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Fourier integrals of series of Bessel functions arising in the theory of re­

sidual currents in tidal areas 

by 

N.M. Temme 

ABSTRACT 

Fourier transforms of some series of Bessel functions are considered, 

which arise in the theory of residual currents in tidal areas. The integrals 

are evaluated by writing them in terms of Legendre functions. The series are 

expressible in these functions too, 

KEY WORDS & PHRASES: Bessel fu:nctions, Fourier integrals of generalized hy­

pergeometric functions 





I • INTRODUCTION 

In the statistical theory of residual currents in tidal areas, 

ZIMMERMAN ( 1978, 1980) .obtained for the nontransient solution of a differen­

tial equation, describing the vorticity of a two-dimensional velocity field, 

a representation in terms of Bessel functions. In TEMME: (1978a, 1978b) some 

analytical and numerical aspects of functions arising in this theory were 

considered. In the present report we compute Fourier integrals of some of 

these functions. 

Let us consider (1.3) and (1.4) of TEMHE (1978b) in first approximation 

(that is, with l=O) then the residual part of the velocity is given by 

(I.I) 
➔ ➔ n (k, t) = c 0 (k) 

where 1 is a two-vector, the wave number in a Fourier analysis. Here we take 
➔ 
k = (k,O) and we are interested in 

co 

( I • 2) 

and in some functions related to it. The function c0 (k) is given in terms of 

Bessel functions as the series (we take T 1, T2 and b of our previous pu­

blication equal to I) 

(1. 3) 

where a(k) is related to a forcing field and 

co nJ2 (k) co J' (k)J (k) 
(1.4) 1/J I (k) 

i l n 
'112 (k) I n n 

= k = in-I in-I n=--«> n=-oo 

w1(k) and 1/J 2 (k) are real functions. By using some symmetry relations.£or the 

Bessel functions we obtain 

(1.5) 
J · (k)J' (k) 

n n 

I• 
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-1 In this paper we are interested in the Fourier transform of k w1(k) and 

k-1w2(k). Since these functions are even functions of k we write the trans­

form as 
00 

f(x) = AA f cos kx f(k) dk, 

(I. 6) 0 

00 

g(x) = h11r I cos kx g(k) dk •. 

0 

with 

(I. 7) f(k) -1 
= k 1/J l (k), 

-1 g(k) = k iµ 2(k). 

The functions in (1.6) are required in the following analysis(ZIMMERMAN 

(1981)). The function a(k) occurring in (1.3) is in fact the distribution 

h(k) of fluctuations in water depth (up to a factor), that is, 

a(k) = - ik h(k), and the Fourier transform 
00 

(1.8) hCx) = e-ikx h(k) dk 

-00 

is the depth. Suppose that we are given the following representation of -h(x). 

X 

(1. 9) h(x) = f ¢(;) d; - !, 
-00 

where for example, the slope ~(x) = 7T-½a exp(-a2x2) (this special form of 

~(x) will not be used here). The function ~(x) defined by 

(I. 10) 

00 

~(x) = - 1- f e-ikx u(k) dk, 
l2ir -cc 

with u(k) = k-l n(k), is of special interest in the theory. It can be writ­
ten in the form 



3 

00 

(1.11) u(x) = __i_ 
2,r 

-00 

where f and g and their Fourier transforms are introduced in (1.6) and (1.7). 

The respresentation (1.11) is obtained by the Fourier convolution theorem. 

To see this, write (1.10) via u(k) = k- 1n(k), (1.1), (1.2), 

a(k) = - ik h(k), as 

00 

u(x) =-- f kh(k) [f(k)+g(k)] e-ikx dk. 
--00 

00 

-00 

with v(x) the Fourier transform. of kh(k). ?his is written by using (1.8) and 

(1 .9) as 

00 

v(x) = _1_ I v(k) e-ikxdk = 
fu 

-"" 

00 

l. d 
dx 

-00 

The Fourier transform of g(x) in (1.6) is obtained by using the basic 

formula 

00 

(1.12) I coskx J!(k) dk = {0½(-1 )n Pn-! (½x2-1), 1.xl ~ 2 
0 , 1x1· ,-. 2, 

where P· (z) is a Legendre function (GJ.ADSHTEIN & RYZHIK (1965, p.732)). A 
V 

remarkable feature is that this integral vanishes outside the x- interval .... 
(-2,2). The functions f(x) and g(x) share this property . .... 

We will show in the following section that also g(x) can be expressed .... 
in terms of a Legendre function. For f(x) this is less obvious. In section 

3 we give a relation which expresses f(x) in terms of an integral of g(x). 
A 

In section 4 we given series expansions of g(x), which enable numerical 

evaluation of. this £unction. In .section 5 we write the functions and their 

Fourier transforms as generalized hypergeometric functions. 
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2. THE FUNCTION g(x) 

By using 
0:, 

d I cos kx I 

J (k) J (k). dk = dx k n n 
0 
00 0:, 

-1 I sinkx dJ2(k) = ½x f coskx J2(k) dk 2 n n 
0 0 

we obtain for g(x) via (1.5),(1.6), ( 1 • 7) and (1. 12) 

00 

(2. 1) g' (x) 
n 2 

(-1) P 1 (½x -1) 
n-2 

n2+I 

=~ I 
2& n=-00 

The integral of this expression can be handled by using the well-known rela-

tion 

(2.2) 

and so we 

(2.3) 

obtain 

2 -1 = - (t -x ) 2 

(using g(2) = O) 

-1 00 

(-l)n 
g(x) =-- I 

2 v'2TI° n=-oo n2+I 

00 

n=-oo 

2 
½x -I 

f Pn-½ (Od~ 

According to Pµ (x) = Pµ(x), we infer that the Legendre functions in this -v-1 v 
sum are even inn. The series can be evaluated by considering the integral 

(2.4) 2rrI 
{ p~-½ (z) 

J ( 2 2) . ·V +·a. S 1n\!7r 
C 

dv, . µ E JR', - I < z < 1, 

where the contour C runs as in the following figure. We suppose temporarily 

that a. is a complex number such that O < arg i~ < }TI. C encloses the poles 

1,2, ••• of I/sin a.71'. It does not enclose the poles -1,-2, ••. and+ ia.. 

Furthermore, it cuts the real v-axis in v=O perpendicularly. 
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Im v • ia. 

Rev 

C 

Fif. 2. l Contour for (2.4) 

Deforming C into the axis Re v=O, we pass the pole at v=ia and the result­

ing integral vanishes since the integrand of (2.4) is an odd function of v. 

By using the residues we arrive at 

00 
(2.5) -

1T n=-00 

Using the principle of analytic continuation it follows that this formula 

is valid for all n I ±i, ±2i, ••.• 

(2.6) 

... 
As a consequence, the function g(x) of (2.3) can be written as 

g(x) 1rxfi-¼x2 
=---------

2/2n- sinh1r 

-1 2 
p. 1 (½x -1). 

1.-2 

A final step makes use of the relation (GRADSHTEIN & RYZHIK (1965, p.1008) 

which results in 

(2. 7) -(x) = x/2,;'. W P 1. ( 1x2-1) - 2 2 g 5 sinh,r 1.-! 2 ' ~ x ~ • 

The Legendre function is associated with the so called conical functions; 

it is real, although one of the parameters is complex. 
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The justification of considering (2.4) and deriving (2.5) follows from 

the asymptotic behaviour of P~(cos <fl) for large complex values- of -v •. From 

GRADSHTEIN & RYZHIK (1965, p.1002) we obtain 

Pµ(cos ip) 2 r(v+µ+I) cos[ (v+½)<l>+½'IT(µ...;½)J 
v ~ lir r(v+3/2) 

and it follows that (2.4) converges absolutely for O <<fl< 'IT andµ< 3/2. 

Under these conditions the integral (2.4) yields (2.5). 

A simple result as in (2.7) for f(x) is not obtained. In the next sec­

tion we express f(x) in terms of g(x), from which we can obtain f(x) by in­

tegration. 

3. THE FUNCTION f(x) AS AN INTEGRAL OF g(x). 

By using the manipulations resulting into (2.1), we easily derive 

xf"(x) = - 2g'(x). 

From this relation we obtain 

(3. 1) 

X 

- 2g(x) = I ~f"(~)d~ - 2g(O) 

0 

= xf'(x) - f(x) + f(O) - 2g(O). 

From (2.6) we cannot conclude that g(O) = O, since the Legendre function is 

not finite at x = 0. We can evaluate f(O) and g(O) from (1.5), (1.6) and 

( I. 7), giving 

f(O) • 2✓2/, I ~2 j k-2J~(k)dk 
n=l n +l 0 

(3. 1) 
00 

g(O) = ✓2/n I + f k- 1J (k)J +1 (k)dk 
n=-oo n +I O n n 

where we used for the second case J~(k) = fJn(k)-Jn+l(k). The integrals in 

(3.1) are easily evaluated by using the well-known Weber-Shafheitlin inte­

grals, with as special case 



CX) 

f Jv(t)Jµ(t)t-Adt = 2-Ar(A)f(v+µ;A+l)/ 

0 

[r(-v+~+A+l)f (v+µ;A+l)f(v-µ;A+l)]. 

Then it follows that 

f co) = .!.cI) 3/2 
5 7T 

The result for g(O) is 

co 

I 
n=l 

(3. 2) g(O) = ~ coth 1T 

4 1 {-- +--} 
2 2 

n +I n -! 
= ~/.! coth 'IT. 

and we conlude that f(O) = 2g(O), which reduces (3.1) to 

(3 .3) d 1- -r 
dx xf(x) = -2x g(x). 

Upon integrating we obtain (where we use f(2) = 0) 

2 

(3 .4) f(x) = 2x s- g(s)ds, - f r 
X 

7 

which is the desired relation between f(x) and g(x). When we integrate (3.3) 

with initial value x=O, the result is 

X 

(3. 5) f(x) =ex+ f(O) + 2x s- [g(O)-g(s)Jds, f 2 A A 

0 

where the constant can be computed by using more information about the be­

haviour of f(x) and g(x) near x=O. It can be shown by using the representa­

tion of section 5 that 

(3. 6) C = -/rr/2. 

4. POWER SERIES FOR g(x) 

By writing P~(x) in terms of Gauss' hypergeometric 2F1-function it is 
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possible to derive series expansions, which enable numerical evalution. 

The starting point is GRADSHTEIN & RYZHIK (1964, p.999, formula 8.704) 

-1 1-x ½ 1-x 
P \I (x) = [ l +x] 2F I ( -v, 1 +v; 2 ;-2-) , - l < x < 1 , 

and so (2.6) becomes 

2 
~.1-!x 2 g(x) = 2sinh~ 2Fl(½-i,!+i;2;1-!x ). 

With the familiar expansion of the 2F1-function we can write this as 

O-i) O+i) (1-!x2)n 
( 4. 1) g(x) = vf l-!x2 I 

2 sinhrr n=0 
n n 

(2) n! n 

where (a) = r(a+n)/r(a) (n=0,1,2 ••• ). This series is useful for small va­
n 2 

lues of (1-x /4), i.e., for x in the neighbourhood of 2. Remark that for ... 
x•0 the value of g(0) given in (3.2) is obtained. In this evaluation we use 

r (c)f (c-a-b) 
2F 1 (a, b ;c; I) = ................ ---"-----

r (c-a)r (c-b) 

cl0,-1, ••• , Re(c-a-b)>0. 

+ For x·+ 0 we can use a transformation for the 2F1-function, for ins-

tance, formula 15.3.11 of ABRAMOWITZ AND STEGUN (1964, p.559), where we must 

take m=l. The result is in our case 

(4. 2) g(x) 
2 00 

= g(0) + ¼x cothrr l 
/2ir n=0 

(3/2-i) (3/2+i) 2 n n n 
n!(n+l)! (!x) x 

[ln¼x2 - $(n+l) - $(n+2) + $(3/2-i+n) + $(3/2+i+n)J. 

When ¢(1/2-i) + ¢(1/2+i) is available, the remaining terms are easily com­

puted by recursion. 

Representations (4.1) and (4.2) are convenient starting points for nu­

merical evalution of g(x). The function f(x) was computed by using (3.4) or 
.... ... 

(3.5). The graphs of the functions f(x) and g(x) are shown in the figures 4.1 

and 4.2. 



:_c...,,,-, ~-.,.1.,--4--.'= .. ~o.=oo--½CI -110 ltO 1,11 Z,00 

' 

Fig. 4. I The function f(x) Fig. 4.2 

5. f(x) AND g(x) EXPRESSED IN TERMS OF F -functions 
p q 

The function g(x) 

We first write f and g introduced in (1.7) in terms of F -functions. 
p q 

In TEMME (1978a) we showed that 

where k and bare complex numbers, ib i'E... The product of the Bessel func­

tions can be expressed 1.n terms of the 1F2-functions and so we ob.tain 

f(k) 

(5. I) 

=-; [I-1F2(½;1+i,l-i;-k2)J 
k 

= ¼ 2F£3/2,1;2+i,2-i,2;-k2). 

Remarking that in fact the series for gin the second of (1.5) contains 

(up to a factor) the derivatives of the functions J 2(k), we obtain 
n 

9 
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g(k) l d 2 
= - 2k dk F (l•J+i 1-i·-k) = 

l 2 2 ' ' ' 

(5.2) 

Let us introduce 

(5.3) 

Then we have 

(5.4) 

and we proceed with the function ha(k). 

The 2F3-function can be defined as a Mellin-Barnes-type integral 

(5 _5) F ( a,b j-k2) = _1 __ f k2sr(-s) r(s+a) r(s+b) r(c) r(d) r(e) ds, 
2 3 c,d,e 21T1. 1 r(a) r(b) r(s+c) r(s+d) r(s+e) 

where L starts at -i00and ends at +i00 and L devides the complex s-plane in­

to two parts: the poles of r(-s) lie to the right of L, and all poles of 

f(s+a), r(s+b) lie to the left of it. For the hypergeometric functions the 

reader is referred to LUKE (1969, vol. I). 

(5.6) 

The Fourier transform 
0:, 

ha(x) = (2/n)½ J cos kx ha(k)dk 

0 

is computed substituting (5.5) for the special case (5.3) and by interchang­

ing the order of integration. This is permitted when on L we take 

- ½ <Res< 0. We use the known transform 

J 2s -1-2s cos kx k ds = - x f(l+2s)sin1Ts, 

0 
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valid in the indicated domain for Res on L, and we obtain 

(5. n fi (x) 
(2/n)½ r(a.)r(2-i)r(2+i) ( 

=- 4x r(3/2)2ni j 
-2s r(l+2s)sinnsr(-s)r(s+3/2)r(s+l)d 

x r(2+i+s)r(2-i+s)r(a+s) s a. 
L 

Using sinns r(-s) = -n/f(l+s), r(l+2s)=22sn-½r(s+l)f(s+!) we obtain finally 

- r(a)r{2~i)f(2+i) f (2/x)2sr(s+~)r(s+l/2)r(s+l) 
(5.8) h (x) = · ------~------ ds. 

a. xffrr 2ni L r(2+i+s)r(2-i+s)r(s+a) 

This representation can be evaluated by writing it as a series of residues 

due to the poles of the gannna functions. At the left of L we have the fol­

lowing poles 

(5 .9) 

s = -1/2, a simple pole 

s = -3/2,-5/2 ••• , double poles 

s = -1,-2, ••• , simple poles. 

The third group of poles are cancelled by the zeros of r(s+a) ~hen a=l; when 

a=I~ only the pole s=-1 of the third group has to be consi.d.'ered ·• 
At the right of L the function under the integral sign in (5.8) has no 

poles. It follows that we can move the path L to the right as far as we 

please, without crossing a singularity. Since 

r(s+3/2)r(s+l/2)r(s+l) 

r(s+2+i)r(~+2-i)r(s+a) 
I\, s -1-a. 

as s -+ 00 in I arg s I <ir, it is easily shown.:., that for Re a>O arid for real va­

lues of x satisfying T2/xls;1, the function h (x) vanishes. 
CL 

From this we obtain immediately that 

(5. 1 O) f(x) = O, g(x) = O, x s; - 2 or x ~ 2. 

For the remaining x-values the path Lin (5.8) can be shifted to the left. 

Picking the residues due to the poles in (2.9) we obtain a representation 
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in terms of an infinite series. For a= l (i.e., for g(x)) this series can 

be written in terms of 2F 1-series, which reduce to Legendre functions. For 

the case a= 2 the situation is more complicated. To compute the function 

f(x) it is better to use the relation between f(x) and g(x), which is de­

rived in section 3. 
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