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Optimal lower bounds for the spectrum of a second order linear differential 

equation.with ·a p-integrable coefficient*) 

by 

E.J.M. Veling 

ABSTRACT 

In this note the differential expression M[y] = -y" + qy, q E: LP(]t) 

for some p ~ 1, will be considered on [O,®) together with the boundary con­

dition either y(O) = 0 or y'(O) = O. Lower bounds will be given for the 

spectrum of the self-adjoint operators T generated by M[•J and these bounda­

ry conditions. The bounds depend on the LP-norm of the coefficient q and 

they improve results of Everitt and Eastham. For p > 1 the bounds are optimal. 

KEY WORDS & PHRASES: singuZaxo seaond order Zinear differentiaZ equation, 

StU1'TTI-LiouviZZe probZem, Zower bound spectrum 

*) This report will be submitted for publication elsewhere. 



1 • INTRODUCTION 

In this note new lower bounds for the spectrum of an operator T acting 

in the Hilbert space L2 (JR+) with complex-valued elements will be gi:en. The 

operator T is generated by the differential expression M[•J 
a 

(1. 1) M[y] = -y" + qy on [0,00), ' - d 
= dx' 

where the real-valued coeffici~nt q is element of Lp(E.+) for some p ~ 1. The 

domain of Ta is defin~d-by 

. (1. 2) V(T) 
a 

= {f I f € L2 (R+), f' is absolutely continuous on [O,X] 

for all X > O, M[f] € L2 (11t), f(O) cosa+f'(O) sina=O} 

and the operator T is defined by 
a 

( 1. 3) T f = M[f], 
a 

f € V(T ) • 
a 

Many results concerning this type of differential operators are given in 

EVERITT [2]. Because q € Lp(:IR.+), p ~ 1, M[•J is in the limit-point case at 

infinity. So T is self-adjoint. Furthermore T is bounded below and there 
a a 

is a discrete (possibly empty)· spectrum below zero, while the essential 

spectrum is the half-line [0,00). In [2] a lower bound for T0 in terms of the 

LP-norm of the coefficient q has been given. For p = 1,2 and 00 this bound 

was already well-known. In this note we improve the bound for T0 and give 

a similar bound for T~12• The proof is a combination of the technique of 

Everitt and a less known result of Sz. NAGY [SJ. 

The idea for this improvement arose form an inequality in ROSEN [4; 

Appendix A] 

(1 .4) 

-co -co -co 

with equality for the choice u(x) = c 1/cosh(c2(x-c3)),_ c 1, c2 ~ O, c3 
arbitrary constants. The author generalized this inequality to the cases 



(1.5) 

1 r+2 

{ j lulr dx}r ~ K(r){ j luj 2c1x}4r{ j 
r-2 

lu'l 2dx} 4r, u € H1(lR), 

-co 

with equality for the choice 

2 

(1.6) u(~) = c 1 {cosh(c2✓r2-4 (x-c3))} r-2 , 

c 1, c2 'F O, c3 arbitrary. The optimal constant reads 

(1. 7) 

K(2) = 1, 
:t-2 

6-r r-2 r-6 rO)r(-2._) -""fr 
K(r) = 2 2r (r-2) 4r (r+2) 4r [ r-2 ] 

r+2 
r(2(r-2)) 

r > 2. 

Afterwards it appeared that Sz. NAGY [5] had already a much more general 

.result which is given below as a theorem. 

THEOREM 1. 1 (Sz. NAGY [5]). Let y be absolutely continuous on R. Let for 

q > 0 ands~ 1 the following integrals be finite 
00 

(1. 8) llyU q 
q = I lyl 4 dx < 00 , 

-co 

00 

(1. 9) lly'lls = I ly' 1 s dx < 00 • 
s 

-co 

Then the following inequalities hold fort= s-1 +-q r>q s , 

1 q (s-1) 1 
t t st t (1.10) sup ly(x) I s (-2) llyH lly'II , 

uR q . s 

(1.11) 

r-q q (r-q)(s-1) r-q 
llyll s [! ii(_!_ s-I) lrt U D i/l + st ) D •U rt 

r 2 r-q' s J Y q Y s ' 

where 

( 1. I 2) H(u,v) 
(u+v)-(u+v)r(l+u+v) 

= ------------------------u -v u r(u)v r(v) 
H(u,O) = H(O,v) = 1. 

2 

r~2, 



'Equality oaaurs in the follObJing aases: 

for (I.IO), s ·= I, ly(x)I monotonely inareasing until x = x0, 

ly(x)I monotonely deareasing from x = x0 ; 

3 

for (I.IO), s > I, y(x) = c 1ysq(jc2x+c31), c.,c2 :f: O, c3 arbitra:ry aonstants 

and 

( I. 13) q <"' s·, Y sq (x) = { (l+x) s~q, 0 s: X S: I ' 
0 ' X > I ' 

(1.14) y sq (x) 
-x 

X ~ 0, q = s, = e 
' 

s --
(1.15) q > s, y sq (x) = (l+x) s-q 

' X ~ O; 

for (1.11), s = I, unless y _ 0 there is no equality; 

for (1.11), q ~ s > 1, y(x) = c 1ysqr(lc2x+c31), c 1,c2 :f: O, c3 arbitrary 

aonstants and u = y (x) is the inverse funation of sqr 

(1.16) Os:us:1; 

for ( 1. 11), s > q~ 1, y(x) =max(O,y (x))mth y (x)definedby (1.16). sqr sqr 

REMARK 1. 1. For q = s = 2, so -that t = 2, (1.5), (1.6) and (I. 7) are found. 

REMARK 1.2. The form of the exponents can easily be found by applying the 

scaling transformations ~(x) = au(Sx), with a,S arbitrary constants. See 

also LEVINE [3] for a discussion for some results concerning estimates of 

the optimal constants in ]Rn, n > 1, for this type of inequalities. 

2. RESULTS 

In this section we formulate and prove our results for the operators 

T0 (Dirichlet boundary condition) and Tn/2 (Neumann boundary condition). 

THEOREM 2.1. Let T0 be defined by (I.I), (1.2), (1.3). Let q E LP(lR+) for 

some p ~ t, and let q be real-valued. Then the fotiowing inequality holds 



2p 

(2. I) (TO"f, f) ~ - .t (p) U qll ;p- I II fll ~, 

whexae (,) denotes the innexa-pxaoduat in L2(:R.+), Uqllp = {J; lqlP dx} 11P, 

and 

(2.2) 

4 

p > I. 

PROOF. Integration by parts and application of the boundary condition yields 

(2. 3) (-f",f) 

The estimate for p > I is obtained as follows. Using Holder's inequality we 

find 
()0 ()0 

(2. 4) (T0f, f) = llf'II~ + Jq1£1 2rui:°>- llf'II; -I lql lfl 2 dx 

0 0 
()0 I "" I 

~ II f' II 2 
2 - {J lqlP dx}p{J lfl2s dx}8, 

0 0 

wheres is the conjugate index of p: s = p/(p-1). Application of (I. 5) with 

r = 2s and with f (x) = 0 for x < 0 gives 

s+l s-1 

(2.5) (T0f,f) ~ llf'U; - llqllp K2(2s)llfll;llf'H/ • 

By application of the inequality 

with the choices 



5 

(2.7) p = 2s/(s-1) = 2p; Q = 2s/(s+l) = 2p/(2p-1), 

1 2 1 1 

(2.8) a= ppllf'II~ = (2p) 2Pllf'II~, 

1 2 

(2.9) b = p-P K2 (2s)llqllpllftt~ = 

the following bound can be found: 

(2. IO) 

Inserting (1.7) with r = 2p/(p-1) gives the result (2.2). For p = 1 the proof 

follows the same lines. We now use (1.10) with q = s = t = 2, i.e. K( 00 ) = 1 and 

(2.6) with P== Q= 2. 0 

REMARK 2.1. EVERITT [2] used instead of the optimal constant K(2p/(p-1)) the 
s-1 I 

value 2~ = 22P and his result reads 

(2. I l) 

where 

_ 2p-2 -~ 

(2.12) k(p) = 2 2p-l p 2p-1(2p-l). 

In the following table we compare the constants 
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p s r = 2s • 22p K(2p/(p-1)) = K(r) k(p) l(p) 

1 

1 22 = 1. 414 1 1 -2 = 0.250 00 00 2 

1 1 8 2 --
2 2 4 24 = 1. 189 3 8 = 0.872 2-23 = 0.750 2 333 = 0.328 

1 1 1 1 4 6 4 4 2 

3 3/2 3 26 = 1.122 26365- 4 = 0.901 ; 5; 55 = o. 768 2- 5; 555 = o.454 

00 1 2 1 

THEOREM 2.2. Let T7f/2 be defined by (1.1), (1.2), (1.3). Let q € tP(lR+) 

for some p ;:::: 1, and let q be real-vaZued. Then the foZlowing inequality holds 

2p 

(2.13) * 2p-1 2 (T7f/2f,f);:::: - 1 (p) HqH 0f0 2, 

where 

2 

(2. 14) * 2p-1 1 (p) = 2 !(p). 

PROOF. For TO as well as for ~7f/2 equation (2.3) is valid. Instead of an 

application of (1.5) with f(x) - O, x < O, we extend fas f(-x) = f(x), 

x;:::: O. For symmetric functions f (1.5) gives, r;:::: 2, 

(2. 15) 

where 

1 r+2 r-2 r-2 
--+ 4 +- 2r 

(2.16) K* (r) = 2 r r 4r K(r) = 2 K(r). 

1 

For the choicer= 2p/(p-1) K*(2p/(p-1)) = z2Pre(2p/(p-1)), wh.ich,has to be 

raised to the power 4p/(2p-1) (see (2.10)). This gives the result (2.14). D 
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REMARK 2.2. EASTHAM [l] has noticed that the estimates for T0 given by 

EVERITT [2] are also applicable for the operator T'IT12 • In view of the fact 

that 

(2.17) K(2p/(p-l)) = {H(p-l,½)}2P < 1, p > 1, 

(see (1.12) for H(u,v)), because H(u,v) is a decreasing function in both 

variables, we find that K*(2p/(p-1)) < 21/(2p). But then Remark 2.1 implies 

* that l (p) < k(p). 

REMARK 2.3. It is clear from the proof of Theorem 2.1 and 2.2 that the in-

. equalities in (2.1) and (2.13) can only be equalities if all three estimates 

(2.4), (2.5) and (2.6) are equalities. In (2.4) this is so if q = - jqj and 

2 

(2.18) q = - C 1 I f I p-1 ' p > 1, 

where c 1 is an arbitrary positive constant. Equality in (2.5) is assured if 

the eigenfunction belonging to the first eigenvalue of the operator T0 or 

T'IT/ 2 equals 

(2.19) f(x) = {cosh(c2(x-c3))}-(p-l), p > l , 

with c2 ,:f. 0 and C3 arbitrary constants (see (1.6)). Equality in (2.6) is 

assured if a 
p bQ = or 

(2.20) 

~ __ 1_ 2E__ 

(2p)llf 1 ll 22 = {K(2E.__)}2p-l(2p) 2p-l(2p-l)llq1f 2P-lllfll 2 • 
2p-I p 2 

It can be proved that (2.18) and (2.19) imply (2.20). From (2.19) it is 

clear that the estimate for T0 can never be an equality, because f(O) ::f. O, 

but since fo1~ c 3 = O, f'(O) = O, the estimates for T'IT/2 offer perspectives. 

Below we shall demonstrate that it is possible to achieve equality for 

T'IT/ 2 , p > 1, and that the estimates for T0 , p > 1, are optimal in the sense 

that the bounds for some special choices of q are arbitrarily close to the 

first eigenvalue. 



Using (2.18), (2.19) we find 

(2.21) M[f] 

p+l ~ 
2 2 2 p-1 p-1 

= - (p-1) c2 f: - p(l-p)c2 f - c 1f • 

For c 1 = p(p-1), c2 = I, c3 = 0 f is an eigenfunction of the operator 

r~12. Since f does not possess any zero, it belongs to the lowest eigen­

value Al= - (p-1) 2 • Making use of the identity 
00 

(2.22) 
r -a 1 
J cosh (x)dx = 2 . a> O, 

0 

we find 

_!e_ 

(2.23) { }-2112p-1 
- i*(p).-p(p-l) cosh(.) p = -(p-1) 2• 

8 

It means that for T = T~/Z' p > I, the bound in this note can give equality. 

For c 1 = p(p-1), Gz = I, c3 = A and q defined by (2.18) the estimate 

(2.1) for r0 gives for all f E V(T0) 

_1£.... 

(2.24) II { } -2,12p-1 
(T0£,f)/(f,f) ~ R.(p) -p(p-1) cosh(.-A) I = 

2 2p-1 -1 r(p+}) 2 A 4 A 
( I) ( I 2 e- p + 0 (e- p ) ) , 

= - p- - P r(½)r(p) 

A-+ 00. 

It is also possible to give an upper bound for the first eigenvalue by 

evaluating the Rayleigh quotient (T0£,f)/(f,f) with the choice 

(2.25) f (x) = {cosh(x-A)} I-p - {cosh(A)} l-p e - (p-l )x. 

~ So f E V(T0). We now find 
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(2.26) 

A -+ "", 

where KP is a positive constant, which depends on p only. So for T = T0, 

p > 1, it follows from (2.24) and (2.26) that the bound (2.1) comes arbi­

trarily clos1e to the first eigenvalue for the special choices of q by 

letting A-+ 00 • In this sense the given bounds for T = T0 , p > 1, are optimal. 
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