STICHTING
 MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

AFDELING ZUIVERE WISKUNDE

WN 1

Universal morphisms I

Preliminary note by P.C. Baayen and J. de Groot

§ 1. General concepts and definitions

In this note the existence of several types of universal mappings is proved. In order to provide a general setting, we use the language of the theory of categories. The notation is the same as in Kurosh, Livshits and Shul'geifer $[2]$ in particular, the composition of two mappings $\varphi: A \rightarrow B$ and $\because \Psi: B \rightarrow C$ is denoted by $\varphi \psi$. Accordingly, the image of a $\in A$ under φ is denoted by (a) φ (and also by a φ).

Let K be a category. An object a of K is called (K) universal if for every other object b of K there exists a monomorphism $\mu: b \rightarrow a$. A morphism $\varphi^{\prime}: a \rightarrow$ a is said to be a (K-) universal morphism if for every morphism $\psi: b \rightarrow b$ in K there exists a monomorphism $\mu: b \rightarrow a$ such that $\mu \varphi=\Psi \mu$.

The morphism φ is called a (K-) universal bimorphism if φ is a bimorphism and if for every bimorphism $\psi: b \rightarrow b$ there exists a monomorphism $\mu: b \rightarrow a$ such that $\mu \varphi=\psi \mu$.

The dual concepts are called dual-(K-) universal objects, morphisms and bimorphisms. E.g. a dual-universal morphism is a morphism $\varphi: a \rightarrow a$ that is universal in the dual category K^{*}, i.e. for every $\boldsymbol{\psi}: b \rightarrow b$ there exists a surjection $\nu: a \rightarrow b$ such that $\varphi v=\psi \psi$.

It is trivial that the existence of (dual-) universal morphisms or bimorphisms implies the existence of (dual-) universal objects. The converse is not true, in general.

In this and in subsequent notes we will examine the existence of universal or dual universal morphisms and bimorphisms in a number of categories; the most important ones are listed below.

-2-

$K(S, N): \quad$ category of all mappings of a set of power m into another set of power .
$\mathrm{K}(\mathrm{LO}, \mathrm{M})$: category of all order-preserving mappings of a linearly ordered set of power m into another linearly ordered set of power .
$K(P O, T)$: category of all order-preserving mappings of a partially ordered set of power \mathbb{T} into another partially ordered set of power M.
$K(T, N): \quad$ category of all continuous mappings of a completely regular topological space of weight m into another completely regular space of the same weight.

Also other categories of continuous mappings will be studied, as well as categories of homomorphisms between abelian groups, and of boolean homomorphisms between boolean algebras. Furthermore, we also define $K(S, \bar{m})$: category of all mappings of a set of power less than or equal to w into another set of power less than or equal to胜。

Similarly $K(L O, \bar{m}), K(P O, \bar{m})$ and $K(T, \bar{m})$ are defined.
In this first note we treat the categories $K(S, M)$ and $K(S, \bar{m})$, for arbitrary cardinal \boldsymbol{m}.
$\$ 2$ Universal morphisms in $K(S, \mathcal{M})$ and $K(S, \mathcal{M})$.
The results proved in this note can be summarized as follows.
Theorem 1. For every transfinite cardinal \mathcal{M}, the categories $K(S, \mathcal{M})$ and $K(S, \%)$ contain universal morphisms and bimorphisms, and dualuniversal morphisms and bimorphisms.

The proof falls apart in a number of separate propositions. We start with the simplest ones. In all the following, Mis supposed to be transfinite.

Proposition 1. $K(S, H E)$ contains dual universal bimorphisms.

-3-

Proof.
Let S be a set of power , and let A be the set of all ordered pairs (x, n), with $x \in S$ and n an integer. Then also $\operatorname{card}(A)=T$, as is transfinite. Define $\Phi: A \rightarrow A$ as follows:

$$
\begin{equation*}
(x, n) \Phi=(x, n+1) \tag{2.1}
\end{equation*}
$$

We will show that Φ is a dual-universal bimorphism in $K(S, m)$.
It is clear that Φ is a bimorphism. Now let B be any set of power \nVdash, and let Φ be any bimorphism $B \rightarrow B$. Then we first choose any epimorphism $\tau: S \rightarrow B$; next we define $V: A \rightarrow B$ by

$$
\begin{equation*}
(x, n) y=x \tau \varphi^{n} \tag{2.2}
\end{equation*}
$$

(For any $\operatorname{map} \varphi$, the $\operatorname{map} \varphi^{\circ}$ is defined to be the identity map.) Then it is clear that ν maps A onto B (in fact, ν already maps the subset of A consisting of all pairs $(x, 0), x \in S$, onto B; and $\Phi \nu=\mu \varphi$:

$$
(x, n) \Phi \nu=(x, n+1)=x \tau \varphi^{n+1}=\left(x \tau \varphi^{n}\right) \varphi=(x, n) \nu \varphi
$$

Proposition 2. $K(S, m)$ contains dual-universal morphisms.
Proof.
The proof is almost the same as that of proposition 1.
Let S again be a set of power . This time, let A exist of all ordered pairs (x, n), where $x \in S$ and n is a non-negative integer. A morphism $\Psi: A \rightarrow A$ is again defined by (2.1). If $\Psi: B \rightarrow B$ is any morphism in K, we take again an epimorphism $\tau: S \rightarrow B$ and define an epimorphism $\nu: S \rightarrow B$ by (2.1). Then $\Psi \nu=\nu \Psi$; hence Ψ turns out to be a dualuniversal morphism.

The same proofs can be used to show:
Proposition 3. $K(S, \bar{m})$ contains dual-universal morphisms and bimorphisms. Proposition 4. $\mathrm{K}(\mathrm{S}, \mathrm{m})$ contains universal bimorphisms.

Proof.

For any non-negative integer n, let I_{n} be the set of all integers reduced modulo n, and let $\sigma_{n}: I_{n} \rightarrow I_{n}$ be the successor function:
(2.3)
(k) $\sigma_{n}=k+1, \quad$ reduced modulo n.

Let S be a set of power m, and let A be the set of all ordered triples (x, n, k), where $x \in S, n$ is a non-negative integer, and $k \in I_{n}$. We define a bimorphism $\Phi: A \rightarrow A$ as follows:

$$
\begin{equation*}
(x, n, k) \Phi=\left(x, n,(k) \sigma_{n}\right) \tag{2.4}
\end{equation*}
$$

We will prove that Φ is a universal bimorphism for K.
Let B be any set of power , and let $\varphi: B \rightarrow B$ be a bimorphism. The orbits $O(x)=\left\{(x) \varphi^{n}: n=0, \pm 1, \pm 2, \ldots\right\}$ partition B into disjoint sets, each of them at most countable.

Let C be a choice set, containing exactly one point from every orbit $O(x) ;$ let $C_{n}=\{x \in C: \operatorname{card}(O(x))=n\}(n=1,2, \ldots)$, and $C_{o}=\{x \in C$: $\left.\operatorname{card}(O(x))=X_{0}\right\}^{n}$. For each $n, \operatorname{card}\left(C_{n}\right) \leqslant \operatorname{m}^{n}$; hence for every n there is a $1-1 \operatorname{map} t_{n}$ of C_{n} into s.

We define a mapping $\mu: B \rightarrow A$ in the following way. If $x \in B$, there is exactly one $y \in C$ such that $x \in O(y)$; there is exactly one n such that $y \in C_{n}$; and there is exactly one $k \in I_{n}$ such that $(y) \varphi^{k}=x$. We put

$$
\begin{equation*}
(x) \mu=\left((y) \tau_{n}, n, k\right) . \tag{2.5}
\end{equation*}
$$

Then μ is a monomorphism, and $\mu \phi=\varphi \mu$.
Corollary. $K(S, \bar{M})$ contains universal bimorphisms.
Proof.
If $\varphi: B \rightarrow B$, and $\operatorname{card}(B)<\notin$, then take any $B^{\prime} \supset B$ such that $\operatorname{card}\left(B^{\prime}\right)=m$, and define $\varphi^{\prime}: B^{\prime} \rightarrow B^{\prime}$ by: $\varphi^{\prime}\left|B=\varphi, \varphi^{\prime}\right| B^{\prime}>B=$ identity map.

There remains to be shown that $K(S, m)$ and $K(S, m)$ contain universal morphisms. In order to do this, we need some lemmas.

Definitions. The two-sided orbit $T O(x)$ of a point $x \& X$ under a mapping $\varphi: X \rightarrow X$ is the set
(2.6) $\quad T O(x)=\left\{y \in X:(y) \varphi^{n}=(x) \varphi^{m}\right.$, for some non-negative integers $n, m\}$.

A mapping $\varphi: X \rightarrow X$ is called coherent if $T O(x)=X$, for some $X \in X$.

A loop under a mapping $\varphi: X \rightarrow X$ is a finite set of points $x_{1}, x_{2}, \ldots, x_{n}$ ($n \geqslant 1$), such that

$$
\begin{aligned}
& \left(x_{k}\right) \varphi=x_{k+1} \quad(k=1,2, \ldots, n-1) ; \\
& \left(x_{n}\right) \varphi=x_{1} .
\end{aligned}
$$

The following two lemmas are evident.
Lemma 1. The two-sided orbits under a mapping $\varphi: X \rightarrow X$ constitute a partition of the set X.

Lemma 2. A two-sided orbit $T O(x)$ under a mapping φ contains at most one loop.

In the next lemma, the existence is established of certain mappings needed for the construction of a universal morphism.

Lemma 3. Let 4 be any transfinite cardinal number. For every non-negative integer n, there exists a coherent mapping $\sigma_{n}: N_{r} \rightarrow N_{n}$ of a set N_{n} of power m into itself with the following properties:
(i) there is a loop of exactly n points (in case $n=0$, this means that there is no loop at all);
(ii) $\operatorname{card}\left((x) \sigma_{n}^{-1}\right)=m$, for each $x \in N_{n}$.

Proof.
First take $n=0$.
Let A be any set of power m. Consider the set C of all indexed sequences $a_{k} a_{k+1} a_{k+2} \ldots a_{k+n} \ldots$, where k is an arbitrary integer (possibly negative or zero) and each a_{i} belongs to A. Define $\sigma: C \rightarrow C$ by

$$
\left(a_{k} a_{k+1} a_{k+2} \cdots\right) \sigma=a_{k+1} a_{k+2} \cdots
$$

Then there are no loops under σ, and $\operatorname{card}\left((x) \sigma^{-\frac{1}{2}}\right)=\{$, for every $x \in C$.
The power of C is equal to $\mathbb{N E}^{\circ}$; this may or may not be equal to \mathbb{M}. But fortunately this does not matter. For if we choose any $x_{0} \in C$, and put $N_{0}=T O\left(x_{0}\right)$, then it is easy to show that $\operatorname{card}\left(N_{0}\right)=1 / 2$. Finally we may define σ_{0} as σ / N_{0}.

Next we consider the case $n=1$.
Choose again a point $x_{1} \in C$, and let

$$
\begin{array}{r}
N_{1}=\left\{x \in C:(x) \sigma^{n}=x_{1},\right. \text { for some non-negative } \\
\text { integer } n\}
\end{array}
$$

Let $\sigma_{1}\left|N_{1} \backslash\left\{x_{1}\right\}=\sigma\right| N_{1} \backslash\left\{x_{1}\right\}$, and let $\left(x_{1}\right) \sigma_{1}=x_{1}$. Then $\sigma_{1}: N_{1} \rightarrow N_{1}$ satisfies the requirements.

Finally let n be an integer >1. Let $M_{1}, M_{2}, \ldots, M_{n}$ be disjoint sets, each of power \mathbb{M}, and for each $i, 1 \leqslant i \leqslant n$, let $\tau_{i}: M_{i} \rightarrow M_{i}$ be a mapping with the properties required for σ_{1}. Furthermore, let the one-point loop under \boldsymbol{t}_{i} in M_{i} consist of the single point x_{i}. Then we can put $N_{n}=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$, and

$$
\begin{aligned}
& \sigma_{n}\left|M_{i} \backslash\left\{x_{i}\right\}=\tau_{i}\right| M_{i} \backslash\left\{x_{i}\right\} \quad(1 \leqslant i \leqslant n) \\
& \left(x_{i}\right) \sigma_{n}=x_{i+1} \\
& \left(x_{n}\right) \sigma_{n}=x_{i}
\end{aligned}
$$

Next we show that the mapping σ_{n} is universal for all coherent mappings having a loop of n points.

Lemma 4. Let m be a transfinite cardinal. Let card $(X)=T M$, and suppose $\varphi: \mathrm{X} \rightarrow \mathrm{X}$ is a coherent mapping with a loop of n points. If $\sigma_{n}: N_{n} \rightarrow N_{n}$ is a mapping meeting the requirements of lerma 3 , then there exists a $1-1$ mapping $\mu: X \rightarrow N_{n}$ such that $\mu \sigma_{n}=\varphi \mu$.

Proof.
First suppose $\mathrm{n}=0$.
Choose an arbitrary $\mathrm{x}_{\mathrm{o}} \in \mathrm{X}$ and an arbitrary $\mathrm{y}_{\mathrm{o}} \in \mathrm{N}_{\mathrm{o}}$; we put

$$
\left(x_{0} \varphi^{m}\right) \mu=\left(y_{0}\right) \sigma_{0}^{m} \quad(m=0,1,2, \ldots)
$$

Let $A_{1}=\left\{\left(x_{0}\right) \varphi^{m}, m=0,1,2, \ldots\right\}, A_{2}=\left(A_{1}\right) \varphi^{-1} \backslash A_{1}$, and $A_{m+2}=\left(A_{m+1}\right) \varphi^{-1} \quad(m=1,2, \ldots)$. The sets A_{1}, A_{2}, \ldots are disjoint, have powers $\leqslant m$, and $x=\bigcup_{m=1}^{A_{m}}$ We have defined $\mu \mid A_{1}$; suppose $\mu \mid A_{k}$ already defined, for $k=1,2, \ldots, m$, in such a way that
(2.7)
(x) $\mu \sigma_{0}=(x) \varphi \mu$
for all $x \in A_{1} \cup A_{2} U \ldots U A_{m}$ while also μ is $1-1$ on $A_{1} U A_{2} U \ldots U A_{m}$. The sets (x) $\varphi^{-1}, x \in A_{m}$, partition A_{m+1} into at most disjoint sets. (In the case $m=1$, we must take the sets (x) $\varphi^{-1} \cap A_{2}$ instead). Let $B \subset A_{m}$ such that the sets $(x) \varphi^{-1}, x \in B$, are pairwise disjoint and cover
A_{m+1}. For each $x \in B$ there exists a $1-1 \operatorname{map} \varepsilon_{x}$ of $(x) \varphi^{-1}$ into $(x \mu) \sigma_{0}^{-1}$, as the latter set has power M, while the first has a power at most We define

$$
\mu \mid(x) \varphi^{-1}=\tau_{x}
$$

for each $x \in B$. Then μ is defined on all of $A_{m+1} ; \mu$ is 1-1 on $A_{1} \cup A_{2} \cup \ldots \cup A_{m}$; and (2.7) holds, for all $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{m}$. Using induction, the assertions of the lemma for the case $n=0$ follow.

The cases $\mathrm{n} \geqslant 1$.
The proof in the case $n \geqslant 1$ runs along similar lines; the only difference is that we do not start with an arbitrary $x_{0} \in X$, but with a point x_{o} belonging to the loop of φ.

Now we are able to prove the existence of universal morphisms in $K(S, m)$.

Proposition 5. K (S, TH) contains universal morphisms.
Proof.
For each non-negative integer n, let $\sigma_{\hat{n}}: N_{n} \rightarrow N_{n}$ be a mapping as described in lemma 3. Let S be any set of power m. Consider the set A of all ordered triples (s, n, x), where $s \in S, n$ is a non-negative integer, and $x \in N_{n}$. We define a mapping $\Psi: A \rightarrow A$ in the following way:

$$
(s, n, x) \Psi=\left(s, n,(x) \sigma_{n}\right)
$$

Contention: Ψ is a universal morphism for K.
It is clear that $\operatorname{card}(A)=m$. Let B be any other set of power $\not M^{\prime}$, and let $\psi: B \rightarrow B$. Let C be a choice set in B, containing exactly one point from every two-sided orbit $T O(x), x \in B ;$ let C_{n} be the subset of C consisting of all x such that $T O(x)$ contains a loop of n points (contains no loop, if $n=0$). For each $n, \operatorname{card}\left(C_{n}\right) \leqslant m$; hence for each n there is a 1-1 map τ_{n} of C_{n} into S. Furthermore, by lemma 4, for each n and each $x \in C_{n}$; there exists a $1-1$ mapping $\mu_{x, n}$ of $T O(x)$ into N_{n} with the property that

$$
(y) \mu_{x, n} \sigma_{n}=(y) \psi \mu_{x, n}
$$

for all $y \in T O(x)$.

We define a mapping $\mu: B \rightarrow A$ as follows: if $y \in B$, say $y \in T O(x)$, $x \in C_{n}$, we define

$$
(y) \mu=\left(x \tau_{n}, n, y \mu_{x, n}\right)
$$

Then is a $1-1$ mapping defined on all of B, and $\mu \Psi=\psi \mu$.
Corollary. $K(S, \bar{m})$ contains universal morphisms.
This finishes the proof of theorem 1.
Remark 1. If the cardinal number \mathcal{H} has the property

$$
m^{X_{0}}=\pi
$$

it is possible to prove propositions 4 and 5 in an entirely different (and, in the case of proposition 5, much simpler) way, using a method described already in [1]. This method will be treated extensively in subsequent notes on universal continuous and topological mappings and on universal families of morphisms.

Remark 2. It is trivial that theorem 1 also holds for $\boldsymbol{m}=1$, If \mathbb{H} is a finite cardinal different from 1 , it $j s$ easily seen that $K(S, T H)$ and $K(S, \overline{\pi n})$ do not contain universal or dual-universal morphisms or bimorphisms.

References

[1] P.C, Baayen, Toepassingen van een lineariseringsprincipe. Rapport ZW 1962-011, Mathematisch Centrum, Amsterdam.
[2] A.G. Kurosh, A.Kh. Livshits en E.G. Shul'geifer, Foundations of the theory of categories. Russian Math. Surveys 15 (1960), 1-46.

