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Optimal lower bounds for the spectrum of a second order linear differential

equation with a p-integrable coefficient *)
by

E.J.M. Veling

ABSTRACT

In this note the differential expression M[y] = -y" + qy, q € LP(IJ3
for some p = 1, will be considered on [0,») together with the boundary con-
dition either y(0) = 0 or y'(0) = 0. Lower bounds will be given for the
spectrum of the self-adjoint operators T generated by M[-] and these bounda-
'ry conditions. The bounds depend on the LP-norm of the coefficient q and

they improve results of Everitt and Eastham. For p > 1 the bounds are optimal.

KEY WORDS & PHRASES: singular second order linear differential equation,

Sturm-Liouville problem, lower bound spectrum

*) This report will be submitted for publication elsewhere.



1. INTRODUCTION

In this note new 1ower bounds for the spectrum of an operator T acting
in the Hilbert space L CR ) with complex—valued elements will be glven. The

operator Ta is generated by the differential expression M[-]
: - n |—d
(1.1) Myl =-y" + qv on [0,=), = 45

. . . +
where the real-valued coefficient q is element of LP(I() for some p = 1. The

domain of Ta is defined by

(1.2) D(Ta) = {f | f e Lz(lfv, f' is absolutely continuous on [0,X]
for all X > 0, M[f] ¢ L2(»]R+), f(0) cosa +£'(0) sina =0}

and the operator Ta is defined by
(1.3) Taf = M[f], f e D(Ta)'

Many results concerning this type of differential operators are given in
EVERITT [2]. Because q € LP(IC), p=1, M[-] is in the limit-point case at
infinity. So Ta is self-adjoint. Furthermore Ta is bounded below and there
is a discrete (possibly empty) spectrum below zero, while the essential
spectrum is the half-line [0,»). In [2] a lower bound for TO in terms of the
LP-norm of the coefficient q has been given. For p = 1,2 and « this bound
was already well-known. In this note we improve the bound for T0 and give
a similar bound for Tﬂ/z. The proof is a combination of the technique of
Everitt and a less known result of Sz. NAGY [5].

The idea for this improvement arose form an inequality in ROSEN [4;

Appendix A]
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with equality for the choice u(x) = cl/cosh(cq(x—c3)),_cl, c, # 0, cy

arbitrary constants. The author generalized this inequality to the cases
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r Iw
(1.5) } < KR(r) 1 I |u| dx

(] o s

=00 —

with equality for the choice

(1.6)

__Z
&

r—2

s U € H](]R)’ r>2,

I ‘u l dx

2
u(x) = ¢ {cosh(c Yr2-4 (x-c 3))} 2

C1s Cy # 0, cy arbitrary. The optimal constant reads

K(2) =1,
6-r r-2 2 _x=2
rT(IT (=) 2r
‘(1_7) K(r) = 5 2T (x-2) 4r (r+2) 4r'- r+21' -2 ] , ot 2.
1-I(Z(r 2))

Afterwards it appeared that Sz.

result which is given below as a theorem.

THEOREM 1.1 (Sz.

q>0and s 2

(1.8)

||y"g ly]? dx < o,

(1.9)

|ly'||: ly']® dx < =,

]
I

Then the following inequalities hold for t

l q(s-1)
(1.10) sup |ly(x)]| < 2 t f ﬂ st Iy
xeR
r-q 2
(1.11) Iyl < EH(—E—S—")]“ Iyl T
° y r ~ 2 —? s y q

where

(1.12) H(u,v) = (u+v)_(u+v)r(1+u+v)’

u*uF(u)v_VP(v)

NAGY [5] had already a much more general

NAGY [5]). Let y be absolutely continuous on R. Let for
1 the following integrals be finite

s—1
1 t—5 L r>gq

1

'||t

Sl (=) r-—q
st ly'n TF

S
H(u,O).= H(O,v) = 1.



Equality occurs in the following cases:

for (1.10), s = 1, |y(x)| monotonely increasing until x Xg

XO;

|y(x)| monotonely decreasing from x

for (1,10), s > 1, y(x) = clysq([c2x+c3|), cysc,y # 0, cy arbitrary constants

and
s
- (1.13) q < s, ysq(x) = {(l+x)s_q, 0<sx<1,
o , x> 1,
(1.14) q=s, ysq(x) =e X , x 20,
S
(1.15) q4> 8, v (0 = (+x)5 %, x>0

I
—

for (1.11), s =
for (1.11), ¢q

constants and u

, unless y = 0 there is no equality;

v
n

> 1, y(x) = ¢,y (|c2x+c3|), c1scy # 0, cq arbitrary

sqr
ysqr(x) s the inverse function of

1

- dv .
(1.16) x f Gy 17 0<ucxl;

u

for (1.11), s > q 21, y(x) = max(O,ysqr(x)) with ysqr(x) defined by (1.16).

REMARK 1.1. For q

I
(2]

= 2, so that t = 2, (1.5), (1.6) and (1.7) are found.

REMARK 1.2. The form of the exponents can easily be found by applying the
scaling transformations ;(x) = au(Bx), with o,B arbitrary constants. See
also LEVINE [3] for a discussion for some results concerning estimates of

the optimal constants in Igl, n > 1, for this type of inequalities.
2., RESULTS

In this section we formulate and prove our results for the operators

T0 (Dirichlet boundary condition) and T_"/2 (Neumann boundary condition).

THEOREM 2.1. Let T, be defined by (1.1), (1.2), (1.3). Let q e LP(R") for
some p 2 1, and let q be real-valued. Then the following inequality holds



2p

2pD—-
@.1) (@5 2 - @) lql P Mgl £ e oery,

where (,) denotes the imner-product in Lz(lf), Hqu = {f: lq|P dx}llp,
and

[ (1) = 1/4,
-2r_ _ _2p_ 2 2p=4 -2
2.2) 4 ) =2 2P0 2P'1(zp_])zp‘l(P_I)ZP'I[P(%)T(P”I)] 2p-T
: r'(p-z)
-_2p_ 3 2p=2 -4 2
L = 272 2P (p-1) 2P (o) 2P o1y 17 2RI (0po0y192PT ) L s gL

PROOF. Integration by parts and application of the boundary condition yields

|
Fh

2.3) (-£",£) = 'Hg.

The estimate for p > 1 is obtained as follows. Using Holder's inequality we
find

o2
(2.4) (Tof,f) I £ u2 +
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r = 2s and with £(x) = 0 for x < 0 gives

s+1 s—1
2 2 s s
— L
(2.5) (Tof,f) > If H2 Hqﬂp K (2s)llfﬂ2 I £ ﬂ2 .
By application of the inequality
P Q -1 -1 _
(2.6) ab<a/P+b%/Q, a,b>0, 1 <P<w, P +Q =1,

with the choices



2.7 P = 2s/(s-1) = 2p; .Q = 2s/(s+1) = 2p/(2p-1),
12 1 1
(2.8) a = PR1ent = p?Pren},
1 2 1 2p-1
(2.9) b=PFK (Zs)“q“ uqu m 2P x (2P al bel, o,

- the following bound can be found:

(2.10) (Tof,£) = - bQ/Q
4s 2s _s-1
- - {K(ZS)}S+]H |S+‘c___) S+1(S+])Hfﬂ
_4p __2p 2p

{K( )}zp o) 'ZP'l(zp—l)uqHZP"nfug_

Inserting (1.7) with r = 2p/(p-1) gives the result (2.2). For p = | the proof
follows the same lines. We now use (1.10) with q=s=t=2, i.e. K(®) = 1 and
(2.6) with P=Q=2. [J

REMARK 2.1. EVERITT [2] used instead of the optimal constant K(2p/(p-1)) the
s—l 1
value 22S = 22p and his result reads
2p
l uzP -

(2.11) (Tof,f) -k(p) lq IIfII ,
where

_2p=2 __2p_

2p-1 2p—-1

(2.12) k(p) = 2 P77 p PN (2p-1).

In the following table we compare the constants



_2'— .
p s r=2s|2°P RK(2p/ (p-1)) = K(x) k(p) £(p)
1
| o e 22 = 1.414 1 1 9272 = 0.250
1 -1 _82
2 2 4 %= 1.189 38 =o0.872 12723 =o0.750 2 333 = 0.328
1 111 ) _4_ 42
33/2 3 20 = 1,122 2%3%5 % = 0.901 {2 23 %5 = 0.768 2 23 75° = 0.454
o 1 2 1 1 1 1

THEOREM 2.2, Let T
— m/2

be defined by (1.1), (1.2), (1.3). Let q ¢ LP(R")

for some p =2 1, and let q be real-valued. Then the following inequality holds

(2.13) (T, o502 = £ () I qt %P1 Hfﬂg,
where _

2
(2.14) ) = 2271 ).

PROOF. For T0 as well as for Iﬂ

application of (1.5) with f(x)

x 2 0. For symmetric functions

/2 equation (2.3) is valid. Instead of an

£

0, x < 0, we extend f as f(-x) = £(x),

> 2,

(1.5) gives, r

° 1 @ r+2 -2
(2.15) {I Iflrdx}r < K*(r){J |f|2dx}"'r {f lfilzdx}‘*r ,
0 0 0
where
1,2 2 =2
2.16) K@ =2T 4 4 @) = 22T k().

For the choice r

1

2p/ (p-1) K%(Zp/(p—l)) = ZEEK(ZPI(p—l)), which:has to be

raised to the power 4p/(2p-1) (see (2.10)). This gives the result (2.14). [



REMARK 2,2, EASTHAM [1] has noticed that the estimates for T, given by

EVERITT [2] are also applicable for the operator Tﬂ/z. In vigw of the fact
that

e
2.17) K@/ (p-1)) = {HGp-1,H P < 1, P> 1,

(see (1.12) for H(u,v)), because H(u,v) %7 a decreasing function in both
variables, we find that K*(Zp/(p—l)) <2 (2p) . But then Remark 2.1 implies
that £7(p) < k(p).

REMARK 2.3. It is clear from the proof of Theorem 2.1 and 2.2 that the in-
-equalities in (2.1) and (2.13) can only be equalities if all three estimates
(2.4), (2.5) and (2.6) are equalities. In (2.4) this is so if q = - lq! and
T 5

(2.18) qQ=- cllf‘p_l > p>1,

where ¢y is an arbitrary positive constant. Equality in (2.5) is assured if

the eigenfunction belonging to the first eigenvalue of the operator T0 or

Tﬁ/2 equals

(2.19) £(x) = {cosh(cz(x—q3))}'(9'l), p>1,

with c, # 0 and cq arbitrary constants (see (1.6)). Equality in (2.6) is

assured if aP = bQ or

4p 1 2p

w2 2 2p-1,, | 2p~1,, _ 2p=1; .42
(2.20) @p)leml) = {K(Eng)} (2p) (2p 1)uqup E{ P

It can be proved that (2.18) and (2.19) imply (2.20). From (2.19) it is

" clear that the estimate for TO can never be an equality, because £(0) # 0,
but since for cy = 0, £'(0) = 0, the estimates for Tﬂ/2 offer perspectives.
Below we shall demonstrate that it is possible to achieve equality for
T"/Z, p > 1, and that the estimates for TO’ p > 1, are optimal in the sense
that the bounds for some special choices of q are arbitrarily close to the

first eigenvalue.



Using (2.18), (2.19) we find

+1 - p+l
2 _p— p-1
- p(I—p)c2 f - clf .

o

|

-t

(2.21)  MIf] = - (p—1)2c22fi

For ¢, = p(p-1), c, = 1, cy = 0 f is an eigenfunction of the operator

Tﬂ/z. Since f does not possess any zero, it belongs to the lowest eigen-—

value Al = - (p-l)z. Making use of the identity
© 1
(- | TR
(2.22) J cosh (x)dx = T T a >0,
r&t
0 2
we find
_2p_
) =2y 2p-1
(2.23) - 2k(p)ﬂ-p(p-l'){cosh(-)} "P = -(p-l)z-

It means that for T = Tn/Z’ p > 1, the bound in this note can give equality.
For e, = p(p—-1), c, = 1, cy = A and q defined by (2.18) the estimate

(2.1) for T, gives for all f e D(To)

0
2p

i

=2, 2p-1
l(P)"—p(p—l){cosh(.—A)} | =

H
Hh?
N’
S~
~~
Fh
Fh
g
%

(2.24) (T

-1 -1 T(p+3) -2pA

(o132 1_02P
®e-D" (1=2"% "2 piyrepy ©

+ 0(e PAyy,

A > =,

It is also possible to give an upper bound for the first eigenvalue by

evaluating the Rayleigh quotient (Tog,?)/(f,f) with the choice

2.25)  F(x) = {cosh(x-A)}'"P - {cosn(a)}! Pe” (PTDE,

So f e D(TO). We now find



£5H/ED < - (p'-1>2<1—KPe'(P'”A + 0(e (DA

(2.26) (To

A—>co,
where KP is a positive constant, which depends on p only. So for T = TO’
p > 1, it follows from (2.24) and (2.26) that the bound (2.1) comes arbi-
trarily close to the first eigenvalue for the special choices of q by

letting A » ». In this sense the given bounds for T = TO’ p > 1, are optimal.
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