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Variational analysis of a perturbed free boundary problem*) 

by 

O. Diekmann & D. Hilhorst 

ABSTRACT 

Using convex analysis we show that the solution u of a nonlinear 
E 

boundary value problem (depending on a parameter E) converges to a limit u0 
as E + O. We characterize u0 as the solution of a free boundary problem 

and we discuss some of its properties. 

KEY WORDS & PHRASES noniinear boundary vaiue probiem, integrai condition, 

singuiar perturbation, convex anaiysis, duaZity theory, 

maximai monotone operator, free boundary probZem 

*) This report will be submitted for publication elsewhere 





1. INTRODUCTION 

where 

(i) 

(ii) 

In this paper we study the nonlinear boundary value problem 

BVP 

. u 
-~u + h(-) = f inn 

£ 

j h(u~x))dx = C 

n 

ulan is constant (but unknown) 

n n is a bounded open subset of lR with smooth boundary an 

£ is a small positive parameter 

(iii) h: JR+ lR is a given continuous, strictly monotone increasing 

function with h(O) = 0 

(iv) f is a given distribution in H- 1(n) 

(v) C is a given constant which satisfies the compatibility condition 

h(-~)lnl < c < h(+~) lnl. 

Here lnl denotes the measure of n. 

The motivation for studying BVP partly stems from the physics of ionized 

gases and in this respect we continue earlier work [15, 16, 21, 22]. We refer 

to [22] and Appendix 2 for a discussion of this connection. 

Our basic tools are the calculus of variations, convex analysis and the 

maximum principle. 

We prove that BVP admits for each£> 0 a unique solution u which con-
£ 

verges as£~ 0 to a limit u0 • Moreover, we give a variational characteriza-

tion of u0 which narrows down to the conclusion that u0 solves a free bound­

ary problem. 

Our findings fit in with those of BRAUNER & NICOLAENKO [7, 8] in their 

study of related Dirichlet problems (we certainly have been inspired by 
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their paper). In this connection it is also w0rth mentioning the work of 

FRANK & VAN GROESEN [18] and FRANK & WENDT [19] which analyses in particular 

the coincidence set. In Appendix 1 we give the analysis of the homogeneous 

Dirichlet problem. 

In the physical problem of Appendix 2 the parameter£ naturally appears 

in the same way as in BVP. In other situations one may arrive at the equation 

-e/::;.v + h(v) = f. 

Then our results bear on ev and h(v ). 
£ £ 

In a recent paper [9] BRAUNER & NICOLAENKO stress the following point. 

Suppose one wants to analyse some free boundary problem, then it may be pos­

sible to view this problem as the limit when e+ 0 of a problem like BVP (with 

£ occurring in the argument of a smooth function). This smooth regularization 

can be used to solve problems of existence, regularity and approximation and 

it forms an alternative version of the usual penalization method. (see also 

[6]). 

After these general remarks, let us describe the contents of the paper 

in some more detail. We shall interpret BVP as the subdifferential equation 

av (u) = 0, where V is a proper, strictly convex, lower semicontinuous and 
£ £ 

coercive functional defined on the direct sum of Hb(Q) and the constant 

functions on Q. This is rather easy if h satisfies certain growth restric­

tions. For the general case we heavily lean upon some results of BREZIS [II]. 

These and some other preliminaries are collected in section 2. The functional 

V is defined in section 3 and from its properties we deduce the existence 
£ 

and uniqueness of a solution uE for each£> 9. 
The functional V depends monotonously on£ and therefore has a well-

£ 

defined limit v0 • Moreover, VE is coercive uniformly in£ and consequently 

we deduce in section 4 that as£+ 0 uE converges to u0 , the minimizer of v0 • 

The subdifferential av0 is multivalued. We find that u0 satisfies an operator 

inclusion relation if his bounded and a variational inequality if his un­

bounded. We emphasize that the reduced problem is piecewise linear: u0 de­

pends only on f,C and h(±~). 

Problem BVP has the form 



u Lu+ N (-) = f 
£ 
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where both Land N are maximal monotone operators. The variational approach 

suggests the introduction of a dual formulation (in section 5) which turns 

out to be of the form 

(£A + I)p = g 

where A is a maximal monotone operator on (L2 (ri))n with a special structure, 

and where g is related to f by div g = f. This gives some further insight 

into the convergence. The limit pO equals the projection of g onto the closed 

convex set V(A). Duality theory yields a characterization of V(A) by inequal­

ities which seems difficult to obtain directly. Duality theory has been 

applied to related problems by ARTHURS &-ROBINSON [4] and ARTHURS [3]. For 

the basic theory we refer to EKELAND & TEMAM [17] 

In section 6 we assume f EL (Q), We employ maximum principle arguments 
CX) 

and make some estimates. We prove that u and uO belong to w2 •~ (Q) -for each 
£ 2 -

p ~ 1 and that u£ converges weakly to uO in W ,P(O) for each O with O c Q. 

Either one has convergence in w2 'P(Q) itself, or a boundary layer develops• 

as £ + O. We present criteria in terms of the data f, h(±00) and C from which 

it can be decided in many cases which of these two possibilities actually 

occurs. In section 7 we briefly discuss the one-dimensional case. 

Our analysis reveals that BVP and the homogeneous Dirichlet problem 

have exactly the same variational structure. In order to emphasize this point 

we analyse the latter problem in Appendix 1. Finally, we discuss the physical 

background of BVP in Appendix 2. 

ACKNOWLEDGEMENT 

We like to thank Ph. Clement for some very important hints and refer­

ences and H. Brezis for some estimates. The idea to apply duality theory has 

grown out of conversations with R. Temam. We gratefully acknowledge helpful 

discussions with L.A. Peletier and E.W.C. Van Groesen. H.J. Hilhorst has 

derived BVP for us. 



4 

2. PRELIMINARIES 

In this section we collect some definitions and results from the litera­

ture which we will use later. We state these in the form we need, which is 

not always the most general. 

* Let B be a Banach space and B its dual. Let F : B ➔ (-00 ,+00 ] be a proper 

(i.e. Ft +00), lower semicontinuous (l.s.c.), convex functional. The polar 

(or conjugate) functional F* : B* ➔ (-00 ,+00 ] is defined by 

(2. I) F*(u*) = sup{<u*,u> - F(u) I u E V(F)} 

where 

(2. 2) V(F) = {u I F(u) < +oo} 

* and where<•,•> denotes the duality pairing between B and B. The subdiffer-

ential aF is a, possibly multivalued, mapping of X into x* defined by 

(2. 3) * * u E aF(u) if and only if F(v) - F(u) ~ <u ,v-u>, Vv EB. 

LEMMA 2.1. 

u* E aF(u) if and only if F(u) + F*(u*) = * <u , u>. 

LEMMA 2.2. 

u* E aF(u) if and only if u E aF*(u*). 

A convenient reference for these items is EKELAND & TEMAM [17]. 

If Bis a Hilbert space one can identify Band B* and then aF becomes 

a mapping of B into itself. It is well-kno'Wil that aF is maximal monotone. 

LEMMA 2.3. Let H be a H1.:lbert space and A a maximal monotone operator on 

H. Then3 for each E: > 0, (I+ E:A)-l is a contraction defined on all of Hand 

lim (I+ E:A)-l h = projection of hon 1J"V0. 
E:tO 
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For this standard result we refer to BREZIS [IO]. 

Let, as before, 

We shall write H6,L2 
denote JQ u(x)dx. 

Q be a bounded open subset of ]Rn with smooth boundary. 
1 etc. to denote H0 (Q),L2 (Q) etc. Also, we write Ju to 

Let j : JR ➔ [0,+00 ] be a convex, l.s.c. function such that j(O) = 0. 

The convex, l.s.c. functional J: Hb ➔ [O,+oo] is defined by 

(2. 4) J(u) = { I j(u) if j(u) EL} 

otherwise. +oo 

The following two lermnas are special cases of results due to BREZIS [11]. 

LEMMA 2. 4. Suppose V (j ) = JR then 

-1 * 
* J (w) = 

{ I j*(w) if w EH n 1 1 and j (w) E 1 1 

+co otherwise. 

LEMMA 2.5. Suppose V(j) = JR then w E 3J (u) if and only if w E H-l n 1 1, 

w. u E 1 1 and w(x) E aj (u(x)) for almost aU x E Q. 

Finally, we quote a special case of a result of BREZIS & BROWDER [12, 13]. 

-1 1 
LEMMA 2.6. Assume w EH n 1 1 and u E H0 are such that w(x)u(x) 2 g(x) 

for almost all x E Q and some g E 1 1. Then w.u E 1 1 and 

<w,u> = I w.u. 

-1 
Here and in the following<•,•> denotes the duality pairing of H and 

1 I 

H0 • We obs,erve that Lemma 2.6 implies that the condition w.u E 1 1 in Lermna 

2.5 is automatically satisfied. 
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3. VARIATIONAL FORMULATION 

Let X be the direct sum of Rb and the cqnstant functions: X = Rb e {c}. 

If u is some element of X, we write u = ~ + ulan for its decomposition.Xis, 

provided with the topology inherited of H1, a Hilbert space. Moreover, Xis 
' h' I d h HJ . . 1 . h h isomorp ic to HO x lR an t e -norm is equiva ent wit t e norm 
~ * II ull HJ + I u I an I on X. So we can realize the dual space X by 

0 

* -1 X = H X JR 

the pairing being given by 

<(w,k),u>x = <w,u> + kulan· 

Consider the functional W defined on X by 

(3. I) { I H(u) - c ulan 
W(u) = 

+co 

if H(u) E L 1 , 

otherwise, 

where by definition 

(3.2) 

LEMMA 3. J. 

H(y) - j h(n)dn-

0 

* { f H+*co(w) W (w,k) = 

if w E LI n H-l, H* (w) E LI and f w = k+ C, 

otheruise. 

1 
PROOF. The idea is to take first the supremum with respect to the HO-component 

and to use Lennna 2.4. 

sup{<w,~> + k ulan - f H(~+ ulan) + C ulan l u E H6, ulan E JR} 
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sup{ f H* (w) - u I an f w + (k + C) u I an I u I an E '1R} 

= -1 * if w E L1 n H and H {w) E L1 

+00 otherwise 

if w E L1 n H-l, H* (w) E L1 and I w = k + C 

= 

otherwise. 

LEMMA 3.2. 

aw(u) = 
- C) 

-I if h(u) EH n LI 

otherwise. 

PROOF. (i) Let (w,k) E aw(u) then 

for all '; E Hb and all vi an· E ]R.. ·By first taking vi l)ij ;:· ul an, we see that 

necessarily w belongs to the subdifferential of the functional~ ➔ W(~+ul ) 
an 

defined on H6· Hence, by Lemma 2.5, w = h(u) and w E L1• Next, a combination 

of Lemma 2.1 and Lennna 3.1 shows that necessarily k = J w- C = J h{u) - C. 

(ii) Conversely, let h(u) E H-l n L1• Since his the derivative of H we have 

H(v) - H(u) ~ h(u) (v-u) = h(u) (';- ~ + (v-u) I an). 

So if H(v) and H(u) E L1, we can invoke Lemma 2.6 and conclude that 

h(u)(';- ~) E L1 and that the integral equals the duality pairing. Integra­

tion of the inequality then yields, after adding a term -C(v-u)lan' 

W(v) - W(u) ~ <h(u),';- ~> + <J h(u) - C)(v-u)lan· D 
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* -1 We remark that, by Lemma 2.2, aH = h • So, since his strictly mono-

tone, 

(3.3) * 1 -1 
H (y) = J h (n)dn. 

0 
n Let g E (L2) be such that div g = f. The functional G 

defined by 

(3.4) G(p) = f (½p2 + g.p) 

is Frechet-differentiable with derivative p+g. The polar functional 

G* : (L2)n + JR is given by 

(3.5) * f 2 G (p) = 6 (p-g) 

and its derivative is p-g. 

We define the bounded linear mapping T 

(3. 6) Tu= - grad u. 

. . * ( )n * . . b Its adJoint T: L2 + X is given y 

(3. 7) T*p = (div p,O). 

Clearly the functional u» G(-Tu) defined on Xis differentiable with deri­

vative -T*G'(-Tu) = (-6u - f,O). 

Finally, let us put together the materials constructed above. Define 

V X ➔ (-oo,+oo] by 
e: 

(3.8) 

Then 

(3. 9) 

v (u) = G(-Tu) + e:W(~). 
e: e: 

__ {(-6u(/J- f + h(~), 
av (u) 

e: 

f h(~) - C) 

otherwise 
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and, consequently, the problem BVP is equivalent with the variational problem 

VP Inf 
UEX 

V (u). 
£ 

THEOREM 3.3. VP has a unique solution u . 
£ 

PROOF. G is convex, Wis strictly convex and both functionals are l.s.c. (by 

Fatou's lenuna). It remains to verify that V is coercive on X. It is con-
£ 

venient to rewrite the functional V as 
£ 

VE (u) = I(½ (gradu) 2 + (g-a). gradu + £ H(~) - l~I u) 

where lnl denotes the measure of n and a is such that diva= Cini-I (for in-
-I -1 

stance take a= C(nlnl) (xl' •.• ,xn)). Since Cini E (h(-00),h(+oo)), there 

exist positive constants o and M1 such that 

By the inequalities of Holder and Poincare there exists a positive constant 

M2 = M2(n) such that 

Hence, using Holder's inequality once more, we find 

V£(u)2:::½llgradulli2 - llg-a11L2 llgrad ullL2 +olnl I ulanl- o J1~1-M1 

2::: ¼llgrad ulli + olnl I ulan I - M3 
2 

for some constant M3 • It should be noted that the right hand side is inde­

pendent of£, D 
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4. LIMITING BEHAVIOUR OF u ASE -1, 0 
E 

In this s,~ction we show that uE converges as E -i, 0. The limit u0 is 

characterized as the unique solution of a variational problem. Equivalently 

one can charac1terize u0 by an operator inclusion relation if his bounded and 

by a variational inequality if his unbounded. It turns out that u0 depends 

only on h(±oo), f and C. 

As E -1, O, the function h(l) converges in the sense of graphs to the 
E 

multivalued function 

(4. 1) 

We define 

(4. 2) H ('") 0 ., 

r h ( +oo), 

= i [h(-oo),h(+oo)J, 

l h (-oo), 

r 
= 1 

h(+oo)y, 

0 ' 

h (-oo)y' 

y > 0 

y - 0 

y < o. 

y > 0 

y = 0 

y < 0 

LEMMA 4.1. EH(~) converges_monotonousZy increasing to H0 (y). 

PROOF. h(~) increases towards h0 (n) for n > 0 and decreases towards h0 (n) 

for n < O. Since£ H(l) = JY h(!l)dn we can use Lebesgue's monotone conver-
£ 0 E 

gence theorem. D 

We note that, by Dini's theorem, the convergence is uniform on compact 

subsets if his bounded and, for instance, uniform on compact subsets of 

(-oo,OJ if h(-oo) > -oo and h(+oo) = +00 • Motivated by LeDll!la 4.1 we define 

(4. 3) 
otherwise 

and we introduce the reduced variational problem 



RVP Inf 
UE:X 

I I 

G(-Tu) + w0 (u). 

Exactly as in the proof of Theorem 3.3 it follows that RVP has a solution. 

The functional G(-Tu) + w0 (u) is convex, but not strictly convex. Still we 

have 

LEMMA 4.2. RVP has a unique solution u0 • 

PROOF. Since G(gradu) is strictly convex on H~, two minimizers can only 

differ by a constant. For arbitrary u EX define 

Then 

and 

Q+(u) = {xi u(x) > 0}, n0 (u) = {xi u(x) = O}, n_(u) = {xi u(x)<O}. 

lim ¾<wo(u+o)-Wo(u)) = h(+00)ln+(u)l+h(+00)lno(u)l+h(-00)IQ_(u)I - C 
HO 

!!~ ¾<wo(u+o)-Wo(u)) = h(+00)ln+(u)l+h(-00)lno(u)l+h(-00)ln_(u)I - c. 

So if w0 (u+l) is constant for Ill ~ n then necessarily for those values of 1. 

h(+00 ) ln+(u+l) l + µ(-00 ) ln0 (u+l) I+ h(-00 ) ln_(u+l.) I = c. 

Since h(+00 ) > h(-00 ) this implies that 

{x I -n ~ u(x) ~ n} 

has measure zero. Then, however, u has to be sign-definite (this follows, 

for instance, from the connection between Sobolev and Beppo Levi spaces; 

see DENY & LIONS [14]) and we arrive at the conclusion that either 

h(+00)lnl = C or q(-00)lnl = C. Finally, the compatibility condition excludes 

both of these possibilities. 0 
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THEOREM 4.3. 

PROOF. 

Step 1. We know that V is coercive uniformly in e: (see the proof of Theorem e: 
3.3). Hence llu€RX ~ M for some constant M independent of e: and, consequently, 

the weak limit set of {u} is nonempty. e: 
Step 2. Suppose ue: .-:::.u as n ➔ +00 and suppose that h(+m) = +00 • We claim 

- n o . I - o . o I that u ~ o. Define Qo = {x u(x) ~ o > 0} and~= {x E Qo Ue:n(x) ~ ½o}. 
Then 

Hence, since ue:n + u strongly in L2 , necessarily l~I ➔ IQgl. Furthermore, 

~ e: f n 

Qo 
n 

H ( _o ) 
\ 2e: n 

Ug 

Since e: f H ( e: n ) is bounded ·uniformly in n and since 
n n o 

0 e: H ( -2- ) ➔ +m as 
n e:n o 

n ➔ +m, necessarily IQ I ➔ 0 as n ➔ +00 • So we must have 
n 

IQ0 1 = o. 
Since o > 0 was arbitrary we conclude that u ~ 0. Similarly, h(-00) = - 00 

-implies u ~ O. 
-Step 3. Suppose ue: 

n 
_::,. u as n ➔ +00 • We claim that Ve: (ue:) ➔ V0 (u). 

n n 
From Ve: Cue:) - Ve:n (u) ~ n n 

<aVe: (u), u - u>X we obtain, using step 2, 
~n e:n 

V (u ) -. V (u) ~ f (grad ti + g)(grad u - grad u) 
e: e: e: e: 
·n n n n 

+ J(h( ~ )(u - u)) - C(u - ~)Ian e: e: e: 
n n n 

Since the right-hand side converges to zero as n ➔ +00 we find 
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lim inf V 
n ➔ +00 e:n 

(u ) ~ lim V 
e: e: n n➔oo n 

On the other hand, since ue: minimizes Ve: and since V (v) is, for fixed v, 
n n e: 

monotone with respect toe: (Lemma 4.1), we have 

Ve: (ue:) ~ Ve: (~) ~ V0 (~). 
n. n n 

-Step 4. Suppose u _::.. u as n ➔ +00 • Then 
e: 

and 

V e: n 

n 

(u ) 
e: n 

therefore v0 (~) ~ 

~ Ve: (u0 ) ~ v0 (u0 ) 
n 

vo<uo)· Hence u = uo. 
Step S. We now know that uo is the only point in the weak limit set of {u} 

e: 
and thus u _.:,,. u as e: + o. From e: 0 

e: I (H ( ue:e: ) - H ( ue:o ) ) ~ I h ( 

and Step 2 we conclude that 

It then follows from the weak l.s.c. of G and Step 3 that necessarily 

llgrad u IIL ➔ llgrad u0 II as e: + 0. Consequently u converges in fact strang-
e: 2 L2 e: 

ly in X to u0 . 0 

* In order to get more information about u0 we first determine w0 and aw0 • 

We write u ~ 0 for some u EX if and only if u(x) ~ 0 for almost all x En. 

Let C denote the closed, convex, positive cone corresponding to this ordering. 

By duality C induces a cone c* in x*: we write (w,k) ~ 0 if and only if 

<(w,k),u>x~ 0 for all u EC. For any u EX we define u+ = max(u,O) and· 

u~ .~ max(-u,O). Then u+ EX, u EX and at least one of these belongs to H~ 

(see, for instance, KINDERLEHRER & STAMPACCHIA [23, Ch. II, Proposition 5.3]). 
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In the following we slightly abuse notation. But let us agree upon the 

convention that any inequality in which a quantity +co appears is trivially 

fulfilled. 

LEMMA 4.4. 

PROOF. 

. * (h(+co)-w,h(+co) In! - C- k) E C 

= jf O 

+a, 

if both 
* ( w - h (-co) , k - h ( - 00 ) I n I + c) E C 

otherwise. 

w;(w,k) = sup{<(w,k),u>x - I h(+co)u+ + I h(-co)u_ + C ulan I u € X} 

= sup{<(w-h(+00),k- h(+co)lnl + C), u+>x 

- < ( w - h (-co) , k - h ( - 00 ) I n I + c) , u _ > x I u E x} . D 

LEMMA 4.5. Suppose - 00 < h(-co) < h(+00 ) < +00 then 

awo(u) = {(w,k) J w E 1·1, w(x) E ho(u(x)) for a.e. x En, k = f w- C}. 

PROOF. (i) Suppose (w,k) E aw0 (u). As in the proof of Lennna 3.2 it follows 

that w E 1 1 and w(x) E h0 (u(x)) a.e •• Let vn be the solution of 

l t. v + v = 0 
n n n 

Then v ~ O and, as n-+ co, v converges strongly in 12 to zero. By 
n n 

Lennnas 2.1 and 4.4 we know that 

< (h ( +oo) - w, h ( +00 ) In l - C - k) , v n > X ;;:,: 0 

and 

<(h(-oo)-w, h(-co)lnl-C-k), vn >x:;:; o. 



15 

Taking into account that w E L00 (since w E h0 (u)), we rewrite these inequali­

ties as 

f (h(:+00)- w)(vn-1) + h(+00 ) lf21 - C - k ;:;:-; 0 

and 

f (h(-00)-w)(vn-l) + h(-00)ID.I - C - k $ 0. 

Upon passing to the limit n + +00 we find that f w - C - k ;:;:-; 0 and 

f w - C - k $ O. 

(ii) is exactly the same as the second part of the proof of Lemma 3.2. 0 

COROLLARY 4.6 .. Suppose - 00 < h(-00 ) < h(+oo) < +co then RVP is equivalent with the 

reduced boundary value problem 

~u + f E h0 (u) 

f c~u + f) = C 

ul;m is constant (but unknown) . 

Finally, let us consider a function h which is unbounded. We concentrate 

on the case h(-oo) > - 00 and h(+00 ) = +00 • From the proof of Theorem 4.3 we know 

that u0 $ 0. Consequently RVP is equivalent to minimizing a differentiable 

functional on the cone - C and, therefore, with the variational inequality: 

VI 
{ Find u E -C such that for all v E -C 

< ( - ~u + h ( - 00 ) - f , h ( - 00 ) I Q I - C) , v- u> 
X 

;?; o. 

Unfortunately we cannot use Lemma 2.5 in this situation (see, however, [20]) 

but still we have 

LEMMA 4.7. Suppose h(-00 ) > -oo and h(+w) = +00 • Then 
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PROOF. This follows directly from Lermna 2.1~ Lemma 4.4 and the fact that W 
0 

is linear on the negative cone. 0 

5. THE DUAL FORMULATION 

So far we have used polar functionals repeatedly, but we have not 

yet given a systematic presentation of duality theory as applied to our 

problem. This will be done now. We follow closely EKELAND & TEMAM [17, Ch. III, 

section 4, in particular Remarque 4.2]. 

The dual formulation of VP, corresponding to the splitting V (u) = 
e: 

= G(-Tu) + e:W(~), is given by 
e: 

* * * Inf e: W (T p) + G (p). 
pe:(L2)n 

Since VP is stable (use [17, Proposition III.2.3]), VP* has a (unique) solu­

tion p • Furthermore, the infima are equal to each other and u and p are e: e: e: 
related by the so-called extremality relations 

(5. 1) 

(5 .2) p = aG(-Tu ). e: e: 

By Lemma 3.2 and (3.4) these can be rewritten as 

(5. 3) div p = h( ~ ) and h( ~ ) = C u J u 
e: e: e: 

(5.4) p = g + grad u. e: e: 

Note that g is not uniquely determined by div g = f but that (5.3) and (5.4) 

define p - g and div p unambiguously. One can view (5.3) and (5.4) as a 
e: e: 
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canonical splitting of BVP into first order equations. Indeed, elimination 

of p leads to BVP. On the other hand, we can also eliminate u to find the 
E E 

subdifferential equation satisfied by p : 
E 

(5. 5) E T(aw)- 1 (T*p ) + p = g E E 

or, more explicitly, 

J 

-1 -E grad(h (div p )) + p = g E E 

BVP* I div pE = C 

l -1 h (div p) E X E 

By Lemmas 2.2, 3.2 and [17, Proposition I.5.7] the operator A from (L2)n into 

itself defined by 

(5. 6) 

l Ap = -grad(h-1(div p)) 

C, div p = h(u) for 

some u EX} 

• 
* * is the subdifferential of the convex l.s.c. functional p 1+ W (T p). Conse-

quently, A is maximal monotone. (See Weyer [26] for related results). Re­

writing (5.5) as 

(5. 7) (EA + I)p = g 
E 

and invoking Lemma 2.3, we find that p converges, as E + O, strongly in 
E 

(L2)n to the projection of g onto V(A). It does not seem easy to characterize 

V(A) directly from (5.6). Therefore we use duality theory once more, but 

now for the reduced problem. 

The dual formulation of RVP is given by 
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RVP* Inf 
p€(L2)n 

* * * w0 (T p ) + G (p). 

By (3.5) and Lemma 4.4 the solution of RVP* is the projection of g onto the 

closed convex set 

(5. 8) Q = {p € (L2)nl (h(+co) - div P, h(+co)lnl - C) € c* 

* and (div p - h(-00), C - h(-co) lnl)E C} 

Denoting the (unique) solution of RVP* by p0 , we have the extremality rela­

tions 

(5. 9) 

(5. l 0) 

The second one, Po= g + grad u0 , is identical to the extremality relation 

p = g + grad u. Hence the fact that u converges strongly in X to u0 , im-E E E 
plies that pE converges strongly in (L2)n to Po· So we find that pE converges 

to a limit which is at the same time the projection of g onto V(A) and onto 

Q. Since g is an arbitrary element of (L2)n, necessarily V(A) = Q. Thus we have 

shown that (5.8) gives~~n explicit characterization of V(A). 

The extremality relation (5.9) is easy to work with only in the case 

that his bounded (see Lemmas 4.5 and 4.7). It then follows that RBVP is 

equivalent to (5.9) - (5.10). Likewise one can, by elimination of u0, derive 

a subdifferential equation for Po similar to BVP*. 

If h(-co) > -co and h(+co) = +co we deduce from Lemma 4.7 that u0 is the 

solution of the following variant of VI: 

l 
Find U'€ -C such that 

(i) < (-Au-+ h{-00 ) - f, h (.-00 ) In 1-C), v>x:,; o, Vv € C, 

{ii) < (-tiu + h (-co) - f, h(-co)lnl-C), u> = o. 
X 
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6. THE REDUCED PROBLEM AS A FREE BOUNDARY PROBLEM 

In this section we assume that f EL. We shall deal with the regularity 00 
of u0 (and ue), _with the free boundary value problem satisfied by u0 and 

with sharp convergence results versus the occurrence of boundary layers. We 

shall write Cl,a to denote the Holder space c1'a(n) and WZ,p to denote the 

usual Sobolev space. We recall that w2'P is imbedded into Cl,a if p(l-a) ~ n. 

THEOREM 6.1. If his bounded, u£ converges to u0 weakly in w2'P for each 

p ~ 1 and strongly in c1'a for each a E [0,1). 

PROOF. 

II Liu II 
£ L 

00 

::;; max{-h(-00),h(+oo)} + 11£11 • 
Loo 

D 

We can now interpret RBVP as a free boundary problem. The domain n con­

sists of three subdomains: 

n+ = {x E nl uo(x) > O} where -Liu + h(+oo) = f a.e. 
0 

n = {x E n I u0 (x) < O} where -Liu + h(-00) = f a.e. 0 

no = {x E nl u0 <x> = O} which has to be a subset of 

{x En I h(-00) ::;; f (x) ::;; h ( +oo)} • 

These subdomains are unknown, possibly empty and such that 

h(+00)ln+I + h(-00)ln_l + I f = c. 
no 

From the proof of Theorem 4.3 we know that u0 = 0 if h(±00 ) = ±00 • So in 

that case we cannot have convergence in w2 'P unless ff= C. 

Next, we concentrate on the most interesting case in which his bounded 

from one and only one side. In the remaining part of this section we assume 

that h(-00 ) > -oo and h(+00 ) = +00 • We emphasize that all theorems below have a 

counterpart in the case h(-oo) = -oo and h(+00 ) < +oo. 
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THEOREM 6.2. u E w2'P fop eaah p ~ 1. 
e: 

PROOF. We shall show that flu is bounded by finding an upper bound for u. e: e: 
Let, E Hb be the solution of -ti,+ h(-®) = f. Then, in fact, since ti, is 

bounded, we have, E c1'°'. Define 1/1 E -Hb by ij, = ue: - ue: I an - ,. Then 

flu - ti, e: 

u 
= h( ~) - h(-oo) ~ 0 

e: 

and hence, by the weak maximum principle, ij,:;;; O. Sou is bounded from above e: 
by the bounded function ue: Ian+,. D 

THEOREM 6.3. If C:;;; ff, ue: aonvePges to u0 weakly in w2 'P foP eaah p ~ 1 and 

stPongly in c1'°' foP eaah a. E CO,t). 

u 
PROOF. We show that h ( ~) and hence flu is bounded. Choose o > 0 and define 

e: e: 

n = {x En lh( e: 

u (x) e: 
e: 

) > II fll + o}. 
L® 

The points of an either belong to an or are such that h( e: 
If In I 1= 0 and an n an = 0, we find that s_imultaneous ly e: e: 
u assumes, with respect ton, its maximum in an interior e: e: 

u (x) 
e: )"=II fll L + o. 

e: 00 

tiu > 0 inn and e: e: 
point. Since this 

is impossible we conclude that either In I= 0 or an nan I 0 and u assumes 
U· I e: e: e: 

its maximum at anwithh( e: 30_) > llfllL + o. e: 00 

Suppose !ne:I I 0. Let ne: ~ea domain with boundary an u r ~nd 

strictly contained inn. We define e: u to be the solution of flu= o, u(x) = e: ~ ~ maximum on an and it follows from the 
a~ 
:: Ian> O. Also we have 

- u ~ 0 and, finally, 
e: 

u (x), x E an. Then u attains its e: e: e: 
Hopf maximum principle [24, Thm 7, p. 65] that 

ti (ii - u ) = o - h te:) + f :;;; 0 and therefore u 
e: r:: e: e: 

that 

au au 
.-.£ I > _e: I > o. 

an an - an an 

This leads to the contradiction 

C - ff= f flue:= f 
au 
__ e: > o. 
an D 

an 
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u 
The proof above shows that, if h ( _£ ) blows up somewhere, it does so 

e; 

at the boundary. If u0 1an < 0 this can not happen, so we also have 

THEOREM 6.4. If u0 1 an < O then ue: conve:r-ges to u0 weakly in w2 'P, p 2!: 1, and 

strongly in c1'a, a E [0,1). 

THEOREM 6.5. uo E w2 'P for each p 2 1. 

PROOF. If u0 1an < 0 we can apply Theorem 6.4. If u0 1rln = 0, then u0 is com­

pletely characterized by the restriction of RVP to H6. The result then fol­

lows, for instance, from Appendix 1. D 

THEOREM 6.6. u0 is completely characterized by 

( -lm + h(-oo) - f ~ 0 a.e. 
0 

uo ~ 0 a.e. 

u (-bu + h(-00 ) - f) = 0 a.e. 
0 0 

f <tiu0+f) - C ~ 0 

uolan<f<tiuo+f) - C) = o. 

PROOF. Because of Theorem 6,5 we can rewrite the variant of VI given at the 

end of section 5 in the form 

I (tiuo-h(-00)+ f)v+ (c-J(tiuo+ f))vlan 2!: O, Vv EC, 

I (buo- h(-00 ) + f)uo + (C - I (buo + f))uo I an = O, 

and from this formulation the result easily follows. D 

If ff 2!: C then Theorem 6.3 implies that actually f(tiu0+f) = C. We em­

phasize that ff< C does not preclude the possibility that u0 1an < 0 and 

f (tiu0+f) = C. However, if J (tiu0+f) < C we cannot have weak convergence in w2'P 

Next, we present some conditions on the data h(-00), f and C under which this 

happens. 
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THEOREM 6.7. Any of the three assumptions 

(i) f(x) ~ h(-00 ) a.e. 

(ii) f(x) 2 h(- 00 ) a.e. and ff< C 

(iii) J f < C for an n C fl 

n 

implies that J (l'iuo + f) < c. 

PROOF. (i) Let v E Hb be the solution of l'iv = h(-oo) - f. Then v ~ O and 

j(L'iv+ f) = h(-00 ) IDI < C. By Theorem 6.6 u0 = v. 

(ii) Again by Theorem 6.6, u0 = 0. 

(iii) 

J (l'luo + f) = 
J 

h(-oo) + J_ f = h ( - 00 ) IQ I + f _ f < C 

- n\n n\n n 

where ri == {x I u0 (x) < O}. □ 

In the proof of Theorem 6.3 it was already shown that if u displays a 
£ 

layer of rapid change somewhere, it certainly does so near to the boundary. 

Next we prove that it can do so only near to the boundary. The estimates 

below have been indicated to us by H. BREZIS. 

THEOREM 6.8. Assume his c1. Then u 8 converges to u0 weakly in w2 •P(O) for 

any open set O with O c n and any p 2 I. 

PROOF. 

Step I. Since h(y) > h(-00 ) we have 

I lh( :£) J ~ I h( :£) - 2h(- 00)lnl = C - 2h(-00)lnl. 

Step 2. Since u is bounded uniformly in£ in H1, it follows from the Sobolev 
£ 

imbedding theorem (see, for instance, ADAMS [1, p. 97]) that u is bounded 
£ 

uniformly in e: in Lr(n), where r = ;:!'2 if n > 2 and r 2 1 if n ~ 2. 
u 

Step 3. (Proof by recursion). We suppose that h( _£_) is bounded uniformly 
£ 

in£ in Lq(U1) for some q 2 I and U1 such that~ c n. Lets be a C00-function 



with compact support in U1• We m~ltiply the differential equation by 
I UE t-2 UE t . 
n( - )I h( - ) l~I and we integrate. Thus we obtain 

E E 

1 a first term by parts and using the inequality.ab:,; - a + 
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Integrating the 

+ i bf3 with a,b 

side we deduce 

1 1 a 
> 0, a,13 > 1 and a+ B = 1, for the term at the right hand 

1 I t f1 UE ,t-2 UE t ~ t lf~I - h( e) h( E) grad uE. grad Isl • 

We observe that the first term at the left hand side is nonnegative (so we 
t-2 fx delete this term). Now let y(x) = lh(x)I h(x) and r(x) = 0 y(-r)d-r. Then 

r(x) ~ xy(x) for all x and hence 

-I y( :E )grad 

So finally 

u . 
E 

t 
I grad ~ I 

(6. 1) I I h ( :E ) ~It ~ Kl + K2 I 
Ul 

We now distinguish different cases: 

u 
lu I lh( ....£) It-I 

E E 

1st case q = 1. If n > 2, we choose t = 1+ 2~2 in (6~1) and apply Holder's 
. . . . :2n d 2n 1 . h 1 f inequality with conJugate exponents n-2 an n+2; a so using t e resu ts o 

Steps 1 and 2 we deduce that f I h ( uE ) ~It is bounded uniformly in E. If n ~ 2, 
r-1 E .. 

we choose t = 1 +-- for some r > 1 and apply Holder's inequality with con-
r r 

jugate exponents rand --1 to obtain a similar result. So we know in both 
u r-

cases that h( : ) is bounded uniformly in Lt(U2) for some t > 1 and any 

open set U2 with rr; c U1• Consequently uE is bounded uniformly in w2 't(U2) 

(cf. AG.MON [2]). 
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n 2nd case q > 2. It follows from the Sobolev imbedding theorem that uE is 

(U1). Choosing t = q+l in (6.1), we deduce that 
q+l 

bounded uniformly in E in L 
00 u 

h( ~) is bounded uniformly in E in L 
E 

lows then from a bootstrap argument. 

(U2). The result of the theorem fol-

n 3rd case q s 2. By the Sobolev imbedding theorem u is bounded uniformly in 
l 2 l l El 2 l 

L *(U1) with -* = q q 
- (or-*= - - a for any a E (O,-) if q =-).Let q** q n q q q n 

be the conjugate exponent of q* and choose t = l + ;* . Applying Holder's 
q u 

inequality (with exponents q* and q**) to (6. l) we deduce that h( i ) is 
E 

bounded uniformly in Lt(U2). Now a bootstrap argument either yields the 

result or leads to the 2nd case. D 

7. THE ONE DIMENSIONAL CASE 

Again we assume that h(-00 ) > - 00 and h(+00 ) = +00 • The results of section 

5 imply that pO is the projection of g onto the set 

V(A) = { p E 12 I (p ' - h (-00 ) , C - h (-00 ) I rl I) E c*}. 

A simple calculation shows that, with r. = (-1,+l), 

V(A) n H1 = {p I .P' ~ h(-00 ) and p(l) - p(-1) SC}. 

We found in SE!ction 6 that pO E ~ n H1 if f E 1 00 • So we can find Po by 

minimizing the 12-distance tog subject to two constraints: an inequality for 

the derivativei and a bound for the total variation. This is more or less a 

combinatorial problem which is rather easy to solve for some given smooth g, 

but whose general solution is cumbersome. We refer to [16, section 4] for a 

more detailed discussion of the symmetric case, noting that the result pres­

ented there covers the general case after some minor modifications. Finally, 

we remark that, once Po is found, uO can be calculated from the extremality 

relations. 
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APPENDIX 1. THE HOMOGENEOUS DIRICHLET PROBLEM 

In this appendix we present some results about the problem 

where by assumption his the subdifferential of a convex, l.s.c. function 

H : lR ➔ [(),co), with H(O) = 0 and H(y) < +co for all y E lR. Here f E H-l is 

given and u E Rb is sought. We use some of the notation defined in the pre­

ceding pages and omit all proofs since these are similar to (and in fact 

easier than) those already given. In contravention of prior definitions we 

now have: 

where 

Tu= -grad u Hl n 
T 

0 ➔ (L2) ' 

* (Lz)n ➔ -1 
T : H ' * . T p=div p 

w HI 
0 

+ [O,oo], W(u) 

The problem can be rewritten as 

av (u) 3 o 
E 

V (u) = G(-Tu) + E W(~). 
E E 

{ f H(u) 

+oo 

if H(u) E LI 

otherwise. 

It admits a unique solution uE which converges as E + 0 strongly in Rb to u0 , 

the unique solution of 

Inf G(-Tu) + W0 (u). 
UEH l 

0 

If his bounded u0 satisfies 

and if, for instance, h(-oo) > - 00 and h(+00 ) = +00 then u0 solves the varia­

tional inequality: find us Osuch that 
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<-Ll,u+ h(-oo)- f, v-u> ;;:: 0, Vv:,; O. 

The dual formulation is obtained by the transformations 

and reads 

p -- g - Tu 

u E £h-l (T*p) 

* f = T g 

-I * £ T(h (T p)) + p 3 g 

or, equivalently, 

(£A + I)p 3 g 

where A n ( )n . . (Lz) ➔ Lz is defined by 

V(A) = {p E (L2)n I T*p E L1 _and there exists u E Hb such that T*p E h(u)}. 

As£+ 0, p£ converges to the projection of g onto 

~ n I * v(A) = {p E (L2) h(-00):,; T p:,; h (+co)}, 

where the inequalities are defined by the positive cone in H6 and the duality 

of H6 and H-l. 
If f EL, u converges to u0 weakly in w2 ,P for each p;;:: I and strongly 

C() £ 
I a in C' for each a E [0,1). This follows most easily from the observation 

that, by the maximum principle, u equals the solution of the "truncated" 
£ 

problem 
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where 

{ 
II fll if h(y) ~ II f0L. Loo 00 

h(y) = h(y) if -U fDL ~ h(y) ~ II fD 
CIO LCIO 

L -11 fll if h(y) ~ -llfll • 
LCIO LCIO 

For sharper estimates under additional assumptions we refer to [7], [8], [5] 

and [25]. 

APPENDIX 2. THE PHYSICAL BACKGROUND OF THE PROBLEM 

Consider a bounded domain Q in JR2 or 1R.3 and a charge distribution 

inside Q with two components: 

(i) a fixed ionic charge density en. 
1. 

(ii) a mobile electronic charge density -en such that 
e 

(A. 1) J n = N . e e 

Here e is the unit charge, n. and n are number densities and N is a number. 
1. e e 

N and n. are given, but n • is unknown. e 1. e 
Let the region outside n be a conductor. Then we have the condition 

(A. 2) the potential~ is constant outside n. 

Physically this condition is realized by the formation of a surface charge 

density which, however, will be of no further concern. 

The equation for the potential~ inn can be deduced from two physical 

laws: 

(A.3) ~~ = -4,re (n. - n ) i. e , Poisson's equation, 

and 
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(A.4) n 
e 

e'P 
kBT 

=Ke Boltzmann's formula. 

Here K is a normalization constant, T is the temperature of the system and 

kB is Boltzmann's constant. 
, 

Substituting (A.4) into (A.3) and (A.I) we obtain the problem 

ecp 

-flip+ 4ireK 
kBT 

4'1l'eni e = 

e'P 

K f e 
~T 

N = e 

'Plan is constant (but unknown) 

which, up to a renaming of ·the constants and variables, is the special case 

of BVP in which h(y) = ey - 1. 

Alternatively, one can argue that n should be such that the free energy 
e 

F of the system be minimized under the constraint (A.I). The free energy is 

defined by 

F = U - TS 

where U is the electrostatic energy given by 

U = - 1 I (grad cp) 2 , 8,r 

Tis the temperature and S the entropy given by 

So if E. denotes the electric field created by the ions and E the electric 
i e 

field created by the electrons, it comes to solve the minimization problem 



subject to the constraint 

J div Ee= N • 
e 

Cl 1 th . bl d to VP*. ear y is pro em correspon s 
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The main results of this paper concern the limiting behaviour of the 

potential wand the electrical field E due to the electrons, as the temper-
e 

ature T tends to zero. For instance, we find that at an no boundary layer 

occurs if the total charge density J n. of the ions exceeds N. In the limit 
1 e 

T + 0 there may be regions where electrons are absent. If such a region n 
is strictly contained inn it necessarily must be such that In ni = o. For 

such a region which extends up to an there is a more complicated condition. 

If n. ~ 0 and f n. < N, necessarily a boundary layer arises: the electrons 
1 1 e 

are repelled against the conductor. 
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