

the Lipschitz continuity of G and the fact that both ut and wt exist we 

have that g(u,w) is Lipschitz continuous int. Hence wt(x-,•) is Lipschitz 

continuous for x EI. The verification of (2.3) is standard. 

To conclude this section we shall extend the local existence to a glob

al one. Thereby we shall make the following hypothesis. 

H: There exists a number K = K(U xii lR , II $11 JR) such that for all 



T > O, a solution (u,w) of P1 on [O,T) satisfies 

II (u,w)II R x [O,T) < K. 
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Thus we assume an a priori bound for solutions of P1• In Appendix Bit 

is shown that this hypothesis is true for three typical examples. 

THEOREM 2.3. Suppose His satisfied. Then for every T > 0 Problem P1 has a 

unique aZassiaal solution on [O,T) with regularity properties as stated in 

Theorem 2.1 where t 0 is repZaaed by T. 

PROOF. A Corollary to Theorem 2.2 is that the solution (u,w) of P1 for fixed 

t E (O,t0) has the same regularity as the pair of initial functions (x,w) 

(i.e. bounded continuous with w E Ca.(JR + JR.n)). If we replace t in (2.2) 

by t' = t-t 1 for t 1 E [O,t0) and put u'(x,t') = u(x,t 1+t'), w'(x,t') = 
= w(x,t 1+t') then the corresponding problem P1' (i.e. with initial functions 

x'(x) = u(x,t 1), w'(x) = w(x,t 1)) has a classical solution (u',w') for 

t' E [O,t0) for some t 0 •, only depending on K, introduced in H. This result 

follows by the same arguments as used above to prove Theorem 2.2. Hence by 

repeated application of this theorem the local solution of P1 is extended 

to a solution on [O,t 1+mt0 ') for any m E :N and global existence follows. 
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APPENDIX A: The proofs of the propositions in Section 2 

PROOF OF PROPOSITION 2.1. 

(i) HO(t) is majorized by 

-3/2 II xii [0 00) 
IH0 (t)I ~ ¼t h0[ ' 

e: 

00 

f ~ exp[- !:t]d~ + 
0 

0 2 

+ llxll(-00,0J f ~ exp[- !t]d~J ~ 

(ii) An explicit expression for H1(t) follows by subtraction of H0(t) from 

the expression for H(u)(t) given in (2.8). From this expression we find for 

H 1 [u,w] 

0 t 

+ f f 
-00 0 

t > o. 

(iii) Assume t 2 ~ t 1 and split the integrals in the expression for H0 (t2 ) -

H0 (t 1) in the following manner (we take e: = 1, for simplicity) 

(Al) 

00 00 

f ~2 -3/2 f ~x(~)exp[- 4~2 Jd~ - t 1 

0 0 
00 

2 
~x(~)exp[- !t ]d~ 

·1 

l f 1 ~2 1 ~2 = t-2 [-exp[--] - - exp[- -JJ~x(~)d~ 
rt 4t2 rt 4tl 

0 2 1 

In the integrand of the first part we apply the mean value theorem; 



I s2 
-- exp[--] 

C 4t 
vt: 2 2 

I s2 
- - exp[--]= 
It 4tl 

I 

(AZ) 

for some T bettween t 1 and t 2 . This gives us the factor I t 2-t1I times an 

integral J and in view of (2.12) we must show that J./t1 is bounded for 

13 

t 1 E (O,T) and t 2 E (o,T) for T > O, o E (O,T). The integral J is composed 

of integrals bounded by 

-3/2-i 
T 

00 

f s2i+l exp[- ~Jds 
4T ' 

0 

i E {O,I}. 

We split Ji in integrals J 1 over [0,2((¾+ i)t 1)½), J 2 over [2((f+ i)t 1)½, 
2((f+ i)t2)½] and J 3 over (2((f+ i)t2)½, 00). Then J 1 increases if we replace 

T by t 1 and J 3 increases if we replace T by t 2 • Calculation of the resulting 

integrals yie!lds that Ji lt1 is bounded, i = 1 , 3. In J 2 we use that 

-3/2-i -2 3 (6+4i) s exp[- -- i] 2 . 

and again we find after calculation that the resulting integral is of order 

0(t 1-½). The second term in (Al) is easily estimated by majorizing x by 

llxll R. 

Finally we note that if t 1 > t 2 the proof of (2.12) is easy since in 

this case t 1 is bounded away from zero. 

To prove! (2.13) we split the integrals in the expression H1[u,w](t2) -

H1[u,w](t 1) in the following way 
00 t2 

J - J f 
0 0 

-3/2 s2 
s(t2-s) exp[- 4 (t -s)J f(u,w)(s,s)dsds 

2 

(A3) f(u,w)(s,s)dsds 
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where 

00 t I I 2 3/2 ~2 . 
J 2 = ~(t2-s)- exp[- -- J f(u,w)(~,s)dsd~ 

0 t 4(t2-s) 
1 

Evaluation of J 2 with f replaced by llfll lR x[O, T] yields 

In the integrand of J 1, the difference B(t2-s) - B(t1-s) occurs where 

B(t) = t-312exp[-~2/4t]. We shall use the relation 

(A4) 

for some. between t 1-s and t 2-s where a E (O,½). This relation arises 

from application of the mean value theorem with respect to the variable 

lt-sla to B(t2-s) - B(t 1-s) together with the inequality 

Then a further esti~ation of J 1 can be given along the same lines as in 

the estimation of Ji above, where the absence of a factor t~½ .is due to the 

extra integration with respect to time. 

PROOF OF PROPOSITION 2.2. This proof is entirely analogous to the proof of 

Proposition 2.1 (ii). 

PROOF OF PROPOSITION 2.3. 

(i) To begin with we shall estimate ll(u0 ,w0)UlR x [O,t0J. For x > O, the 

expression (2.15) for u0 consists of an integral in terms of H0 and an in

tegral, of which the value depends on X• For the first integral we use 

Proposition 2. 1: 

t 

IE f U(x,0:E(t-.))H0(.)d.l 

0 
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The second term in (2.15) is majorized by 

00 

2 
llxll lR 

1 f [ (x-~) .. ] + exp[-(x+02 ]d~ exp -
2 ✓1re:t 4e:t 4e:t 

0 

llxll:R 
00 

2 

I -n dn = llxlllR. = e ;; 
-00 

Similar inequalities hold if x < 0 and, by the definition h0 we find 

Obviously II wOU 
lR x co, t 0J = 11 ijJll lR and hence 

and as a corollary 

To prove that r is well defined we must verify that (u,w) E Ft0 implies that 

II r(u,w) - (uo,woll lR X [O, to] s ~-

Let K be such that IF(u,w)I, IGj(u,w)I s K for all (u,w) E Fto· For 

x > 0 and ts t 0 we have for f[u,wJ 1 - u0 
t 00 

lr[u,w]l(x,t) - uo(x,t)I s K J J 
t 

+ e: I lu(x,O;e:(t-T)) 

0 

0 0 

where we have used Proposition 2.l(ii) and the definition of h0 • This 

inequality also holds if x < O. For j E {1, ••• ,n} we have 
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and therefore, for t 0 sufficiently small (t0 < K(3!n)), r(u,w] E Fto• The 

other conditions in the definition of Ft0 , for r(u,w) are easily verified. 

(ii) If we apply, in the expression for r[u 1 ,w1 J1 - r[u2,w2J1 the Lipschitz 

continuity of F and Proposition 2.2 we arrive at a relation of the form 

for some M > O, where r 1 and r 2 are integrals which can be estimated using 

the arguments in the proof of (i), leading to (2.17). 

PROOF OF PROPOSITION 2.4. The first derivative u of u for x > 0 is found by 
X 

differentiation of (2.4) 

(A5) 

u (x,t) 
X 

I = ---
4[; n 

0 0 

2 
+ (x+s)exp[- ~X~s) )]]. f(u,w)(s,T)dT + 

e: t-. 
t 

+ xe: J 
2!; 

0 
00 

2 -3/2 X 
[e:(t-.)J exp[- 4e:(t-.)]H(u)(.)dT + 

__ I_ (e:t) -3/2 
4[; 

[(x-e:)exp[-(x-s) J + (x+s)exp[- (x+s) ]Jx(s)ds I 2 2 

4e:t 4e:t ' 
0 

provided that this expression exists. Fort~ t 0 , f is bounded and the first 

term in (A5) can be ma.jorized by 

t 00 

[O,to] f I (e:(t-.))-3/21(x-s)exp[- ~:c:::)] + 

0 0 

+ (x+s)exp[- ~:~:::)JldsdT 

(A6) 
~ 211fR lR x[O, to] 

;; 

t 

Jo 40 fll 
dT = - ]Rx[O,toJ.lto 

O· /;; ✓ire: 

In a similar fashion, the third term in (A5) is bounded by KIi xii ]R/lt for 
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some K > O. The second term is convergent for x > O, by Proposition 2.1 and 

if we let x + 0 we arrive at 

2 
exp[- _x __ J H(u)(.)d. = 

4e:(t-.) 

00 00 

1 f 
e-n 

+ _!_ I e-n 2 
X 

- H(u)(t)Jdn = - H(t) -dn -:=- [H(u)(t --) 
;; In In 4e:n 2 ✓1r 2 

X X 

4e:t 4e:t 

-+ H(u)(t), X + 0, 

by Proposition 2.1 (iii), fort> O. The first and the third term in (AS) 

tend to zero as x + O. For x < 0 we find similar results, including 

u (x,t)-+ H(u)(t) as x t O fort> O. The derivative u is continuous for 
X X 

x IO and t E (O,t0J and by the above observations, also at x = 0 if t > O. 

PROOF OF PROPOSITION 2.5. 

(i) Let x 1 ,x2 E JR. By the Lipschitz continuity of G we find from (2.5) for 

any j E {1,2, ••• ,n} and t E (O,t0J 

for some constants L and L. Hence, w is Holder continuous in x with ex-. u w 
ponent a for small t, t ~ t 1 say. However, we can repeat the arguments on 

[t1,2t1J and so forth. Thus w is Holder continuous in x E JR for all 

t E [O,t0J. As a consequence, f(u,w)(x,t) is Holder continuous in x with 

exponent a. 

(ii) Suppose t 1 < t 2 and x < O. By (2.4) we may write for u(x,t 1) - u(x,t2) 
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(A7) 

- J1 I 
0 -oo 

t2 0 

-f I U(x,~;t 2-T)f(u,w)(~,T)d~dT 

t -oo 

d 
+ f [U(x,O:t 1-T) - U(x,O:t 2-T)]H(u)(T)dT 

0 
t 

2 

- J U(x,O:t 2-T)H(u)(T)dT 

ti 

0 

+ f [U(x,~:t 1) - U(x,~:t 2)Jx(~)d~ 
•-00 

If we replace in 12 , f by II fll Il x [ 0 , t J and evaluate the resulting integral 

we find that 12 = O(t2-t 1). Similarly~ using Proposition 2.1, we can majorize 

14 by 

for some K > O. In the integrand of 11 we apply the mean value theorem with 

respect to the variable It-TIS, SE (O,I) to U(x,~;t 2-T) - U(x,~;t 1-T). Since 

S < I, the resulting integral is convergent. We have applied the same 

technique in the proof of (2.13) in Proposition 2.1 and similar to that 

proof it follows for 11 that 11 = O(lt2-t 1 Is). 
In the integrand of 13 we apply the mean value theorem with respect to 

the variable t-T to U(x,O:t 1-T) - U(x,O:t2-T). The resulting integral does 

converge since x IO and as a result 13 = O(t2-t 1). Finally, using the mean 

value theorem in 15 in a similar fashion as in 13 , it follows, by the 

boundedness of x that 13 = O(t2-t 1). 

(iii) This statement follows from the continuity of u,w and G, and equation 

(1.3). 



19 

APPENDIX B: A priori bounds for solutions of Problem P1 

In this appendix we shall show that the assumption of boundedness of 

solutions of problem P1, as formulated in hypothesis H, holds for the follow

ing three examples: 

(i) The bistable equation: 

F(u) = u(l-u)(u-a), o <a< L 

(ii) FitzHugh-Nagumo equations 

F(u,w) = u(l-u)(u-a)-w, o <a< L 

G(u,w) = OU - yw, o,y > O 

(iii) Goldstein-Rall equations 

F(u,w) 
1 

= w1(1-u) - w2(u + 10) - u, 

2 4 
(klu + k2u - k 3wl. - k4w1w2\ 

= \k5wl + k6wlw2 - k7w2 ) 
G(u,w) 

ki > O, k2 >> k 1 >> k3 > k4 , k1 >> k7 > k5 >> k6• 

which were of interest in [3] and [4]. 

Recall that the initial functions x and~ are bounded. 

We shall make use of a conditional comparison principle which is a 

modification of Theorem 3.1 in [4] 

THEOREM B 1 • Let 

2 1 
<j>,u,~ e: BC(:R x [0, 00) + :R) n C ' (:R \ {0} x (0,00) + :R) 

satisfy for all T > O and x e: :R \ {O} 
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~ ~ u ~$on [O,T] => N~ ~Nu~ N$, t E (O,T] 

where N is a differential operator of the form 

Nu= u - e (x)u - F (u·x t) 
t E XX Q ' ' 

11 0 0 + where F O E C ' ' (lR x lR x lR ➔ lR) • Moreover let ~, u and $ satisfy 

~ (O+,t) - ~ (O:...,t) > u (O+,t) - u (0-,t) ;;,; $ (O+,t) - $ (O:...,t) 
X X X X X X 

t > 0 

~(x,O) < u(x,O) < ~(x,O), X E ]R. • 

Then 

~(x,t) < u(x,t) < ~(x,t), XElR,t2':0, 

Note: This theorem differs from Theorem 3.1 in [4] in the sense that here 

we have lR as x-domain whereas in [4] we selected x from an interval [a.,oo). 

Also F0 may depend on t. 

PROOF. Following the proof of Theorem 3.1 on an interval [-y, 00 ) and on 

an interval (-00 ,y] for y > 0 we find that (Hx,t) - u(x,t))($(x,t) - u(x,t)) 

vanishes at !lome point if and only if (~(O,t) - u(O,t))($(0,t) - u(O,t)) = 
= 0 for some t > O. Then if tis the smallest time for which 

(~{O,t) - u(O,t))(~(O,t) - u(O,t)) vanishes, application of the ordinary 

unconditional comparison principle (Lennna 3.1 in [4]) to any set of the 

form { (x,t) lei < x < S, 0 < t ~ t} will yield a contradiction as in the 

proof of Theorem 3.1 •• 

LEMMA B1. (E~~ample (ii)). For example (ii), there exists a number M such 

that for eve2-y solution (u,w) of P1 we have 

lu(x,t)I ~ M, 

XE·lR, t ;?: o. 



PROOF. For M we choose a number such that 

M ~ max{ 1 , 0 xii R , II ij,11 :JR } 

(B2) 

M + ~M ± f(± M) s O. 
y 

This is possible because f(u) ~ - u3, (lul + 00). 

Then, as long as lu(x,t)I < M we have 

t 

(B3) w(x,t) = ij,(x,t)e-yt + cr f u(x,.)e-y(t-,)d, 

a ~-M--M y , 

which yields 

ut - e (x)u - f(u) e: xx 

0 

a s ut - e (x)u - f(u) + w + M + -M e: xx y 

s - f(M). 

by (B2), and similarly 

ut - e/x)uxx - f(u) ~ -f(-M). 

21 

By Theorem Bl lu(x,t)I <Mand together with (B3) this implies lw(x,t)I s 
s II ij,11 + cr M. 

]R y 

If, in the proof of Lemma Bl one assumes cr = 0 and ij,(x) - 0 then one 

arrives at the following Lemma. 

LEMMA B2. Let 

(B4) F(u,w) = u(l-u)(u-a) - f(u), 0 < a < ½ 

Then there exists a number M ~ 1 sueh that for every solution (u,w) of 

P1 we have 
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(BS) ju(x,t)j SM. 

In the situation of example (iii), the Goldstein-Rall equations, we 

shall verify hypothesis H under the additional condition that the negative 

values of ij, 1(x) and ij,2 (x) are not too large in absolute value. This is the 

case one is usually interested in. 

LEMMA B3. Suppose fo:r> the GoZdstein-RaU equations that the initial, function 
T 

1/1 (x) = (1/1 1 (x), 1/1 2 (x)) satisfies 

(B6) 1/1" (x) ~ -½ + p, 
JL 

i = 1 ,2 

fo:r> some p E (O,½). Then the:r>e exists a nwnbe:r> M such that 

ju(x,t)I s M, 

(B7) 

jw.(x,t)j s M, 
l. 

i = 1,2, XElR, t~O. 

+ + 
PROOF. We shall select numbersµ> O, u- and w-:- such that 

l. 

u < X < u+ 
(BS) 

-- + w .. < 1/1. < w. 
JL l. l. 

and 

± -
(B9) ± F(U ,w) s o, w. ~ w. 

l. l. 

and on the boundary an of a trapezium shaped region n in the (w1,w2) plane 

as sketched in figure Bl the condition 

(BIO) ~~ < 0 a,v 

- + a holds for all w E an, U s Us U and where denotes any directional av 
derivative in an outward direction at w. 
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By (BIO), w(x,t) cannot take on values on an and therefore remains inside 

n. Then it follows by (B9), in a similar way as in Lennna Bl that U(x,t) 

remains between U- and U+ for all x E lR, t ~ O. 

Let lxl and l~-1 for i = 1,2, be bounded by K. We shall select the 
+ - 1 

numbers u- and w. such that they satisfy 
1 

(Bl 1) + - 1 U > max{l ,K}, U < min{K,- 10} 

and 

-(B12) wi e <-½+½Po,-! + Po>, i = 1,2, 

+ - - -for some Poe (O,p). Then F(U ,w) ~ O for wi ~Wiand F(U ,w) ~ - p0U + 

0(1) for w. ~ w:. Hence, by choosing -U- sufficiently large, (Bil) can be 
1 1 

satisfied. 

Let L be a number satisfying 

(B13) 

+ Then, if we choose w1 > K such that 
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(B14) 

u+ -
then for u :5: u < and w2 2 w2. 

+ + + 
(BIS) G1 (u,W1 ,w2) ::;; L - k3Wl + ½k4W1 < O. 

By (B6) it follows that 

G1 (u,W~,w2) 
-

+ }k4W~ (Bl 6) 2 - k3W1 > o. 

By (B6) the term k6 wiw; in G2 (w1,w;) is positive or small in absolute value, 

compared to - k7w2• Since ks< k7 , if we choose Po small enough (and there

fore w1 close to w2) then 

(Bl 7) 

It remains to be shown that along the part of an given by a line segment 

+ + - + (Bl 8) WI - w + y(w2-w2) = O, WI ::;; WI ::;; WI, y > 0 I 

the inequality 

GI + yG2 < O, u ::;; u ::;; u+ 

holds for suitable choice of y and + 
w2. 

We have 

G1(u,w1,w2) + yG2 (wI,w2) = 

= - w2[(k4 - yk6)wl + yk7] + R(u,w1) 

where R is bounded for u and wI bounded. 

If we take y < k4'k6 then for w; sufficiently large we have that 

G1 + yG2 < 0 along the line segment given by (BIB). 
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