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§ 1. General concepts and definitions 

In this note the existence of several types of universal mappings is 

proved. In order to provide a general setting, we use the language of the 

theory of categories. The notation is the same as in Kurosh, Livshits and 

Shul 'geifer [ 2] .; in particular, the composition of two mappings y,: A...., B 

and ·: '/I : B ..+: C is denoted by 'f' yr • Accordingly, the image of a e. A under 

" is denoted by (a) <p (and also by a <p). 

Let K be a category. An object a of K is called (K-) universal if for 

every other object b of K there exists a monomorphism #: b-,. a. A morphism 

<p-/: a-+ a is said to be a (K-) universal morphism if for every morphism 

'fl': b -b in K there exists a monomorphism I": b.-+ a such that p<p= yp,. 

~----"-----·~ 
[ ____ ,,,._____,..} 

The morphism <p is called a (K-) universal bimorphism if 4P is a bimorphism 

and if for every bimorphism ,y : b-+ b there exists a monomorphism I" : b ➔ a 

such that pep= V,fo. 
The dual concepts are called dual-(K-) universal obj~cts, morphisms 

and bimorphisms. E.g. a dual-universal morphism is a morphism tp : a -+ a 

that is universal in the dual category K * , i • e. for every Y, : b ....., b there 

exists a surjection V: a-+b such that <pv = v1'f. 
4,( 'f' ., 

i.,, l"' J:~-------
It is trivial that the existence of (dual-) universal morphisms or 

bimorphisms implies the existence of (dual-) universal objects. The con­

verse is not true, in general. 

In this and in subsequent notes we will examine the existence of 

universal or dual universal morphisms and bimorphisms in a number of 

categories; the most important ones are listed below. 



K(S ,'llt): 
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category of all mappings of a set of power m. into another 

set of power '1IJ.. 

K(L0,1ff..): ·category of all order-preserving mappings of a linearly 

ordered set of power -m. into another linearly ordered set 

of power -11t-

K(PO,-m): category of all order-preserving mappings of a partially 

ordered set of power ,,m. into another partially ordered set 

of power -,n,, 

K (T, 411,,) : category of all continuous mappings of a completely 

regular topological space of weight -m,. into another com­

pletely regular space of the same weight. 

Also other c~tegories of continuous mappings will be studied, as well 

as categories of homomorphisms between abelian groups, and of boolean 

homomorphisms between boolean algebras. Furthermore, we alSQ- define 

K(S ,.;ii) : category of all mappings of a set of power less than or 

equal tom into another set of power less than or equal to 

.,,,, . 
Similarly K(LO,-m), K(PO,-m.) and K(T,-ii.) are defined. 

In this first note we treat the categories K(S, fft.) and K(S, '1ft.), 

for arbitrary cardinal -,,,,. • 

§ 2. Universal morphisms in K(S-, -m.) and K(S, -m). 
The results proved in this note can be summarized as follows. 

Theorem 1. For every transfinite cardinal .,.,,,_ , the categories K(S,--m.) 

and K(S,-m) contain universal morphisms and bimorphisms, and dual­

universal morphisms and bimorphisms. 

The proof falls apart in a number of separate propositions. We 

start with the simplest ones. In all the following, '1lt,. i- i~ supposed 

to be transfinite. 

Proposition 1. K(S, -H.e)-"contains dual universal bimo¥4>hisms. 
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Proof. 

Let S be a set of power -m, and let A be the set of all ordered pairs 

(x,n), with xe.S and nan integer. Then also card(A) =""'-,as-mis 

transfinite. Define i : A-+- A as follows: 

(2.1) (x,n) f = (x,n+l). 

We will show that f is a'dual-universal bimorphism in K(S, -m). 

It is cle:3-r that Yf is a bimorphism. Now let B be any set of power 

"If(, , and let ~ be any 1:;>imorphism B-+B. Then we first choose any epi­

morphism "t': S .-.+ B; next we define Y : A-B by 

(2. 2) (x,n) y = n 
X "'C <p • 

(For any map cp , the map <p O 
is defined to be the identity map.) 

Then it is clear that V maps A onto B (in fact, a, already maps the 

subset of A consisting of all pairs (x,O), xe S, onto B); and fV= Vf 

(x, n) ~ Ii = (x, n+l) 
n+l n = x"tcp = (x "t cp )q> = (x,n)Vq>. 

Proposition 2. K(S,-m) contains dual-universal morphisms. 

Proof. 

The proof is almost the same as that of proposition 1. 

Let S again be a set of power -nt- . This time, let A exist of all ordered 

pairs (x,n), where xeS and n is a non-negative integer. A morphism 

q, : A-+A is again defined by (2.1). If ..y: B-+-B is any morphism in K, 

we take again an epimorphism i; : S ~B anq define an epimorphism 

Y : S -+B by (2.1). Then f'v= Ylf; hence ,P turns out to be a dual­

universal morphism. 

The same proofs can be used to show: 

Proposition 3. K(S,.-m) contains dual-universal morphisms and bimorphisms. 

Proposition 4. K(S,-m.) contains universal bimorphisms. 

Proof. 

For any non-negative integer n, let I be the set of all integers re­
n 

duced modulo n, and let 6" : I -+- I be the successor function: 
n n n 

(2.3) (k) <f" = k+l, 
n 

reduced modulo n. 
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Let S be a set of power --tn, and let A be the set of all ordered triples 

(x,n-,k), where xES, n is a non-negative integer, and kEI • We define a 
n 

bimorphism f : A-+A as follows: 

(2 .4) (x,n,k) j - (x,n, (k) 6" ) • . n 

We will prove that ~ is a universal bimorphism for K. 

Let B be any set of power -m , and let <p : B ~B be a bimorphism. 

The orbits O(x) ={(x) <pn n=O, ±_1, £2, .• ·} partition B into disjoint 

sets, each of them at most countable. 

Let C be a choice, set, containing exactly one point from every 

orbit O(x); let en ={x"C: card(O(x)) = n} (n=l,2, ••• ), and C
0 

={xeC: 
card(O(x)) = >t

0
} For each n, card(Cn) ~ -m ; hence for every n there 

is a 1-1 map t of C into s. · n n 
We define a mapping ,t4A- : B .-+-A in the following way. If x 6 B, there 

is exactly one y 6 C such that x E. 0 (y) ; there is exactly one n such that 

ye en; and there is exactly one k 6 In such that (y) q,k = x. We put 

(2.5) (x)p, = ( (y)-:C ,n,k). 
n 

Then p, is a monomorphism, and j.L «p = Cf P,. 

Corollary. K(S, ~) contains universal bimorphisms. 

Proof. 

If cp: B -'J!-B, and card(B)< ~ , then take any B'-::,, B such that 
' 

card,(B') = .,m., and define q,': B'~B' by: <p' I B = <p, Cf>'IB''B = 

identity map,. 

There remains to be shown that K(S, -m.) a:p.d K(S, -m.) conta:i,.n uni­

versal morphisms. In order to do this, we need some lemmas. 

Definitions. The two-sided orbit TO (x) of a point x ~ X under a mapping 

ff : X "'1-X is the set 

(2.6) TO(x) = t y 6X 
n m 

(y) cp = (x) 1' , for some non-negative 

integers n,m} . 

A mapping f: X4X is called coherent if TO(x) = X, for some xe.X. 

,, 
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A loop under a mapping <p X - X is a finite set of points x1 ,x2 , ••• ,xn 

(n ~ 1), such that 

(xk) Cf' = xk+l 

(xn)cp = xl • 

( k=l , 2 , ••• , n-1) ; 

The following two lemmas are evident. 

Lemma 1, The two-sided orbits under a mapping <p 
partition of the set X. 

X ..+X constitute a 

Lemma 2. A two-sided orbit TO(x) under a mapping cp contains at most one 

loop. 

In.the next lemma, the existence is established of certain mappings 

needed for the construction of a universal morphism. 

Lemma 3, Let 111, be any transfinite cardinal number, For every non-nega­

tive integer n, there exists a coherent mapping <, : N -N of a set N n r n n 
of power -m, into itself with the following properties: 

(i) there is a loop of exactly n points (in case n=O, this means 

that there is no loop at all); 

(ii) card( (x)<, -l) = -1'11, y for each x 6 N • 
n n 

Proof. 

First take n=O. 

Let A be any set of power -1'11,. Consider the set C of all indexed sequences 

akak+lak+2 ••• ak+n···,where k is an arbitrary integer (possibly negative 

or zero) and each a. belongs to A. Define cr : C ~c by 
]. 

-1 
Then there are no loops under 6", and card( (x)cr ·) = ~ , for every x e C. 

)l 
The power of C is equal to ,m. 0 ; this may or may not be equal to -1tt • 

But fortunately this does not matter. For if we ch,oose any x ~ C, and 
0 

put N = TO(x ), then it is 
0 0 

easy to show that card(N ) = -111,. Finally we 
0 

may define ti as er I N • 
0 0 

Next we consider the case n=l. 

Choose again a point x
1 

6 C, and let 

Nl = { X ~ C : (x) crn = x1
, for some non-negative 

integer n}. 
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Let a'ilN1 \ { x1 } = CS- I N1 '\ { x1 } , and let (x1 >•1 = x1 • Then 

l'j_ : N
1
-+N

1 
satisfies the requirements. 

Finally let n be an integer > 1. Let M
1 

,M2 , •.• ,Mn be disjoint sets, 

each of power ,nt, , and for each i, 1 ~ i 4 n, let ,:; . : M.-+- M. be a map-
1 1 1 

ping with the properties required for o
1

. Furthermore, let the one-point 

loop under ~. in M. consist of the single point x
1 
.• Then we can put 

1 1 

N = M
1 

U M
2 

u .. ,. tJ M , and 
n · n 

(i"n I Mi\ { xi} = ,:-iJMi'\ {xi} 
(x .. )0- == X 

1 n i+l 

(x )Cf' 
n n 

(1 ~ i '= n) ; 

(l-' i ~n-1); 

Next we show that the mapping crn is universal for all coherent 

mappings having a loop of n points. 

Lemma 4. Let.,.,,,_ be a transfinite cardinal. Let card(X) =...,,,_,, and sup­

pose (f> : X -+-X is a coherent mapping with a loop of n points. If 

6" N ~ N is a mapping meeting the requirements of lemma 3, then 
n n n 

there exists a 1-:1 mapping p : X-+Nn such that _IN "n = <p P, . 

Proof. 

First suppose n=O. 

Choose an arbi tra:ry x e X and an arbitrary y e. N . ; we put 
0 0 0 

, . m 
Let A

1 
= { (x

0
) <p 

Am+2 = JAm+l) <p.-1 
have powers ~ ..,,,__ , 

(x cpm)p = (y )(J'" m 
0 0 0 

(m=O, 1 , 2 , ••• ) . 

(m=l,2, .•. ). The sets A1 ,A
2

, .•. are disjoint, 
.m 

and X = LJ A • · We 4ave defined _p,fA1; suppose 
Ill=l m 

ftlAk already def~ned, for k=l,2, ... ,m, in such a way that 

(2.7) (x)p,o = {x) Cf }L 
0 

for all x~A
1 

VA2 u ... u· Am' while also JJ, is 1-1 on A1u A2 o ... U Am • 

. The sets (x)<p-l~ xeA, partition A _
1 

into at most'f/t, disjoint 
m m+ ~ 

sets. (In the case m=l, we must take the sets (x)tp I'\ A
2 

instead). Let 
-1 

Be A such that the ,sets (x)cp , x e. B, are pairwise disjoint and cover 
m 

C• 
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-1 -1 
A 

1
• For each xe B there exists a 1-1 map i; of (x)q, into (xp.,) <T , m+ X 0 

as the latter set has power -m, while the first has a power at most "1'1'1-. 

We define 

I 
-1 

)L (x) 'f = ,; X' 

for each xE.B. Then p, is defined on all of Am+li/"" is 1-1 on 

A
1

tfA
2

u ... UAm; and (2.7) holds, for all xt.A.
1

uA2 u ... UAm. Using in­

duction, the assertions of the lemma for the case n = 0 follow. 

The cases n ~ 1. 

The proof in the case n ;ii. 1 runs along similar lines; the only dif­

ference is that we do not start with an arbitrary x E.X, but with a 
0 

point x belonging to the loop of q, . 
0 

Now we are able to prove the existence of universal morphisms in 

K(S, -11t-). 

Proposition 5. K(S, 'In) contains universal morphisms. 

Proof. 

For each non-negative integer n, let on : Nn -Nn be a mapping as 

described in lemma 3. Let S be any set of power~. Consider the set 

A of all, ordered triples (s,n,x), where sE.S, n is a non-negative inte­

ger, and x E. Nn. We define a mapping 1/' : A -A in the following way: 

(s,n,x)f = (s,n,(x)cs-n). 

Contention: if is a universal morphism for K. 

It is clear that card(A) =_--tf't.. Let B be any other set of power 

-m. , and let 1ft' : B ~B. Let C be a choice set in B, containing exactly 

one point from every two-sided orbit TO(x), xeB; let C be the subset 
n 

of C consisting of all x such that TO(x) contains a loop of n points 

(contains no loop, if n=O). 

n there is a 1-1 map i; of 
n 

each n and each x 6 C ; there 
n 

N with the property that 
n 

For· each n, card(C )~nt; hence for each 
n 

C into S. Furthermore, by lemma 4, for 
n 
exists a 1-1 mapping Px n of TO(x) into 

~ .. 

(y),,.« u = (y)iJr ,,M, x,n n x,n 

for ally~ TO(x). 
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We define a mapping p, : B - A as follows: if ye. B, say y E. TO(x), 

x e C , we define n 
(y)fo = (x-c ,n,yp, ). n x,n 

Then is a 1-1 mapping defined on all of B, and 1u..'f = ,Y /b . 

Corollary. K(S,-m.) contains universal morphisms. 

This finishes the proof of theorem 1. 

Remark 1. If the cardinal number --m. has the property 

.H" 0 
-m =m, 

it is possible to prove propositions 4 and 5 in an entirely different 

(and, in the case of proposition 5, much simpler) wayJ using a method 

described already in [ 1] • This method will be treate(l extensively in 

subsequent notes on universal continuous and topological mappings and 

on universal families of morphisms. 

Remark 2. It is trivial that theorem 1 also holds for 71f. = 1, If m is 

a finite cardinal different from 1, it fs easily seen that K(S,m) and 

K(S,m) do not contain univers~l or dual-universal morphisms or bimor­

phisms. 
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