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8 1. General concepts and definitions

In this note the existence of several types of universal mappings is
proved. In order to provide a general setting, we use the language of the
theory of cate.gories. The notation is the same as in Kurosh, Livshits and
Shul 'geifer [2] 7 in particular, the composition of two mappings ¢: A-»B
and Y : B=»C is denoted by @y . Accordingly, the image of aeA under
@ is denoted by (a)¢ (and also by a¢),

Let K be a category. An object a of K is called (X-) universal if for

every o‘Eher object b of K there exists a monomorphism 4t : b —+a. A morphism

ga* a—a is said to be a (K~) universal morphism if for every morphism
¥: b-—+b in K there exists a monomorphism & : b-» a such that =y,

a — @

L.

¢
v ¢

The morphism is called a (X-) universal bimorphism if is a bimorphism
@ ‘ ?

and if for every bimorphism ¥ : b -—+b there exists a monomorphism /o ib-»>a

such that S =YL,

The dual concepts are called dual-(K-) universal objects, morphisms

and bimorphisms. E.g. a dual—universal'morphism is a morphism @ : a ~>a

that is universal in the dual category K* , i.,e, for every ¥ : b-»b there

exists a surjection vy ;: a—+b such that ¢v = V¥,

A% ¢ L4
v 14

It is trivial that the existence of (dual-) universal morphisms or
bimorphisms implies the existence of (dual~) universal objects. The con-
verse is not true, in general.

In this and in subsequent notes we will examine the existence of
universal or dual universal morphisms and bimorphisms in a number of

categories; the most important ones are listed below.
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K(S,72): category of all mappings of a set of power #2 into another

set of power # .

K(LO,m7): -category of all order-preserving mappings of a linearly
ordered set of power 72 into another linearly ordered set

of power # ,

K(PO,Mm): category of all order-preserving mappings of a partially
ordered set of power -## into another partially ordered set

of power .

K(T,t): category of all continuous mappings of a completely
regular topologicaI‘Space of weight # into another com~

pletely regular space of the same weight,.

Also other categories of continuous mappings will be studied, as well
as categories of homomorphisms between abelian groups, and of boolean

homomorphisms between boolean algebras. Furthermore, we also define

K(S,;E): éategory of all mappings of a set of power less than or
equal to 72 into another set of power less than or equal to

"L .

Similarly K(LO,#%), K(PO,#2) and K(T, #L) are defined.
In this first note we treat the categories K(8, #22) and K(S,ﬁi),

for arbitrary cardinal -#z .

8 2. Universal morphisms in K(S,72) and K(S,—ﬁi).

The results proved in this note can be summarized as follows,

Theorem 1. For every transfinite cardinal 2 , the categories K(S, #2)
and K(S,J;E) contain universal morphisms and bimorphisms, and dual-

universal morphisms and bimorphisms,

The proof falls apart in a number of separate propositions, We
start with the simplest ones. In all the following, #£ ;is supposed

to be transfinite.

Proposition 1. K(S,'ﬂn)'%ontains dual universal bimdgphisms.
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Proof,
Let S be a set of power ### , and let A be the set of all ordered pairs
(x,n), with x€S and n an integer. Then also card(A) =-#2, as 2% is

transfinite. Define § s A=-» A as follows:
(2.1) (x,n)é = (x,n+1).

-We will show that § is a“dual-universal bimorphism in X(S, #2).
It is clear that é is a bimorphism. Now let B be any set of power
1 , and let @ be any bimorphism B-—#B. Then we first choose any epi-

morphism T: S -—>B; next we define ¥ : A—>B by
n
(2.2) (x,m)v= xTP .

(For any map @ , the map (po is defined to be the identity map.)
Then it is clear that ¥ maps A onto B (in fact, ¥ already maps the
subset of A consisting of all pairs (x,0), x€8, onto B); and §v=-wy :

(x,n)@V' = (x,n+l) = x‘l:(pn+1 = (x‘l:(pn)(p = (x,n)¥e.

Proposition 2. K(S,# ) contains dual-universal morphisms.

Proof.
The proof is almost the same as that of proposition 1.
Let S again be a set of power % . This time, let A exist of all ordered

pairs (x,n), where x€S and n is a non-negative integer. A morphism

lII : A=A is again defined by (2.1). If Y : B—»B is any morphism in K,
we take ag‘ain an epimorphism T : S —B and define an epimorphism
¥: S-—B by (2.1). Then Yh’:V‘F; hence ‘ﬁ turns out to be a dual-

universal morphism,

The same proofs can be used to show:

Proposition 3. K(S,/;;x—-) contains dual-universal morphisms and bimorphisms.

Proposition 4. K(S, #2) contains universal bimorphisms.

Proof,
For any non-negative integer n,; let In be the set of all integers re-

duced modulo n, and let o_‘n: In—* In be the successor function:

(2.3) ' (k) G'n = k+1, reduced modulo n.
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Let S be a set of power -#22 , and let A be the set of all ordered triples
(x,n,k), where xeS, n is a non-negative integer, and keIn. We define a

bimorphism é : A—>A as follows:
(2.4) @ 2 Gn,@ ).

We will prove that @ is a universal bimorphism for K.

Let B be any sét of power #2, and let @ : B—>B be a bimorphism.
The orbits 0(x) ={(x) ‘Pn : n=0, +1, iz,...} partition B into disjoint
sets, each of them at most countable,

Let C be a choice set, containing exactly one point from every
orbit O0(x); let c, ={xeC : card(0(x)) = n} (n=1,2,...), and Co ={ng:
card(0(x)) = Ko} . For each n, card(Cn) £ 7 ; hence for every n there
is a 1-1 map € of C into S. |

We define a mapping A : B-—3A in the following way. If x&B, there
is exactly one ye C such that x €0(y); there is exacfly one n such that

yeCn'; and there is exactly one keI such that (y) (pk = x. We put
(2.5) @M = (T 0,10,

Then g is a moné)morphism, and/u. @ = (‘)/b .

Corollary. K(S, 4;2) contains universal bimorphisms.

Proof. ’

If ¢ : B—»B, and card(B)< ##¢ , then take any B' 2 B such that
card(B') = 2% , and define Jo%?': B'—+B' by: ¢’ | B =¢, Cp"B'\,B =
identity map. : »

There remains to be shown that K(S, #) and K(S, 47) contain uni-

versal morphisms. In order té do this, we need some lemmas.

Definitions. The two-sided orbit TO(x) of a point x¢ X under a mapping

®: X-5X is the set

(2.6) TO(x) = { yex : (y)q)n = (x)fpm, for some non-negative

integers n,m} .

A mappii'xg (p: Xty X is called coherent if TO(x) = X, for some xeX,
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A loop under a mapping @ : X-—+X is a finite set of points X 9sKgeee X

(n21), such that

n

(xk)q7= X1 (k=1,2,...,n-1);

(xn)‘{’ =% .

The following two lemmas are evident.
Lemma 1, The two-sided orbits under a mapping ¢ X —X constitute a

partition of the set X,

Lemma 2. A two-sided orbit TO(x) under a mapping ¢ contains at most ome
loop.
In the next lemma, the existence is established of certain mappings

needed for the construction of a universal morphism.

Lemma 3, Let 72 be any transfinite cardinal number. For every hon—nega—
tive inteéer n, there exists a coherent mapping Gh : Nr—a—Nn of a set Nn
of power 72 into itself with the following properties:
(i) there is a loop of exactly n points (in case n=0, this means
that there is no 106p at all);
(ii) card((x)a'nnl) =M , for each xeNn.

Proof.
. First take n=0.
Let A be any set of power -#%Z . Consider the set C of all indexed sequences

I : | ...sWhere k is an arbitrary integer (possibly negative

25%%41%k+2" * “Pken
or zero) and each ai belongs to A, Define ¢ : C—>C by

( Jo

B Pke1 k42 7?0 T P ¥kt

Then there are no loops under 6 , and card((x)o:;) =7 , for every xeC.
The power of C is equal to 7z ©; this may or may not be equal to 47 .
But fortunately this does not matter. For if we choose any xoe.C, and
put No = TO(XO), then it is easy to show that card(No) =L . Finally we
may define 6 _ as G'IN .
o o
Next we consider the case n=l.

Choose aéain a point xle.C, and let

for some non-negative

N1 ={:<6C : @t =x
integer n ¢.
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Let o“llNl\ {Xl} = G’lNl\ {xl} , and let (x1)6‘1 =% . Then
5’1 : Nl——> Nl satisfies the requirements,

Finally let n be an integer > 1. Let MMy,

each of power 2 , and for each i1, 141i4n, let ‘ti : Mi—-->M:.L be a map~-

M M_ be disjoint sets,
n

ping with the properties required for 6‘1. Furthermore, let the one-point
loop under ‘Ci in Mi consist of the single point Xi' Then we can put

Nn= Mlu MZU e U Mn’ and

o‘nlMi\ {xi}=Ti|Mi\{xi} (L€i€n);
(x)o = }x_ (1£i€n-1);
.1 n

(xJ)o =x
n n

Next we show that the mapping o‘n is universal for all coherent

mappings having a loop of n points.

Lemma 4. Let 1 be a transfinite cardinal. Let card(X) = #2, and sup-
pose @ : X —-»X is a coherent mapping with a loop of n points. If
6‘n : Nn-» Nn is a mapping meeting the requirements of lemma 3, then

there exists a 1-1 mapping AL : X—+Nn such that /wrn = QL.

Proof,
First suppose n=0.

Choose an arbitrary xoe’X and an arbitrary yoe No,; we put
m, m
(x, @ & = (yo)tf'0 (n=0,1,2,...).

e Vo™ ‘ -1
Let A, ={(x)@" :ym= o’,1,2,...} , Ay = (A @ \NA,, and

-1 ’ c s
Am+2 = -"-(Am+1) @ (n=1,2, f.c'o')' The sets A1 iAz, ... are disjoint,
have powers £ 72 , and X = U A . We have defined /blA ; suppose

/L‘Ak already defined, for k=1,2,...,m, in such a way that
2.7 OIS, = () P

for all x:e,AlUA U (53 Am; while also M is 1-1 on A

2
- The sets (x) @ ~, xe Am, partition Am

lu AZU .o .UAm-
41 into at most #2 disjoint

sets. (In the case m=1, we must take the sets (x)rp_lnA instead). Let

2
Bc Am such that the sets (x)(p—l » X€B, are pairwise disjoint and cover

&
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Am+1‘ For each x€ B there exists a 1~1 map 'L‘X of (x)(p—1 into (x ) 6{')-19

as the latter set has power ## , while the first has a power at most 72 ,
We define

,u,,(x)(p-l = T_,

X

for each xe& B. Then M is defined on all of Am+1;/b is 1-1 Qn

Alu AZU...UAm; and (2.7) holds, for all x6A1

duction, the assertions of the lemma for the case n = O follow.

v . i in-—
Azu ...UAm Using in

The cases n31.
The proof in the case n21 runs along similar lines; the only dif-
ference is that we do not start with an arbitrary xoé X, but with a

‘point x_ belonging to the loop of @.

Now we are able to prove the existence of universal morphisms in

K(S, m) .

Proposition 5. K(S, #2) contains universal morphisms.

¥

Proof,

For each non-negative integer n, let 6'ﬁf : Nn—-> Nn be a mapping as
described in lemma 3., Let S be any set of power #22 ., Consider the set
A of all ordered triples (s,n,x), where s €8S, n is a non-negative inte-

ger, and xeN . We define a mapping Y : A—A in the following way:
(S,n,x)\If = (s,n,(x)e ).

Contention: 'ly' is a universal morphism for K.

It is clear that card(A) =-# . Let B be any other set of power
71 , and let 1[1‘ : B—»B, Let C be a choice set in B, containing exactly
one point from every two-sided orbit TO(x), x€ B; let Cn be the subset
of C consisting of all x such that TO(x) contains a loop of n points
(contains no loop, if n=0). For each n, card(Cn)ém ; hence for each
n there is a 1-1 map '!:n of Cn into S, Furthermore, by lemma 4, for
each n and each xécn,‘ there exists a 1-1 mapping /“x,,n of TO(x) into

Nn with the property that
: G =
(y)/ux,nn (y)tj//l.x’n

for all y € TO(x).

o
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We define a mapping . : B-»A as follows: if yeB, say y ¢ TO(x),

xeCn,Wedaﬁne

(yIp = (xtn,n,y,ax’n) .

Then is a 1-1 mapping defined on all of B, and }L"F= v,
Corollary. K(S,Jﬁ) contains universal morphisms.,
This finishes the proof of theorem 1,

Remarkyl. If the cardinal number #¢ has the property
g
T o=m,
it is possible to prove propositions 4 and 5 in an entirely different
(and, in the case of proposition 5, much simpler) way, using a method
described already in [1] . This method will be treated extensively in
subsequent notes on universal continuous and topological mappings and

on universal families of morphisms.

Remark 2. It is trivial that theorem 1 also holds for M =1, Ifmm is
a finite cardinal different from 1, it jis easily seen that K(S,?1) and
K(S,ﬁi) do not contain universal or dual-universal morphisms or bimor-

phisms,
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