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1. Introduction and notation.

*

In this note we describe;, generalize and apply a cor=uw
struction, used by J. de Groot to establish the existence of
certain universal systems of mappings [7] , and to prove .
that continuous mappings of a metric space into itself can
be considered as restrictions of linear maps ([8]; see also
[5],[6]). The same construction has been used by G.C. Rota
[15], [16] in order to derive universal bounded operators
in Hilbert space.

If X,Y are sets, XY designates the set of all functions
on Y with values in X. If xe x¥ and ne Y, then xddenotes the
value of x in 7 ("the m-coordinate" of x): we often write

x = (x,)

X“'l ney
The projection map x-vxn is denoted by ﬂ% .
If x1 < X2 , we consider XqY to be a subset of X2Y°
If X is provided with some additional structutre, we suppose

XY to be provided with the product structure. For instance,

if X is a topological space, x¥ s provided with the pro-
duct topology (the weak topology, if one considers XY as a
function space); if X is a group, x¥ 1s the full direct pro-
duct. If X is a topological linear space;, so is XY (by com-
bination of the previous two conventions).

In the case of a linearly ordered set X and a well-
crdered set Y, we take XY to be linearly ordered by means
of the lexicographic order.

We make use of the language of category theory as ex-
posed in [13] , and of the notation and conventions in [3] ,
[4]0 Consequently, we write the argument of a function be-
fore the function symbol (there are a few exceptions, like
x_, card (@), H{(A,B)); if f’,geAAg then fog designates the
composite functionu—»{(«)f)g. :

A
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The identity map of a set A into itself is denoted by i, or
by iA if it is necessary to call attention to its domain.

If FeX® and AcX, then F|A denotes the set {¢|A s ¢eF},
We say that A is invariant under F (or F-invariant) if Apch
for all ¢eF. If Fc;XX is a semigroup under composition and
AcX is F~-invariant, then FQA is a semigroup of mappings A-+A.

The category of all mappings of one set into another is
denoted by K(S). If X is a set, K, denotes the category, whose

X
objects are all sets XA, A a non-void set, and whose morphisms

are all mappings of one such an obJject into another one.

If K is a category and A,B are objects of K, then H(A,B)
denotes the set of all morphisms ¢e K with A as first object
and B as second object. If we use the notation H{(A,B) without
mentioning a specific category, then H(A,B) is formed in the
category K(8).

Definition 1. Let K be a category, and let A,B be objects
of K. Let FeH(A,A) and let GcH(B,B). We say that F and G are
equivalent if there exists a bimorphism s : A — B such that

the transformation
¢ —pu o p

maps F onto G.
It is evident that in that case the transformation

@ > Mo q?ﬂ» is 1-1. If F and G are semigroups of transformations,
then«@«##ﬁﬂwﬂ, is clearly a semigroup isomorphism.

If we want to stress the r6le of s , we say that F and G
are equivalent by means of #. We will also write: the pairs

(A,F) and (B,G) are equivalent. If F consists of one element ¢
and G of one element % s we say that ¢ and X are equivalent iff
e} ana {L} are.

If F and G are equivalent, and F is a semigroup, sc is Gg
if F is a group then G is a group.
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By semigroup we mean in this note a semigroup with unit.
In the case of a transformation semigroup, we assume that its
unit is the identity transformation. The unit of an abstract
semigroup is as a rule denoted by 1. By a homomorphism of a
Semigroup F into a semigroup G we always mean a semigroup ho-
momorphism sending the unit of F onto the unit of G,

2. The star-functor.

Throughout this section and the subsequent two, X is a
fixed non-void set.

Definition 1. If ¢eK(S), say ¢ : A -+ B, then @* designates
the map XP—s X* such that

*
(xe”), = o

for arbitrary x = (x ¢ )pe 5€ X2 and arbitrary « ¢ A. In other
words: (p*o = ’iﬁ&?o
We denote by K; the subcategory of Kx consisting of all

transformations @*, e K,; these transformations are called
S-maps (with base space X).

Proposition 1. K;’#aKX if X contains at least two distinct
elements p,q.

Proof.

Let A,B be non-void sets. Let}ceXB such that Xg =D for all
feB, and let yeXx® such that Y, = a4 for all weA. Any

Mg XBceaXA such that xu = y cannot be an S-map.

Proposition 2. The transform y=%>@A is a contravariant functor

K(S)ﬂ%ﬂKX; if X contains at least two distinect elements p,q
it is in fact an anti-isomorphism of K(S) into Ky o



Proof.

We first show that (poy) —»yr ‘f Let AXL B % C;5 then
x© V’.XB ¢, XA° Hence the product yr«>¢ is in any case de-
fined. And for arbitrary « e A

R . ; L4
\i’*a ?"‘@ w, = y,h"a ﬂmﬁg@a FE’“‘?*@‘I’E (po¥ ) s T, w‘

Thus @«%af*is a contravariant functor. As clearly ey is de-
fined as soon as y*e ¢ 1s, 1t only remains to show that the
functor - . ¥ is 1-1, 1f X contains at least two dilstinct elements.
Suppose @ ¢+ VY . If @3 A =B, and y: A,—» B,, where

either A, # A, or By # By, 1t is trivial that ¢*# v . Assume
¢ and ¥ both belong to H(A,B). There is an o ¢ A such that
xpLouy Let x be any point of X° such that Xy, = D and
X«yfz q. Then . . .

(68" = %y # %oy = (x¥7),

Thus ¢"# y*.
The functor.,*'will be called the star-functor or STAR;

if we want to emphasize the base space X, we will write
STARXQ

Cdpollary, For any set A, STAR maps the semigroup H(A,A)
anti-isomorphically into H(x®,x?).

It also follows that ¢*is a monomorphism (epimcrphism)
in Ky if ¢ 1s an epimorphism (monomorphism). As Kg # Ky s

however, the next proposition still needs a proof.

Proposition 3. @*'is 1-1 iff ¢ is onto;qﬁ is onto iff ¢ is 1-1.

Proof.
]x°p is 1-1, it is a monomorphism in Kxg and a fortiori

it is a monomorphism in KX hence ¢ 1s onto. Similarly, if
¢* is onto, then ¢ is 1-1. Now suppose ¢ 3 A-+B is an epi-
movphism in K(S). Let x,ye;XB s ¥ #£ y. Then Xg # Ve for some
£ e B; as ¢ is onto, # =ep for some e A, It follows that
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(56%),= %, = X # Vp = (767)y 5

hence xtp* £ yo*. Thus ¢ 1s 1-1.

Finilly, sSuppose » : A-»B 1s 1-1, and let ye X*. Define
x e XE as follows. If péhe , we put X =P where p is a fixed
point of X, If[ae.Acp s there is exactly one o« e A such that
p=dp; we put Kg= Yy Then x¢'= y. Hence ¢" is onto.

Definition. Let Y=2X. For goeK(S)_, the map STARYtp is called
the canonical extcasion of the map STARX@ to the base Y.

Proposition 4 For v=X, the canonical extension STARX‘P-—-*
a*% #*
STARY¢ is an isomorphism of KX into KY

Proof: immediate from prop. 2.

The next proposition 1s also evident:

Proposition 5. If yvyo>X, and if ¢ sA=»B, then STAR @ =
(S:ARy ¢) | x> =

3. The fundamental embedding lemma.

Definition 1. If G is a semigroup, and J/eG we will denote
by }/ the map G-+G such that

(§)f =15
for arbitrary § € G. The transformation semigroup of all )/ s
/ ¢ G, is denoted by G.

The next proposition is trivial,

Proposition 1., If G has a unit, the map/--»/ is an anti-iso-
morphism of G onto G.

Corollary., If G is a semigroup with unit, the transformation
}’wa-j%is an isomorphism of G into H(XG, XG) .

F3
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To simplify the notation, we will write ? instead ofif
The subsemigroup {fﬁ[@(}j of H(x%, x%) will be denoted by
G. It should be kept in mind that this notation is ambi-
guous; as the notation f is ambiguous. For the transfor-
mation f is determined, not only by the semigroup element /s
but also by the semigroup G of which ) is considered to be
an elemeﬂnts if feG,< (529 we would have to dIsting ish be-
tween af s G,,l-v-»&»(lé,l and a[ H GQ«-@»G2°
However, complications of this kind will not ‘arise in the

course of the considerations of this note.

Definition 2. If¢-is a homomorphism of a semigroup F into
H{X,X), then & designates the map x-»XY% such that

(58), = (§) (¢9),

for arbitrary §e X and ¢eF. In other wor»dsgz*ovc‘?= (¢)e .

X

& ™
¢

xLx:&

Proposition 2 (FUNDAMENTAL EMBEDDING LEMMA). If F is a semi-
group with unit, the map 6 is one-to-one. Moreover, if ¢ ¢ F,
then cop = (g&)e o,

A
2 xF

P

Proof.

o 4

As cow, = (1)e =1y , & is 1-1. And if ¢,y eF, then
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(o 0 @) Oﬁyzg‘o((?oﬁy):g‘ 0" =

=(¢ o y)o = (p5) o (yeo) = (p7) og’owvo

Remark. An important special case is the one where F is a
subsemigroup of H(X,X) and where ¢ is the natural injection
F=sH(X,X). In this case the diagram of proposition 2 simpli-

fies to
e '
¢ I :
¢

X ey X

&)

—F

and the definition of ; reduces to 3 & O’ = @,

F is invariant unde~r F.

Corollary. The subset X& of X

Proof,

Immediate from the fact that o o ¢ = (p&)e &,
1'4
[+ 28

Proposition 3. (X, Fe) and (X &, F|Xo) are equivalent by
means of éo

Proof.

By prop. 2, & is invertible if considered as a map
$ w v
X-*Xo . lLet G = Fe . If {e G, we define J: Xe& = Xo Dby

§

/ z}"qojfoéo

Then J’«a»[' maps G onto ﬁlxg“z if @ € F, then

A v
ﬂx§=€'1o wf)oég

A v ]
and hence ¢|X& = (¢o) .
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4, Universal systems of mappings,

As immediate consequences of §3 prop.3 we obtain the
following theorems.

Theorem 1. Let X be a non-empty set, and let F be a free
semigroup with# generators (7 an arbitrary cardinal number)°
For every semigroup G of transformations X—X, acting
effectively on X, such that card (G)« 7, there exists a sub-
set X of XF, invariant under F, such that (X,G) and

(X ﬁ]xo) are equivalent.

Theorem 2. Let X be a non-void set, and let F be a free group
with # generators. For every transformation group G, acting
effectively on X, such that card (G)s 7 , there exists a sub-
set X_ of X°, invariant under ¥, such that (X,G) and
(X5 ﬁlxc) are equivalent.

Proofs.

If G acts effectively on X, it can be 1dentified with a sub~
(semi-)group of H(X;X). Let & be any homomorphism of F onto
G, and take X = Xe .

Remark. The condition card (G)s 7 can of course be replaced
by the weaker condition: G has a system of generators of

power £ #

As F and F are isomorphic, we can also express part of
the content of theorems 1,2 in the following way.

1 ‘
Theorem 1, ILet X be a set with card (X)= 7 ; let = be any
, 7
cardinal number. If Y is any set with card (Y)3 7 ® , then
H(Y,Y) contains a subsemigroup F with the following proper-
tiles:

(1) the abstract semigroup F is a free semigroup with-
unit .with 7 generators;
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(11) if G is any transformation semigroup acting effect-
ively on X, with card (G)s 7z , then (X,G) is equivalent to
(XOQFlXO) s for a sultable F-invariant subset X  of Y.

i
Theorem 2: obtained from theorem 1 by substituting “group"
for every occurrence of “semigroup".

X
‘Corollary (# = 1) Ifm=2° , the categories K(S,#) and
K(S,%Z) contain universal morphisms and bimorphisms.

This 1s a result obtained in [4] . Our present proof is more
simple and elegant then the one presented in [4] s on the
other hand, the results in [4] are more general, as the
agsumption M= ° is replaced there by the weaker condition
e ?9%@ . {(The class of those cardinals m for which mx" £ m
is cofinal in the class of allcardinals).

However, we have now considerably generalized the re-
sults of [4] in apother direction: the theorems 4! and 21
show that if ﬂiﬂ © =, K(S,#) contains semigroups of
morphisms and groups of bimorphisms (even free semigroups and
groups) that are universal (cf.§7) for all semigroups of at
most # morphisms (all groups of at most # bimorphisms).

5. S-maps in abstract categories.

As has been mentioned already in the introduction, the ter-
minology of [13] and [4] is used.

Definition 1. Let K be a category. If X is an object of K
and A 1s a set, then 2_(X,A) is the family (X ), ¢, With
X“= X for all e¢e¢ A, The class of all direct joins in K of
T (X,A) is denoted by A(X,A); of course A(X;A) may be
empty.




Let K be a fixed category, and let X be a fixed object of K.

Let A,B be non-void sets, and suppose A(X,A) and A(Y,A) are
non-void. Suppose

Y= T(L(xa) =T x (=),
XEA
7z =T (X (xB) =T x, (x).

£

If ¢: A=B is any map, then"qu?g Z«»X&¢ =X = X&, for every
s eh. Hence, by the definition of direct join ([12] §12.1)
there exists a unique © : Z—=Y such that

ﬁeB &

TTE =‘Wu¢ ,
for all o« e A, This morphism © will be denoted by @*; all
morphisms of XK, obtained in such a way, will again be
called S-maps. The fact that S-maps are again morphisms of
the same category K is stressed, as it is quite essential.

Examples: if K is the category of all topological spaces, or
of all groups, or of all abelian groups, or of all topolo-
gical vector spaces, then direct joins always exist in K;
hence we can always construct S-maps.

Thus

Proposition 1, If X is a topological space, every S-map ?*s
XB~»XA is continuous. If X is a gvoupgqf'is a homomorphism.
If X is a topological vector space, ?* is a continuous

linear operator.

The following observations will be useful. Let w:
X-+X' be a monomorphism of K. Suppose Y e A(X,A) and
Y'e A(quA), where A is a non-void set; say
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t aijA % )

Then there exists a unique morphism T : Y-Y' such that
T W& =™ M , for allaeh, This morphism we denote by M.

Proposition 2. ;1 is a monomorphism.

Proof.,
== - o 1 I {

If pop= po b then puT u = PofToy= pPoMTy =
= Py M s for allaeA. As  1s a monomorphism, it follows
that ﬁan =.f2Wa. s for all e A, This implies that qu pz
(cr. [13]1§13.2).

¥*

Now let ¢ : A=»A; 1et<§“and ¢ﬁ denote the corresponding

S-maps Y->Y and Y¥'—=Y', pespectively,

b § 3¢

Proposition 3. AT

Proof.

For arbitrary « € A we have
= % ! = 1 ¥ % = [
}bip W& =Ab7ﬁm(? -...-:75«?}& :(PW“/L"-‘:(P /JNWOL °

Remark., Prop. 3 can be considered as an abstract analogue of
§2 prop. 4.

The case of an index set F which is itself a semigroup
is again of special interest. If we write once mone«?in-
-3
stead of ¢ ;, we have:

Proposition 4. If Y = W (F(X,F)), then ?awf? is an isomor-
phism of F into H(Y,Y); in particular, 1= SY-

Proof,
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@1 P ?H TPV = Toigoy

AN '
As @4 ¢, is the uniquet such that 'c*'mw %?2‘}, s for all

yeF, we conclude that Cp,! ?2 (p,l P

Corollary. If F is a group, each c/p\g (peFQ is a bimovphism in
KO
Proof.

A
Gre = o

6. Abstract analogue of the fundamental embedding lemma.

Let K be a category, X an object of K, and let F be a
semigroup. If ¢ is a homomorphism of F into Ji(X,X) such that
(1) =€, and 1if Y e A(X,F),

?TZF X, () 5

then there exists a unique veK such that

T.W(P 2(?)6"9 °

for all ¢ e F. This morphism v will again be denoted by &,

Proposition 1, ¢ 1s a monomorphism; morveovervgé'f;?:(gp e,
for all e F,

This propcsition is a special case of the next one,
which can be considered as a l.u.b. of prop. 1 and

¢ 5 prop. 3.

Proposition 2. Let & be a homomorphism of the semigroup F
into H(X,X) such that (1) = €45 and let m: XU be a
monomorphism, Suppose VeE A (U,F):

&
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v= 1 U < ).
per ¢ ( ?)

The unique map—<T : X-»V such that TTy = (plop for all ¢eF,
is a monomorphism; moreover, T = (po)T , for all geF
(here § is constructed with U as base, & : V=V).

Proof.,

If pyT = p,T 5 then pu= g4 Eyp= pi(le)p= pyv Ty =
=fpT ®y = .. =p, 4 ; hence p,=p,. Thus Tt 1s a monomor-
phism.

Moreover, if y is arbitrary in F, then

ThW, = T, (V)T (@) (P« (§O)TTE,

Py
Hence T = (po)T .

Remark 1. One obtains prop. 1 by taking U=X and MW= 5X

If A(X,F) # ¢ , one can conversely obtain prop.2 as an
immediate result of prop. 1 and §5 prop.3.

Remark 2. 1% is once more important that the existence of
direct joins guarantees the existence of & as a morphism in
K. Hence if K is the category of all topological spaces, ¢
is always continuous; if K is the category of all groups, &
is a homomorphism, etc.

7. Universal systems in categories,

Definition 1, Let K be a category, and let 7 be a cardinal
number. Let F be a semigroup with unit in K; say F is a sub-
semigroup of H(A,A), A an cbject of K.

We call F an 7 -universal semigroup of morphisms in K if
for every semigroup G contained in K - say G ecH{B,B)=- con-
taining eB’ and such that, as an abstract semigroup, G can
be generated by a set of power £+ of its elements,
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there exist a map P of F onto G, and a morphism ek,
with the following properties:

(1) P is a homomorphism of the abstract semigroup F
onto the abstract semigroup G;

(11) p is a monomorphism B-+A;

(111) (@)pp=p-¢, for all ¢ e F,

Definition 2. Let K,72, F,A be as in definition 1. We call F
an 7 -universal group of bimorphisms in K if for every group
G contained in K-say Gec H(B,B)- such that,as an abstract |
group, G can be generated by a set of power =7z of its ele-
ments, there exist p and u with the properties (i), (ii),
(111) described in definition 1.

The dual concepts are called dua’=#« ~universal semigroups
of morphisms in K and dual = -universal groups of bimorphisms
in K, respectively- (that is, FcK is a dual » -universal
semigroup of morphismsin K if it is an 7 - universal semi-
group of morphisms in the dual category of K, etc.)

The following proposition shows that condition (i) is not
unreasonable.

Proposition 1, Let F be a semigroup of transformations of a
set A, and let G be a semigroup of transformations of a set
B {both acting effectively). Let A ¢ A be F-invariant, and
suppose (G,B) and (FIAO,AO) are equivalent by means of M.
Then

¢ —> polpl g )op

isa aomomorphism of F onto G.
Proof.,

It is obvious that ¢ -—>¢|A_ 1s a homomorphism of F
onto FIAO° On the other hand, one verifies at once that
Vﬂmvﬂfqoon/L is an isomorphism of FIAO onto G.
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If we write P for the described homomorphism, we see
that
(plpop= oy,

in accordance with (iii).

The definitions 1 and 2 are further illustrated by
proposition 2,

Proposition 2, Let F be a semigroup of transformations of 2
set A ahd G a semigroup of transformations of a set B, both
acting effectively. Assume moreover that @ is a homomorphism
of F onto G and that s is a 1-1 map of B into A such that
(¢)pop=pmoq, for all peF.

Then A =Bp 1s an F-invariant subset of A, and (¢,B)
and (F(AO,AO) are equivalent by means of & .

Proof, .
The fact that AO is P-invariant is immediate from the
equality (@)f OM=pmOop . As o(q)le) o/u."1 = (cp)f and as
[4 is onto, the assertions follow,

There is of course a close relation between the con-
cepts of universal morphisms and bimorphisms (as defined in
[47 ) and the concepts defined above. This connection is in-
dicated by the next proposition,

Proposition 3. Let K be a category. A morphism¢: A-»A of K

is a universal morphism if and only if it generates in H(AA)
a 1-universal semigroup . It 1s a universal bimorphism 1if and
only if is a bimorphism and generates in H(A,A) a 1-universal
group of bimorphisms. For the dual concepts an analogous
asgertion holds,

Proof: obvious.
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Definitién 3, Let # be a cardinal number. We will say that
a category K has property (D,) if every family of at most #
objects in K admits a direct Jjoin in K. We say that K has
property (U) if K contains a universal object, We say that
K has property (Uﬂ) if K contains a universal object A such
that every family of at most # copies of A has a direct Jjoin
in K. The dual properties are designated by (D,), (U) and
(T,). Obviously (D,) & (U)=>(U,,) and (D,) & (U) =>(T ).

Theorem 1, Let # be a transfinite cardinal. Every category
K with property (Uﬁ) contains an # -universal semigroup of
morphisms and an 7 -universal group of bimorphisms.

Proof,

Let U be a universal object of K with the property that
direct Jjoins of # copies of U exist. Let F be a free semi~
group-with-unit with = generators. By assumption there
exists a Ve A(U,F); say

v o= ¢T£F Up (%)

Let G cH(X,X) be any semigroup of morphisms in K, containing
X’ that can be generated by one of its subsets of power € n.

Then there exists a homomorphism ¢ of F onto G such that
(1)e = 8x. As U is a universal object, there exists a mono-

morphism g ¢ X — U. Let the monomorphism T be as in §6,
prop.2; if e F,; let @ be the corresponding S—map con-

structed with U as base, @ ¢ Vs V.

By §5 prop.4, w‘¢»¢ is an isomovphism of F onto F, let
w be the inverse isomorphism, and let p be the homomorphism
we: F—>G. We know from §6 prop.2 that

= (po)T = (¢)(we)v = (@)p.T
for all @e F.
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It follows that % is an# -universal semigroup of morphisms
in K.

To prove the existence of an # -universal grcup we pro-
ceed 1in the same way, starting with a free group F ( and
taking into account the corollary of §5 prop. 4).

It may be worthwile to formulate explicitly the dual theorem,

Theorem 2., Let # be a transfinite cardinal. If the category
K containg a dual-universal object A, and if there exists a
free join in K of 7= copies of A, then K contains a dual

7 ~universal semigroup of morphisms and a dual #-universal

group of bimorphisms.

8. Examples,

a). The categories K(S,m) and K(S,#2) contain universal and
dual-universal ob;jectse They possess property (D ) (orﬂl ))
it and only if # =73 the dual property (D ) is satisfied
iff menn=m,

Hence we have from {7 thecrems 4 and 2 (cf.also §4
theorem 1' and 2'):

Theorem 1. K(S, =) and K(S,#) contain #-universal semi-
groups and groups for all = such that # = 72, and dual
#.-universal semigroups and groups for all = such that

xR, .
ki = M,
Corollary (ef.[4] ). K{(S,#=) and K(S,# ) contain dual-uni-
vergal morphisms and bimorphisms for all transfinite #»z , and
they contain universal morphisms and bimorphisms for all

such that #m-u= =,

As was already remarked in ¢4 (and proved in [4]) the last
assumption can in reality be replaced by "m transfinite'.
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b)  Let K(G, #) be the category the objects of which are
all groups that can be generated by at most - elements, and
whose morphisms are all homomorphisms of one such a group
into another,

Clearly K(G, n) has property (U) : the free group with
72 generators 1s a dual-universal object, Free Jjoins are
equivalent to free products; hence (Eﬂ) is satisfied if
Mt =,

Thus we have:

Theorem 2, If #.# ==, then K(G,) contains dual = -univer-
sal semigroups cf morphisms and dual » -universal groups
of bimorphisms.

Corollary. If# 1s transfinite, then X(G,» ) contains dual-
universal morphisms and bimorphisms.

If ¥, is a free group with #z generators, and 1f m.#z=#, then
the free product of = copies of Em is isomorphic %o F%ma
Hence it follows from the proofs in §7 that F_ 1tself can be
taken as the object such that the endomorphism semigroup
E(Em) = H(E,,F,) ccntains as a subsemigroup a dual = -uni-
versal semigroup of endomorphism;, and a dual n-universal
group of automorphisms.

In particular, there are an endomorphism and an auto-
morphism of F, that are dual-universal, as can also be seen
in a direct way quite easily.

c). Let K(AG,#) be the full subcategory of K(G,=) ob-
tained by admitting only abelar groups as objects. Then
(T) is satisfied, and ('ﬁﬁ) again holds if m-z =, Hence:

Theorem 3. If max=# then K{AG,s ) contains dual = -universal
semigroups of morphisms and groups of bimorphisms,
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Corollary .., ILf wazsﬁgg K(AG,#2 ) contains dual-universal mor-
phisms and bimorphisms,

It A, is a free abellian group with = generators, then
‘&m is a dual-universal object. Free joins are equivalent to
restricted direct products in this category; hence the dual-
universal subgroup can be taken as a subsemigroup of the endo-
morphism semigroup of szand the dual-universal group can be |
taken as a subgroup of the automorphism group of A,

Theorems 2 and 3 give sufficlent conditions for the pos-
8ibility of raising simultaneously sets of - endomorphisms
(automorphisms) of a group of at most = generators to endo-

morphisms (automorphisms) of F, or A_ .

d) Let K(CMAG) be the category of all continuous homomor-
phisms between compact metrizable abelian groups. i

This category has property (U): the infinite-dimensional
torus mv = product ofﬂR’ copies of the circle group T - 1s
a universal object (see e.g.[17] theorem 2.2. 6). Furthermore
(th) clearly holds (and D, does not held for = >X , as
metvizability gets lost), Hence §7 theorem 1 implies°

Theorem 4, K(CMAG) contains an Ag -universal semigroup of
morphisms and an ﬁgauniversal group ¢f bimorphisms. These
can be taken as a subsemigroup and a subgroup, respectively,

of H(T)F }t)

Corollary. K(CMAG) conta*ns universal morphisms and bimor-
phisms. More expli citlyo there exist a tcpological automor-
phism § of T, . and a continuous endomorphism:¥ of TM“»
with the follcwimg properties: if G any compact metrizable
abelian group, and i1f ¢ is any topological automocrphism of G
Q&any continuous endomorphism of G, there exists a topologi-
cal isomorphism u of G into TR\ such that ud=¢ i

]
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(MY =y p , respectively).

3 %
_—
¢ —Et ¢

Remarks. The fact that u is topological is a consequence of

the facts that m is continuous and.1-1 and that G is compact.

Cf necessity Gua is a closed subgroup of TE {being compact).
[

e) Let K(OCM) be the category of all continuous maps between
zero-dimensional compact metrizable spaces. Then (U) holds:
the Cantor discontinuvum C ={0,1}"® is a universal object.
Also (D)?) is satisfied. Hence:

]

Theorem 5. K(OCM) contains an K;-univensal semigroup- of mor-
phisms and an ?@c -universal group of bimorphisms. These can
be taken as a subsemigroup and a subgroup, respectively,of
H(C,C).

Corollary. (J. de Groot and P.C. Baayen; oféfzjh There exist
an autohomeomowphism§ of C, and a continuous map ¥ : C=C,
with the following properties: if ¢ is any autochomeomorphism
of a zero-dimensional compact metrizable space M (y any con-
tinuous map of such a space into itself) there exists a tono-
logical embedding um :M - C such that ,ué = QM ((/.Lé =Y p
respectively).
¢

—_—

C
Jq
M

Q

e

=



-P] -

Remark, It is an open problem whether K(OCM) also contains
dual-universal morphisms or bimorphisms. If they exist, it
will be impossible to detect their presence by the methods
of §7, as (TTN%) is definitely not valid in K(OCM). However, .
using the method of S-maps one can in any case show the
following:

Theorem 6.(R.D. Anderson [1]). Every autohomeomorphism ¢ of
a zero-dimensional compact metrizable space M (every con-
tinuous map y of such a space into itself) can be raised to
the cantor set. I.e. given ¢ (y), there exist a homeomor-
phism@ of C (a continuous map\fs C~+C) and a continuous
map ¢ of C onto M such that t¢ = v (Ty="V1),

&

C —=—2aC

] |

M—f M

Proof:

We restrict ourself to the case of an autohomeomorphism
¢ : M-sM , the case of a continuous map being entirely simi-
lar, -

Let F be the subgroup of H(M,M) generated by ¢, and let
& be the identity map F—>H(M,M). Then & : M—sMX is topolo-
gical; let M' = Mo, ¢' =¢|M', and let &1 be the inverse
of the homeomorphism & :M=sM',

The topological product C'= M'x C is homeomorphic to C;
Let ® be the projection of M'x C onto M', and define the
autohomeomorphism @ s C'=»C' through

(s )@ = (ne'sp)

-1

(p e M',JeC)o Then T=T o & maps C' continuously onto

M, and §T=T¢.



f) The category K(1LO,s) of all order-preserving mappings
between inearly ordered spaces of power #z 318 an example

of a category for which universality results can be obtained,
but not by means of the constructions described in this note:
these constructions are fundamentally useless for this cate-
gory.

The fundamental difficulty does not so much concern the
validity of (U) and (U), although here there are problems al-
ready. If # is finite, (U) and (U) are evidently satisfied.
If m=1XK_, (U) holds too: it is well-known that the set Q
of all rational numbers is a universal object (cf.. [18]).
The same set is a dual-universal object for m= N : if A is
any denumerable linearly ordered set, then the cartesian pro-
duct A x Q , ordered lexicographically, is order-isomorphic
to Q (as yv=% for every denumerable order-type v; cf.[17]
p.231). As the map (x,q)-s& is an epimorphism A x Q —s A,
there also exists an epimorphism Q-=»A,

For #2 > A%, the question of existence of a universal
object in K(LO,7z) is a vexing open prcblem of set theory
(cf. [18],[14]). The problem of the existence of dual-uni-
versal objects is open too for these =2 , at least for the
author of this ncte.

More serious trouble arises, however, if one proceeds to
(Dﬂ) or (Uﬂ) and their dual properties. In fact; none of
these can be valid-even if one takes (U) for granted- as
gsoon-as #2>1, as 1is seen from the next two propositions.
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Proposition 1. In K(LO,# ), >1 , no free join of two or
more objects exists.

Proof,
Let card (A)® 2 , let X, be an object of K(1LO,#) for

each weA, and suppose

X= 2 X ,(5).
«e A

Take o, % ¢ A with o, ;!mao Let Y be any object of K(LO, #);

as = >1,there are N 457 o € Y with P4% %0 We define ¢ :X“m»Y
as follows:

§¢, =7m4 » for all Eexu s if a.;éese 3 §¢,=7, for all%exago
2

As all ¢, are morphisms of K(LO,7 ) there exists a morphism
¢ : X=Y in K(LO,#) such that ¢ =4, for all « e A,

It follows that §, o, < §, &y 1in X, for all §,¢ X and
1 2 1

?2 and ?26}( . But in the same way one can show that
2

11 X d X i
%r >§2 2 s for a 5 & an ?2@ o o which 1is

% 2

contradictovyo

Proposition 2. Let #z2 >1. For any object X of K(LO, =) and
any set A with card (A)> 1 , $ (X,A) admits no direct join.

Proof.

Suppose Y= 11 X (= ) , where X = X for all o ¢ A.
el o o

Let a;, aye A, o %mg

First we remark that there exists a yeY such that V1w, <
1

ymueo For take %13 ?2@' X, qug %2, an@ define P, Yw»x% as

follows: ¢, =7, if m%ez,lg o3 VY, = § for all yeY;
1 4
y?&; §2, for all ye Y. There exists a morphism ¢ s¥Y=Y such

that ¢m=1¢ , for all «ehA. Then (y sp)mm 5 < E =(y¢) oy’

1
for all ye ¥,



Y

Let y: A--A be the map that exchanges o, and oy and
leaves all other aeA fixed. We saw in §5 that K(LO, )
contains a morphism yf? Y-+¥ such that yﬁcu:wu for all

¥
oe A, Take any ye Y such that VWaq € V®uy 5 then

%
yyrwuz =y7ﬂu1 < y7cu2 s
hence, as is order-preserving, y\}f*< y. Similarly
2
*
y Y’n'% = 'Y'Nuz > y"‘:oc,] s

*
implying y¥ > ¥y, which is contradictory.

Nevertheless it 1s possible to obtain results about
universality properties of the categories K(LO,#2). For in-
stance, in [3] it is shown that K(LO,7z),w23X,, contains
universal morphisms and bimorphisms if and only if it con-
tains universal objects. ( For 1~<¢n<hxg there are evidently
no universal morphisms or bimorphisms).

9. Categories of topological spaces.

Consider the category K(T,#z) of all continuous maps
between completely regular spaces of welght = . Iffﬂaﬁ@ P
(U) holds for K(T,#), as the Tychonoff cube I_ =[0,17" 1s
a universal object. And (D_ ) holds for K(T,s=) as soon as
mn=72(5t111l supposing= to be transfinite). Hence we have

Theorem 1. If m=3»X, andwmn =m , the category K(T,#2) con-
tains 7 -universal semigroups of morphisms and 7 -universal

groups of bimorphisms.

Corollary. If wnaiig then K{T,7#) contains universal mor-
phisms and bimorphisms.

¥
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However, in this case these results are not quite sa-
tisfactory, as our methods in fact give more. The trouble
is that 1n most categories of topological spaces monomor-
phisms and epimorphisms are not what one wants them to be:
topological maps into and continuous maps onto, respectively.
This follows from the next proposition, which is easily
shown,

Proposition 1. A morphism w: X—+Y of K(T,#) is a monomor-
phism if it is 1-1, and it 1is an epimorphism if X is dense
in Y.

In the case of the categories K(CMAG) and K(OCM) of the
previous section there were,afterall,no difficulties: as all
objects of these categories are compact, their mono- and epi-
morphisms are what they ought to be.

In the case of K(T,#) and other categories of %topolo-
gical Spacesﬂg9 results like theorem 1 can be strengthenzd even
if not every monomorphism and epimcrphism in the category is
nice, because of the following results.

Proposition 2. Let X be a topolcgical space. If the map
B A

¢ : A=+B is of finite multiplicity, the S-map ¢*: X = X~ is
open.

Proof: evident,

Remark., We say that ¢ 3 A=+B is of finite multipliclty if
(ple -1 45 finite for every e B, A map v 3 X-»Y is called
open if © 18 open as a map X=XT .,

Proposition 3. Let X be a topological space. For every
homomorphism ¢ of a semigroup F into the semigroup of all
continuous maps X-»X, the embedding map & : X-+X' 1is topo-
logical,
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Proof.

We know already that & is 1-1, As 6ﬁﬁ = (¢)e is conti-
nuous, for every ¢eF, ¢ is continuous. Finally 6‘5 con-
sidered as a map X—X ¥ s has a continuous inverse:

Y ] W '
& = ‘n:‘,l‘x:s*z (as %"75‘,1 = (1o = 1),
Thus we obtain from theorem 1, or rather from the con-
struction behind it, the followirg results of J. de Groot

(7] :

Theorem 2°. Let m,7n be cardinal numbers such that
T = aX‘o . Then there exists a semigroup F of mappings
of the Tychonoff cube Inz into itself with the following

properties:

(1) +the abstract semigroup F ig a free semigroup-with-
unit with 7 generators; i

{(i1) every ¢eF is an S-map Im—-» Im s, hence is conti-
nucus;

(111} if X is any completely regular space of weight
€7 , and if G is any semigroup of continuous maps X-—» X
such that the abstract semigroup G can be generated by at
most 7 of its elements, then there exists a topological
map ¢ X-a'I such that Xv is invariant under F and such

°

that (X,G) and (Xt ,F|Xt ) are equivalent,

Theorem 2b° If m.namzxo, there exists a group F of
mappings %mf*lén with the following properties:

(1) F is a free group with n generators;

(i1) every ¢ ¢ F is a topological S-map cof F onto itself;

(1i1) if X is any completely regular space of weigtt
€72 , and if G is anv group of autohomeomorphisms of X that
can be generated by at most # of its elements, then there
exists a topological map o X~n>I¢n such that Xv is F-in-
variant, while (X,G) and (Xv ,F|Xv ) are equivalent,

, 7
(Asmm =sm, I is homeomorphic to I_, ).
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Furthefmcﬁeg if K(0SM)is the category of all continuous
maps of one separable metrizable space into another, then §8
theorem 5 can be strengthened to

Theorem 3. K(OSM) contains }§>-univevsal semigroups of mor-
phisms and Riwunivevsal groups of bimorphism.
These can be taken as sub(semil) groups of H(C,C).

Leaving altogether the idée-rixe of categories, propositions
2,3 together with §§2=4 lead to the following results.

Proposition 42 Let X be a topological space, A a non-void
set, card (A) = 2> X . Then H(XAQXA) contains a subsemi-
group F with the following properties:
(1) the abstract semigroup F is a free semigroup-with-
unit with # generators;
(11) every ¢eF 1s an S-map XA.-»XA,, hence is continuous
(1ii1) for any semigroup G of continuous transformations
X—>¥ with card (G)< = there exists a topological map
Me X %" such that Xm 1is F-invariant while (X,G) and
Xm, FlXu ) are equivalent (by means of u).

Proposition 9bs cbtained from prop. 9a by substituting
"group" for every occurrence of "semigroup" and "topological”
for every occurrewe of "continuocus”,

Corollary, If Xhz is homeomorphic to X {(which is the case if
and only if X = Y ® , for some Y), then there exist an auto-
homeomcrphism § of X and a continuous map ¥ : X-»X with the
following property: 1f ¢ 1s any other autchomeomorphism of X
(ifMy'is any cther continuous map X-»X ) there exists a2 topo-
logical map gt X=X such that mu@ = oM po ey p ; respect-
ively ).

In other words, @ contains already all other autohomeo-
morphisms of X, and ¥ contains all continuous maps X =X,

&
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Examples of spaces X for whichk this result holds are the
Cantor set C ( for which we established it already in the
previous section) , the generalized Cantor discontinma{0,1}m,
s >X, , the Hilbert fundamental cube, all Tychonoff cubes
Im, 3 K s the infinite-dimensional torus T?C s etc.

&

]

10, Application %o compactification,

All results in this section are taken from J. de Groot
and R.H., Mc Dowell [11].

Definition 1, ([11] p.251 ). Let X be a completely regular
space, and let G be a set of continuous maps }’s XX, A
space X is called a G-compactification of X if X 1s a com-
pact space contalining X as a dense subset; and if every /%(}
can be extended continuously to a ; ¢ X=X, -

Theorem 1. (J. de Groot and R.H, Mc Dowell [11]). Let X be a
completely regular space, and let G be a set of continuous
maps [: X->X. Then X admits a G-compactification X; the
weight of X can be taken < weight (X). card (G). % .

Proof.

Without loss of generality we may assume G to be a semi-
group containing iX9 and we may assume weight (X)z‘ﬂzzhao
Then (X,G) is equivalent to (X', F|X' ), where F is some uni-
versal semigroup of continuous mappings Imf» Qm . For X we
take (a space homeomorphic to) the closure of X' in the com-

pact space Iﬂmo

Corollary 1, If X is a separable mneitrizable space and G is
countable, X has a separable metrizable G-compactification.

If X is a zero-dimensional separable metrizable space,
one can embed X topologically in C instead of in », and
take. for F a universal semigroup in K(OSM). Hence
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Corollary 2. If X is zero-dimensional separable metrizable
and G is ccuntable, X has a. zero-dimensional separable metri-
zable G-compactification,

If every j%aG is a homeomorphism, then in the prcof of
theorem 1 we may suppose, without loss of generality, that G
is a group, and we may take for F a universal group of auto-
homeomorphisms., Hence

Corollary 3, If every )%d}ﬁﬁ an autohomeomorphism of X, the
G=extension X of theorem 1, corollary 1 or corollary 2 can be
taken in such a way that all extensions to X of /eG are
autohomeomorphisms of X. '

11. Application to linearization.

Definition 1, Let E be a topological vector space, and let
S be a set of continuous Jinear operators E-—E, If T is a
set of continucus maps of a topological space X into itself
we say that (X,T) can be linearized by (E,S) if there exists
a topological embedding T : X—E such that Xt 1is S-invariant
while (X,T) and (X© , S|Xt ) are equivalent by means of =©.
We alsc say in this case that T can be linearized in E,

The unit interval I being a subspace of the topological
vector space of all real numbers R, we can identify Im with
a subset of the locally convex linear gpace R?no From §2
props. 4 and 5, §5 prcp. 1 and ¢9 thecrem 2 we derives

Theorem 1, Let 772.7 = 72 3%‘0 . There exists a semigroup F
of continuocus linear operators of the locally convex space

Rﬂ! intc itself with the following properties:

(L) F is a free semigroup-with- uni% with » generators;
(11) (R7ﬂ3 F) linearizes all semigroups (X,G) where X is
a completely regular space of weight ¢ 72 and where G is a
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semigroup of continucus maps X—=X that can be generated by
at most = of its elements.

Similarly there exists a group F of invertible con-
tinuous linear operators Rﬂzq-Rﬁ% which is a free group with
# generators and which linearizes all (X,G) with weight (X)
£ ebtc, such that all ,’eG are autohomeomorphisms of X.

The restriction =23 X 1is not essential, of course, For
instance, the following is true.

Proposition 1., (A.H, Copeland Jr, and J. de Groot [6]). Let
M be a separable metric space of finite dimensionm , ard
let G be a semigroup of continuous maps M-+M of firite order
w. Then G can be linearized in the finite-dimensional eucli-
dean space RY, with k € n (2n + 1).

Proof.,
Em@gd M topclogically into R2m+1o The semigroup G of all
S-maps J’: (R2m+1)G—¢=(R2m+1)Gg J¢e &5 linearizes G.

Remark 1. The number n(2m+1) is far toohigh; cf. [5] and [12].

Remark 2, S-maps in a euclidean space are particularly nice;
they are e.g. orthogonal maps.

For arbitrary separable metric spaces theorem 1 is not
the correct generalization of prop. 1, as it gives a lineari-
zation in the non-metrizable locally convex space Rx;° As any
separable metric space can be embedded in separable Hilbert
space, cne would expect that linearization of cocuntable sets
of continuous maps would be possible by bounded lineer
operators in Hilbert space. In fact, this is indeed possible:s

Theorem 2, ( J. de Grooct). There exists a semigroup F of
bounded linear coperators in the separable Hilbert space H
with the following properties:

I3
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(1) F is a free semigroup-with-unit with denumerably
many generators;

(11) every denumerable semigroup G of continucus maps
of a separable metric space M into itself can be linea-
rized by (H,F).

Similarly there exists a group F of invertible bounded
linear operators in H that linearizes every denumerable
group G of autchomecmorphisms of any separable metric space
M.

Proof,

First we remark the following. Let L be the Tychonoff
cube ;k and let F be either a free semigroup-with-unit or
a free gvoupg with denumerably many genenatows, Then it
suffices to show that the (semi) group F of S-maps ¥ IF
can be linearized in H, as this (semi) group is universal
for all countable (semigroups of continuous maps of a sepa-
rable metric space into itself. (In the case of a free group
F, we must also take care to linearize by invertible
operators) .,

For each @weF, let H_  be the separable Hilbert space 12;
let K1be the fundamental cube in 129 and let K = Q K1 s

where the c<P are real non-zero constants, to be fixed later,

such that =1, 7 ¢° < e ,

peF
As F is denumerable, the Hilbert sum H of all HW is
again separable, and its subset K; consisting of all
X = (xq,)(?eF such that X‘?E'K? s 1s precisely the topological
product of all K?c
Let p be any homeomorphism of L onto K1 s and define

v : IF+K as follows: if y = (y?) ﬁF9 we put

¢eF ¢
(1) yT = (cgf y@?)(peF"

Then © clearly is a homeomorphism of I¥ onto K.

&
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If ¢e F, z= ?T: is a continuous map K-+K (a topological
map of K onto 1ltself if ¢ is invertible in F). As K spans H,
there is at most one linear opevrator ¢ : K—K with
?lK =t @170 And this linear operator $ o 1f it indeed ex-
ists,must evidently have the form ‘
(2) (X‘I")VG'F(Pz (d‘/, X‘PV)VG 7o

e

with d‘{,mé%‘;, Hence the theorem wlll be proved if we succeed
in choosing the constants ew.in such a way that all linear

operators (2) exist and are bounded in H, The possibility of
doing this is an immediate consequence of the lemma below.

Leima 1, (J. de Groct ) Let F be a free group or a free semi-
group-with-unit with at most denumerably many generators.
There exist non-zero constants e?syang such that

(1) eq=1, 2 0?2<m; :
geF

(11) cy Cy € Gy s for all ¢ ,weF,

Proof.
Let % 15%s5000 be the free generators of F. We treat the

case of a free group F ; the case of a free semigroup is pro-
cessed along exactly the same lines.,

Every 9€F ,9¢+# 1 , can be uniquely written as a reduced

word
K (7
1 8
(3) :O{ - -1 “ H
¥ Y4 Vs ’
$
we take “%55&%'¥r
cw =
and put
c, = 1,

Then the ¢, are non-zero real numbers. If one defines the

¢
length of the element ¢ given by (3) as ]ma_}, then one
: 1

&

—
=
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easily shows Inductively that

2 B 2 \n, 2 |
Z{enp speF and length (¢) = n}ré (-35 )73 hence %F Cp< @ .
To conclude the proof, we show that (ii) holds for this system

(C¢)? eF"

First suppose ¢ arbitrary and y of length 1. Then y is
[ =1
of the form o , €= + 1, If ¢=1, then Cy Cy = Cp= 2 = Cope

If ¢ is given by (3), then

mn .
2 e if vsaénov Vg = n and ek > O;
[} = .
124 0

2 O‘P if Ve =1 and aK,S< O‘.

Hence for all ¢eF we have: c, c = 2~" e § Coye For
arbitrary yeF (ii) now follows readily (using induction

on the length of ).

Remark 1, In the proof of theorem 2 we have: d ﬁ§¥-se;4 o
(44

Hence: - -1
| K72 ‘o, .

Remark 2., In the particular case of a free group with one
generator we can represent F as the additive group of all
integers. Then ¢, = e”lyt for v=0, + 1, +2,... 3 H is re-
presented as the Hilbert sum of separable Hilbert spaces

Hv s V=0, +1, +2,... , and the generator of F is linearized
by the invertible continuou« operator A : H-»H such that,

for x=(xv)eH ; xN\= v - (yy)_g with

- 2sign(v) %

yv y+1°

This is exactly the operator of which A.H., Copeland Jr. and
J. de Groot proved in [6] that it is universal for all auto-
homeomorphisms of separable metrizable spaces,

The assumption of separability is not essentlal for
theorem 2: by means of lemma 1 we easlly prove:
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Theorem 3, Let H be a Hilbert space of infinite (Schauder)
dimension 772 , There exists a semigroup F of bounded linear
operators in H (a group F of invertible bounded linear
operators in H) with the following properties:

(1) the abstract semigroup (group) F is free, with R%
generators; »

(11) (H,F)linearizes all pairs (M,G) where M is a metri-
zable space of weight ¢ and G is a countable semigroup of
continuous maps M—+M (a countable group of autchomeomor-
phisms of M, respectively).

Proof,

Let F be the free semigroup (group) with ‘X% generators;
choose a system of real non-zero constants (c@>qN5F satis-
fying the requirements of lemma 1. For each ¢e¢F, let H¢ be
a copy of H; in the Hilbert sum of all HQ s we define, for
each yeF, a linear operator \/r by A

with dg = Ejf- . _ ,
Then each i fs bounded (in fact | V| ¢ ¢y ), and ¥ is invert-
ible iff y is invertible in F.

Now let M be any metrizable space of weight s , and
let G be any countable semigroup (group) of continuous maps
M-+M, Then M can be topologically embedded in H (e¢f. [19] ).
It then follows that M can alsc be embedded topologically in
the unit sphere of H {(take McHe H® R; project M into the
upper hemisphere of the unit sphere of He® R with, say, 1@
as center of projection).

Letf'be a homeomorphism of M into the unit sphere S of
H, and lete be a homomorphism of F ontoc G. We define

T 3 Mo @aF H in the following manner: if s e M, then

pw = (o (p)oT)p)y g -
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Indeed ¥ maps into g% H? ;s as %;F ci<<m and as

I (w) (¢s)pll ¢ 1, for all weM and ¢e F, Clearly T is con-
tinuous; as 1o = ng T is 1-1 and has a continuous inverse.
Hence T is a topological embedding of M into ‘P%F H‘P .

We finish the proof by showing that ©¢ = (o )T , for

all ¢eF., Indeed, if sweM then

i

Prh= (o () (¥o)p)y o p® = (o () ((ow)olp) o=

(ey-((p) {¢a)) (velp)yep =plpa)s .

Though theorem 3 is an improvement on theorem 41 for the
case of metrizable spaces of weight = B.MB - as it asserts
the existence of linearization in Hilbert spaces - it is
evidently deficient in one respect: 1t only guarantees
linearization of countable systems. -

This defect can be done away with 1f one restricts one-
self to compact groups of autohomeomorphisms of metrizable
spaces [9] . An exposition of proofs of this fact and related
ones will be given in a forthcoming note of J, de Groot and
P.C. Baayen [10] .
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