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1o Introduction and notation. 
,. 

In this note we describe, generalize and ~pply a cor 
struction, used by Jo de Groot to establish the existence of 
certain universal systems of mappings [7], and to prove 
that continuous mappings of a metric space into itself can 
be considered as restrictions of linear maps ( [ 8 ]; · see also 
[5],[6]). The same construction has been used by G.C. Rota 
[15], [16] in order to derive universal bounded operators 
in Hilbert space. 

If X,Y are sets 3 xY designates the set of all functions 
on Y with values in X. If x e xY and 1l £ Y3 then x denotes the 

'I'/. 
value of x in 1 ("the ~-coordinate" of x): we often write 

X = ( X11,) 1l ,;. yo 

The projection map x-x~ is denoied by ~11. o 

If x1 c:: x2 , we consider x 1 to be a subset 

If Xis provided with some additional struct~e, we suppose 
xY to be provided with the product structure. For instance, 
if Xis a topological space, xY is provided with ~he pro­
duct topology (the weak topology, if one considers xY as a 
function space); if Xis a group, xY is the full direct pro­
duct. If Xis a topological linear space 3 so is xY (by com­
bination of the previous two conventions). 

In the case of a linearly ordered set X and a well~ 
crdered set Y, we take xY to be linearly ordered by means 
of the lexicographic order. 

We make use of the language of category theory as ex­
posed in (13], and of the no~ation and conventions in [3] , 
(~.]a Consequently 3 we write the argument of a function be­
fore the function symbol (there are a fewexeeptions, like 
x, card (GL H(A,B)); if f,gE-AA 3 then fog designates the 

"12 
composite function C( ➔( ( «) f )go 
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The identity map of a set A into itself is denoted by i, or 

by iA if it is necessary to call attention to its domain. 

If Fe xY and AcX, then F}A denotes the set { <fl A :: (p~F}. 
We say that A is invariant under F ( or F-invariant) if A<p c. A 

for all if~ F. If F c XX is a semigroup under composition and 

AcX is F-invariant, then FIA is a semigroup of mappings A-+A. 

The category of all mappings of one set into another is 

denoted by K{S). If Xis a set, Kx denotes the category, whose 

objects are all sets XA, A a non-void set, and whose morphisms 

are all mappings of one such an object into another one. 

If K is a category and A,B are objects of K, then H{A,B) 

denotes the set of all morphisms (p e. K with A as first object 

and Bas second object. If we use the notation H(A,B) without 

mentioning a specific category, then H(A,B) is formed in the 
category K(S). 

Definition 1. Let K be a category, and let A,B be objects 
of K. Let F c H(A 9 A) and let G cH(B,B). We say that F and G are 

equivalent if there exists a bimorphism p : A -+- B such that 
the transformation 

maps F onto G. 

It is evident that in that case the transformation 
1 

f➔_,P,, fJJ, is 1-1. If F and Gare semigroups of transformations, 
-1 then q;-.p, f{)P, is clearly a semigroup isomorphism. 

If we want to stress the r8le of fo , we say that F and G 

are equivalent by means ofµ. We will also writeg the pairs 

(A,F) and (B,G) are equivalent. If F consists of one element f 
and G of one element f, we say that~ and X are equivalent iff 
{ 'f' } and { )l } are. 

If F and Gare equivalent, and Fis a semigroup» sc is G; 
if Fis a group then G is a group. 
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By semigroup we mean in this note a semigroup with unit. 

In the case of a transformation semigroup, we assume that its 
unit is the identity transformation. The unit of an abstract 
semigroup is as a rule denoted by 1. By a homomorphism of a 
semigroup Finto a semigroup G we always mean a semigroup ho­
momorphism sending the unit of F onto the unit of Go 

2. The star-functor. 

Throughout this section and the subsequent two, Xis a 
fixed non-void set. 

Definition 1. If <f E-K(S), say ff' 
the map xB-+ xA such that 

·* : A ..,.. B, then <p designates 

for arbitrary x = 
Ii#' 

words i <p o we,. = ,c«f> • 

(x 4f4f )c,c = x°''f' 

B (x (S) ~ e Be. X and arbitrary oc e. A. In other 

.. 
We denote by Kx the subcategory of Kx consisting of all 

* transformations <p , <p 6 Kx; these transformations are called 
S-maps (with base space X). 

Proposition 1. K; +Kx if X contains at least two distinct 
elements p.,q. 

Proof. 
Let A,B be non-void sets. Let x£XB such that xp = p for all 
(31.tB., and let y E-XA such that Y« = q for all Cl.~ A. Any 

B A p. i X -+ X such that xp, = y cannot be an S-map. 

Proposition 2. The transform 'f ~ 'PA is a contravariant functor 
K(S)-+ Kx; if X con~ains at least two distinct elements p.,q 
it is in fact an anti-isomorphism of K(S) into K:x:· 

,. 
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Proofo 

* * ff . We fir~t show that (cpoy}J = 'f O f. Let A~ Bl;. C; then 
C y-* B f'~ A ·11' • X -.;.+ X ......,;,, X . Hence the product y o 'f' is in any case de-

fined. And for arbitrary « E. Ai 
it * ·Ii' ( , .. \f O f O .,-;(l(, :S r <J '1':)fll:f'J.., "ft«<f'f'"'" 'fO yr j1 G It'll;{• 

;f-

Thus 1 ➔ 'f is a contravariant functor. As clearly <po 'f is de-

fined as soon as y*t. f-Jt- is, it only remains to show that the 
. ,ft 

functor•• is 1-1~ if X contains at least two distinct elements. 

Suppose <pt,f. If'fg A 1➔ B1 ando/~ A2 -+B2 , where 
either A1 :/, A2 or B1 :/, B2 , it is trivial that f11-:/, yr*. Assume 

'fandyr both belong to H(A,B). There is an «6A such that 

«fi Off Let x be any point of xB such that x = p and 
OC<f 

x «"f = q • Then 

The functor •• ~ will be called the star-functor or STAR; 

if we want to emphasize the base space X9 we will write 

STARX. 

Corollary. For any set A, STAR maps the semigroup H(A 9 A) 

anti-isomorphically into H(XA,XA). 

It also follows that r""' is a monomorphism ( epimcrphism) 

in Kx: if f is an epimorphism (monomorphism). As~ :/, Kx: 9 

however.l) the next proposition still needs a proof. 

* ~ Proposition 3. cp is 1-1 if'f<? is onto;<p is onto iff'{'is 1-1. 

Proof. 

If«p*is1-1, it is a monomorphism in Kx 9 and a fortiori 

* it is a monomorphism in Kx:, hence~ is onto. Similarly, if 

cp* is onto, then 'P is 1-1. Now suppose 'f i A-+B is an epi­
B • 

morph:-sm in K(S). Let x,y 4i> X , x :/, y. Then Xp :/, Yp for some 

p '- B; as if is onto., p =Cl.f for some cc€£ A. It follows that 
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( x 1l') = x = x I YA = ( Y 1/
11, .. ; 

@( ot.q> ~ I"' ... 

* .1 * • hence xip r ytp o Thuscp is 1-1. 

FinJlly 9 suppose <p i A➔ B is 1-1 9 and let y, xA. Define 

x t: XB as follows o If Pf Arp 9 we put xp=P where p is a fixed 

point of Xo If f e. A<p 9 there is exactly one « e A such that 
it * p =II{((>; we put x /$ = yrt,. Then x<p = y. Hence rp is onto. 

Definition. Let Y~X. For <pe:tK(SL the map STARy'f is called 

the canonical ext"iJsion of the map STARxcp to the base Y. 

Proposition 4 For y=:ii X 9 the canonica 1 extension STARx<f-+ 
~ * STARY~ is an isomorphism of Kx into Ky• 

Proofi immediate from prop. 2. 

The next proposition is also evidenti 

Proposition 5. If Y=>X.9 and if 'f i.A ➔ B 9 then STARx'f = 

( s .i:ARy l'f ) I xB • 

3. The fundamental embedding lemma. 

Definition 1. If G is a semigroup, and f 6 G, we will denote 

by f the map G➔G such that 1 

(1)f= i·t, 
for arbitrary [ E G. The transformation semigroup of all i , 
f ~ G, is denoted by G. , 

The next proposition is trivial. 

Proposition 1. If G has a unit, the map f ➔ f is an anti-iso­

morphism of G onto G. 

Corollary. If G is a semigroup with unit, the transformation 
i~) %f-is an isomorphism of G into H(XG, XG). 

' 
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,.,. 
To simplify the notation 9 we will write f 

The subsemigroup { ( g /E"- G} of H(XG 9 x0 ) will be 
A 

G. It should be kept in mind that this notation 

-1'­
instead of/ o 
denoted by 
is ambi-

guous, as the notation/ is ambiguouso For the transfor­
mation j is determined 9 not only by the semigroup element/, 
but also by the semigroup G of which/ is considered to be 
an eleme_21t g if / 1:. a1 c ~, we would have to d:: sting ish be­
tween a/ g G1-+G1 and ar g a2~G2 o 

However, complications of this kind will not ~rise in the 
course of the considerations of this note. 

Definition 2. Ifcr is a homomorphism of a semigroup F into 
H(X,X), then~ designates the map X➔ XG such that 

(Jo'\, = (t) (<1>0-L 

for arbitrary 1 e. X and 'fE- Fo In other wordsg;;,oi!:'f= ('f)o- • 

XF 

x~t,x 
<p 

PropGsition 2 (IUNDAMENTAL EMBEDDING LEMMA). If Fis a semi­
group with unit 9 the map J.- is one-to-one. Moreover 9 if <p E:. F 9 

V J\ v 
then a- o ip = ( <fG"') o <r. 

XF 
A,. 

f > XF r~ r~ 
X (f)B >X 

Proof. 

As J- o 'It' 1 = ( 1 ) tr = ix is 1-1. And if t, l(E- F, then 
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(;. o f,) o 1vl' = ~ o ( fp o ~vr> = & o ;r,'PY = 

= ( <f O r)tr = ( q:> (f') 0 ( yr er) = ( f a-) 0 a- 0 n;,,, 0 

Remark. An important special case is the one where Fis a 
subsemigroup of H(X,X) and where a- is the natural injection 
F➔H(X,X). In this case the diagram of proposition 2 simpli­
fies to 

V 
and the definition of ~ reduces to 

Corollar~'.> The subset x} of XF is 

Proof. 

Immediate from the fact that 
'II 

a- 0 

0~ = Cf. 

' invariant unde.,,. 

f = (fer) o &' • 

F. 

(X 6"., 
A if 

Proposition 3. (X, Fr) and FIX er) are equivalent 
V 

means of q,. 

Proof. 

" By prop. 2, q is invertible if considered as a map 
_, I "' v 

X➔ Xa- 4 Let G = F<f' O If r~ G.9 we define I g Xq- ➔ X<r byg 

I V -1 V r =er of ofS'. 

Then r-,. J' maps G onto FI x; ~ if '? ~ F .9 then 

A V V 1 11 

<flX<f' = (j - 0 (f<r) 0 IS' 9 

"' .,, I 
and hence tp I XG"" = ( f o-) • 

by 
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4. Universal systems of mappings. 

As immediate consequences of § 3 prop .3 we obtain the 
following theorems. 

Theorem 1. Let X be a non-empty set, and let F be a free 
semigroup withn generators (n an arbitrary cardinal number). 
For every semigroup G of transformations X-+X 9 acting 
effectively on X.9 such that card (G).(: n, there exists a sub-

F A ) set X
0 

of X, invariant under F, such that (X 9 G and 
(X

0
, FIX

0
) are equivalent. 

Theorem 2. Let X be a non-void set 9 and let F be a free group 
with·n generators. For every transformation group 0 9 acting 
effectively on X, such that card (G)~ -n 9 there exists a sub­
set X

0 
of XF, invariant under F9 such that (X 9 G) and 

(X
0

, FIX
0

) are equivalent. 

Proofs. 

If G acts effectively on X, it can be ijentified with a sub• 
(semi-)group of H(X,X). Let~ be any homomorphism of F onto .., 
G, and take XO = X (f" 0 

Remark. The condition card (G)~ n can of course be replaced 
by the weaker condition~ G has a system of generators of 
power~ -n • 

A 

As F and Fare isomorphic, we can also express part of 
the content of theorems 1,2 in the following way. 

I 
Theorem 1. Let X be a set with card (X)= m.; let n be any 
cardinal number. If Y is any set with card (Y) ~ m-n~ , then 
H(Y,Y) contains a subsemigroup F with the following proper­
ties~ 

(1) the abstract semigroup Fis a free semigroup with­
unit~with -n. generators; 
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(ii) if G is any transformation semigroup acting effect­
ively on X9 with card (G)~ n, then (X,G) is equivalent to 
(X09FIX

0
) , for a suitable F-invariant subset X

0 
of Y. 

I I 
Theorem 2i obtained from theorem 1 by substituting 0'group 11 

for every occurrence of "semigroup". 

X 
Corollary (n = 1) If m = 'flt 

O 
, the categories K(S, -m) and 

K(S,m) contain universal morphisms and bimorphisms. 

This is a result obtained in [4]. Our present proof is more 
simple and elegant then the one presented in (4); on the 
other hand, the results in [4] are more general, as the 

]t 
assumption m = -m O is replaced there by the weaker condition 
-n,, ~ .lt"

0 
• (The class of those cardinals 1'lf- for which m"X:0 ,i ·m 

is cofinal in the class of all cardinals). 

However, we have now considerably generalized the re­
sults of (4] in another directiong the theorems 1 1 and 2 1 

-n~ 
show that if -m O = .,,,,,,,, K(S,-11"£.) contains semigroups of 
morphisms and groups of bimorphisms (even free semigroups and 
groups) that are universal (cf.§ 7) for all semigroups of at 
most 1't morphisms (all groups of at most n bimorphisms). 

5. S-maps in abstract categories. 

As has been mentioned already in the introduction,, the ter­
minology of [13] and [4] is used. 

Definition 1. Let K be a category. If Xis an object of K 

and A is a set, then I: (X,A) is the family (Xc<.)ct. ~ A with 
X«= X for all()(£ A. The class of all direct Joins in K of 
I: (X,A) is denoted by A (X,A ); of course A (X,A) may be 
empty. 
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Let K be a fixed category 3 and let X be a fixed object of K. 

Let A,B be non-void setsJ and suppose .A(X 9 A) and A(Y,A) are 
non-void. Suppose 

y = ,r C[ (X,A)) = 1f X (ie)., 
OCE.A ot « 

I 
Z = 1f (L (X.,B)) = 7T XI! (1t"

8
). 

pe..B ,- ,-

If <f g A ➔B is any map, then 1v«cp i Z....ip,,XO(.<p =X = Xot., for every 
«'-A. Hence, by the definition of direct join ( [ 12 J ~ 12 .1) 
there exists a unique -c g z~y such that 

"t"lt' = "It' ' « «<p 

for a 11 0(. e A. This morphism -c will be denoted by cp*; a 11 
morphisms of Kj obtained in such a wayj will again be 
called S-maps. The fact that S-maps are again morphisms of 
the same category K is stressed, as it is quite essential. 

Examplesg if K is the category of all topological spaces, or 
of all groups, or of all abelian groups, or of all topolo­
gical vector spaces, then direct joins always exist in K; 
hence we can always construct S-maps. 
Thusg 

Proposition 1. If X is a topologica 1 space, every S-map <('* g 
B A , ~ X -+ X is continuous. If X is a group, <p is a homomorphism. 

* If Xis a topological vector space, f is a continuous 
linear operator. 

The following observations will be useful. Letp,g 
X-+X 1 be a monomorphism of K. Suppose Y ~ A(X,A) and 
Y1

E. b.(X 1 ,A), where A is a non-void set; say 
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y = 1T X 
ix e. A al 

Yu= 1T xi 
ot. ~ A 

Cl( 

Then there exists a unique morphism ,: i Y➔ Y 1 such that 

' -c "lfi« =1Cotf'- 9 for allo1.,.;A. This morphism we denote by_µ,. 

Proposition 2. /.A. is a monomorphism. 

Proof. 
- I - I f 17'rt..P. = f1fA'~~= f2foi'Ce,,. = 

= j 21CC'J.f1-, for alli:J..f-A. AsJJ, is a monomorphism 9 

that f 11t'« = y2 itO{. , for all« e. A. This implies 

(cf. [13]§13.2). 

~ i -it' 

it follows 

that f1= f2 

Now let ~ g A➔ A; let Cf and Cf denote the corresponding 
S Y Y d Y

1
-----Y 1

• ti 1 -maps ~ an -.... • respec ve y. 

Proposition J• 

Proof. 

For arbitrary()'(,~ A we have 

- u~ 1 - 1 • it'- n 
P.,Cf it{'4 =JJ..it'i~, =,r:«q,P.. ='fiC<J.JJ.,=<p f'1'1o( • 

Remark. Prop. 3 can be considered as an abstract analogue of 

~ 2 prop. 4. 

The case of an index set 

is again of special interest. 
-* stead of '() , we have g 

F which is itself a semigroup 
A. 

If we write once more <pin-

Proposi ti.on 4. If Y = lf ( :[ (X,F)) 9 then <p~ ~ ls an isomor­

phism of Finto H(YjY); in particular, 1= fy. 

Proof. 
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............. 
As q,1 q, 2 is the unique't such that "t"'lt"I.V=1Cro w ,1r 9 for all 

A A ............... T T1T2T 
'Ye:. F, we conclude that cp1 · cp2 = cp1 cp 2 ° 

A 
Corollaryo If F is a group 9 each cp 9 <pe.F 9 is a bimorphism in 

Ko 

Proof" 
~ 

-Cf·'('= 

6. Abstract analogue of the fundamental embedding lemma. 

Let K be a category 9 X an object of K» and let F be a 

semigroup" If~ is a homomorphism of Finto ~(X,X) such that 

( 1)cr = Exs and if YE. A (X 9FL 

y = lf X (ic L 
<pE:F 'l' <p 

then there exists a unique"'t"eK such that 

V 
for a 11 <p e. F. This morphism -c will again be denoted by cr. 

" """( )" Proposition 1" <T' is a monomorphism; moreover 9 er irp= 'Per <S" 9 

for all q, E- Fo 

This proposition is a special case of the next one 9 

which can be considered as a louob. of prop. 1 and 

f 5 prop. 3. 

Proposition 2o Let er be a homomorphism of the semigroup F 

into H{X 9 X) such that (1)c:r = fx 9 and let µ,,g X➔ U be a 

monomorphism. Suppose VE. A (U»F) g 
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V = 1f U 
<peF <p 

The unique map-,; g X➔ V such that 
A is a monomorphism; moreover 9 ,:; q> 

,:;c'f = ( <p )a-p.. for a 11 cp E. F 9 

= ( cpcr )-c- 9 for a 11 q> e: F 

(here~ is constructed with U as base ., ~ g V-+ V) o 

Proofo 

If P 1,:; = f /C 9 then f1P. = f 1 €xf'v= f 1 Cl0)/J' = P {'t "ft 1 = 

= .f 2 ,:; 1'i1 - o o = p2 µ. ; hence p 1= p2 o Thus -c is a monomor­
phism. 
Moreover 9 if'Y is arbitrary in F 9 then 

"t'Cfl'C'I' = -c,n;cp'Y=(q)\y)<r'JJ-= (cp<r)(y.rcr)µ. .. (q,cr)~it'.r• 

Hence 1':~= (<po-)"C'. 

Remark 1. One obtains prop. 1 by taking U=X a!)d µ, = BX
0 

If b. (X 9 F) -.,i ¢ 9 one can conversely obtain propo2 as an 
immediate result of prop o 1 and § 5 prop o3. 

Remark 2o It is once more important that the existence of 
V direct joins guarantees the existence of a- as a morphism in 

,. V 
Ko Hence if K is the category of a 11 topologica 1 spaces, er 

V is always continuous; if K is the category of all groups 9 ~ 

is a homomorphism 9 etco 

7o Universal systems in categorieso 

Definition 1. Let K be a category 9 and let n be a cardinal 
numbero Let F be a semigroup with unit in K; say Fis a sub­
se~igroup of H(A 9 A), A an object of Ko 

We call Fann -universal semigroup of morphisms in Kif 
for every semigroup G contained in K - say G c H(B 9 B)- con­
taining eB 9 and such that, as an abstract semigroup 9 G can 
be generated by a set of power ~n of its elementsj 
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there exist a map f of F onto G9 and a morphism_µ,e.K, 
with the following properties~ 

(i) pis a homomorphism of the abstract semigroup F 
onto the abstrac~ semigroup G; 

(ii) p, is a monomorphism B~ A; 
(iii) (<p)f·fl-=fl,•Cf 9 for all q, e. F. 

Definition 2o Let K 9 n 9 F 9 A be as in definition 1. We call F 
an -n -universal group of bimorphisms in Kif for every group 
G contained in K-say GcH(B 9B)- such that,as an abstract 
group, G can be generated by a set of power ~n. of its ele­
ments, there exist p andµ. with the propet"ties (1) 9 (ii), 
(iii) described in definition 1. 

The dual concepts are called dua., -n. -univel'."sal semigroups 
of morphisms in Kand dual n -universal groups of bimorphisms 
in K9 respectively- ·( that is, F c: K is a dua 1 ti -universal 
semigroup of morphismsin Kif it is an n - universal semi­
group of morphisms in the dual category of K 9 etc.) 

The following proposition shows that condition (1) is not 
unreasonable. 

Proposition 1. Let F be a semigroup of transformations of a 
set A9 and let G be a semigroup of transformations of a set 
B (both acting effectively). Let A

0
c;:..A be F-invariant 9 and 

suppose (G 9 B) and (FIA 09A
0

) are equivalent by means ofJJv. 
Then 

is a .. 1omomorphism of F onto G. 
Proof. 

It is obvious that 'f ➔ Cf f A
0 

is a homomorphism of F 
onto FjA

0
• On the other hand 9 one verifies at once that 

l/f_,,,p,-1o'{l'oj,L is an isomo'rphism of FIA
0 

onto G. 
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If we write f for the described homomorphism 9 we see 
that 

in accordance with (iii). 

The definitions 1 and 2 are further illustrated by 
proposition 2. 

Proposition 2. Let F be a semigroup of transformations of a 
set A and Ga semigroup of transformations of a set B 9 both 
acting effectively. Assume moreover that pis a homomorphism 
of F onto G and that p, is a 1-1 map of B into A such that 
(cp) J' OP,=}LO q> ,9 for all <pE.F. 

Then A
0

=Bµ. is an F-invariant subset of A9 and (G 3 B) 
and (F(A 09A

0
) are equivalent by means of p,, • 

Proof. 
The fact that A

0 
is F-invariant 1s immediate from the 

equality ('(')f op.=JJ-Of. Asj)v o(<p\1\
0

) oJA,-1 = (f.P)f and as 
pis onto 9 the assertions follow. 

There is of course a close relation between the con­
cepts of universal morphisms and bimorphisms (as defined in 
[4}) and the concepts defined above. This connection is in­
dicated by the next proposition. 

Proposition 3. Let K be a category. A morphism 'Pg A➔A of K 
is a universal morphism if and only if it generates in H(A,A) 
a 1-universal semigroup. It is a universal bimorphism if and 
only if is a bimorphism and generates in H(A 3 A) a 1-un1versal 
group of bimorphisms. For the dual concepts an analogous 
assertion holds. 
Proofg obvious. 



Definition 3. Let -n be a cardinal number. We will say that 
a category K has 2roperty (D~) if every family of at most n 
objects in K admits a direct join in K. We say that K has 
property {U) if K contains a universal object. We say that 
K has property (U-#) if K contains·a universal object A such 
that every family of at most -n copies of A has a direct join 
in K. The dual properties are designated by (Dn), (U) and 
(Un). Obviously (Dn) & (U) => (Un) and (D-n) & (U) ~ (U1'). 

~heorem 1. Let n be a transfinite cardinal. Every category 
K with property (Un) contains an n -universal semigroup of 
morphisms and an n -universal group of bimorphisms. 

Proof. 
Let Ube a universal object of K with the property that 

direct joins of 11. copies of U exist. Let F be a free semi­
group-with=unit with n generators. By assumption there 
exists a Ve A(U ,F); say 

V - 1T u (7C ) . -<pE-F tp 'P. 

Let G cH(X,X) be any semigroup of morphisms in K 9 containing 
f.X' that can be generated by one of its subsets of power , n. 
Then there exists a homomorphism G" of F onto G such that 
(1)~ = ex· As U is a universal object, there exists a mono­
morphism fA. g X ~ U. Let the monomorphism T be as in § 6., 

, A . 

prop. 2; if <p e. F, let <p be the corresponding S-map con-
" structed with U as base, q, g v_...v. 

,. 
By §5 prop.4, <f...,..cp is an isomorphism 

w be the inverse isomorphism, and let p be 
wcs-~ F...+G. We know from §6 propq2 that 

"te'f> =e ('f)c-),:; = (~)(wcr)'t" = 
A A. 

for all({' E. F. 

,, 

,,. 
of F onto F; let 
the homomorphism 
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A 

It follows that F is an ,n -universal semigroup of morphisms 
in Ko 

To prove the existence of an n-universal grcup we pro­
ceed in the same way 9 starting with a free group F ( and 
taking into account the corollary of §5 propo 4)o 

It may be worthwile to formulate explicit]y the dual theorem. 

Theorem 2o Let n be a transfinite cardinalo If the category 
K contains a dual-universal object A, and if there exists a 
free join in K of ·n copies of A9 then K contains a dual 
-n -universal semigroup of morphisms and a dualn-universal 
group of bimorphismso 

Bo Exampleso 

a) The categories K(S,-m) and K(S 9 -m) contain universal and 
dual-universal objectso They possess property (D ) (or(U )) 

11, -fl, ,,,, 

j1'' and only if m = n ; the dua 1 property (D ) is satisfied 
-n 

Hence we have from f 7 theorems 1 and 2 (cfo also § 4 
theorem 1 1 and 2 1 )g 

Theorem 1. K(S 9 -m) and K(S 9 -m) contain n-universal semi­
,,,,, 

groups and groups for all n such that• =m9 and dual 
-n)funiversal semigroups and groups for all -n such that 

0 
'IN = mo 

Corollary (cf.[4] ). K(S 9 'ffl,) and K(S 9 m) contain dual-uni­
versal morphisms and bimorphisms for all transfinite m., and 
they contain universal morphisms and bimorphisms for all •-m 

such that -m~n = -m. 

As was already remarked in t4 (and proved in [4]) the last 
assump.tion can in reality be replaced by "·m. transfinite". 
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b). Let K(G 9 -flt) be the category the objects of which are 
all groups that can be generated by at most11t elements, and 
whose morphisms are all homomorphisms of one such a group 
into anothero 

Clearly K(G., m.) has property (U) g the free group with 
-tn generators is a dual-universal objecto Free joins are 
equivalent to free products; hence (D) is satisfied if 

-ft, 

4fl•1t='ff'lo 

Thus we haveg 

Theorem 2o If -m,-n =-fll,s then K(G,1h-) contains dualn-univer­
sal semigroups of morphisms and dual n -universal groups 
of bimorphismso 

Corollaryo Ifm is transfinite., then K(Gsm) contains dual­
universal morphisms and bimorphismso 

If F1'1t is a free group with m generators, and if m. n = -m., then 
the free product of n copies of Fm is isomorphic to F,m.. 

Hence it follows from the proofs in §7 that F itself can be 
-m. 

taken as the object such that the endomorphism semi.group 
E(F-m.) = H(F

118
,F.,,) contains as a subsemigroup a dual n -uni­

versal semigroup of endomorphism., and a dual n-universal 
group of automorphismso 

In particulars there are an endomorphism and an auto­
morphism of F-m that are dual-universals as can also be seen 
in a direct way quite easilYo 

c), Let K(AG 9 m) be the full subcategory of K(G 9 -m) ob­
tained by admitting only abe:iar groups as objects. Then 
(u) is satisfied 9 and (D ) again holds if m-n =tn. Hence~ 

-ft, 

Theorem 3 0 If 1tt,n=1'1J. then K(AG,,'111) contains dual --n -universal 
semigroups of morphisms and groups of bimorphisms. 
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Corollar~~ If -tn ?> .i'l;,a K(AG 9 m) contains dual=universal mor­
phi.sms ana bimorp:11isms. 

If A111,, is a f'ree abelian group with "In generators 9 then 
Am is a dual-universal object. Free joins are equivalent to 
restricted direct products in this category; hence the dual­
universal subgroup can be taken as a subsemigroup of the endo­
morphism semigroup of A-mand the dual-universal group can be 
taken as a subgroup of the automorphism group of A111,• 

Theorems 2 and 3 give sufficient conditions for the pos­
sibility of raising simultaneously sets of-n endomorphisms 
(automorphisms) of a group of at most -m generators to endo­
morphisms (automorphisms) of F1'11 or A-m.• 

d) Let K(CMAG) be the category of all continuous homomor­
phisms between compact metrizable abelian groups. 

This category has property (U)i the infinite=dimensional 
torus '1'..- - product of it copies of the circle group T - is -ic_ $ • 

a universal object (see eogo(17] theorem 2.20_6)0 Furthermore 
(Dv- ) clearly holds (and Dn does not hold for -n >Jlt 9 as 

n~ o 

metrizability gets lost)o Hence §7 theorem 1 impliesg 

Theorem 4o K(CMAG) contains an X
0 

-universal semigroup of 
morphisms and an N: =Universal group of bimorphisms e These 

@ 

can be taken as a subsemigroup and a subgroup» respectively 9 

ofH(TX"J)TX). 
e o 

Corollaryo K(CMAG) contains universal morphisms and bimor­
phisms. More explicitlyg there exist a tcpolo1Ztcal automor­
phism~ of T~ , and a continuous endomorphism.,'f' cf T~ » 

C @ 

with the following propertiesi if G any compact metrizable 
abelian group 9 and if' <pis a.ny topological automorphism of G 

(f a.v continuous endomorphism of G) there exists a topologi= 
cal isomorphism p. of G into T£' such that ;;., q, = <p µ. 

o 
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(}Lf =l(P, J) respectively). 

~r 
~ 

, p, r 11,; 

G ~ » G 

Remarkso The fact thatp. is topological is a consequence of 
the facts thatp is continuous and-1-1 and that G is compact. 
Of necessity Gjk is a closed subgroup of T~ (being compact). 

0 

e) Let K(OCM) be the category of all continuous maps between 
zero-dimensional compact metrizable spaces. Then (U) holdsg 
the Cantor discontinuum C ={o,1}7t0 is a universal object. 
Also (D }(') is satisfied. Hence g 

0 

Theorem 5. K(OCM) contains an ~
0
-universal semigroup-of mor­

phisms and an X'
0 

-universal group of bimorphisms. These can 
be taken as a subsemigroup and a subgroup;) respectively,of 
H(CJJC). 

Corollary. ( J. de Groot and P .c. Baa yen; cf. [ 2)). There exist 
an autohomeomC)Ii'Jillh.ism f of C JJ and a continuous map -P- : C -11> C 3 

with the following propertiesi if~ is any autohomeonorphism 
of a zero-dimensional compact metrizable space M ( 'JI' any con­
tinuous map of such a space into itself) there exists a tono­
logica 1 err.bedding µ, i M ➔ C such that fl-T = cpp, (p- p = 'f }A » 

respectively). 

C 

M 
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Remark. It is an open problem whether K(OCM) also contains 
dual-universal morphisms or bimorphisms. If they exist, it 
will be impossible to detect their presence by the methods 
of §7, as (U?t.) is definitely not valid in K(OCM). However, 

0 

using the method of S-maps one can in any case show the 
followingi 

Theorem 6.(R.D. Anderson [1J). Every autohomeomorphism ~ of 
a zero-dimensional compact metrizable space M (every con­
tinuous map V of such a space into itself) can be raised to 
the cantor set. Ioe. given f (y), there exist a homeomo~­
phism f of C (a continuous map 'f g C-+C) and a continuous 
map-&o'f C onto M such that 't<p = ti;("t''f=°!F"'t). 

C 
~ ---c 

M cp ), M 

Proofg 

We restrict ourself to the case of an autohomeomorphism 
<p g M➔M , the case of a continuous map being entirely simi-
lar o 

Let F be the subgroup of H(M,M) generated by~, and let 
~ be the identity map F-+H(M,M). Then~ g M-+MF is topolo­
gical; let M1 = M;., q> 1 =flM 0

, and let ;-1 be the inverse 
of the homeomorphism a- gM...a,,.M 1 

• 

The topological product C'= M1x C is homeomorphjc to C; 
Let~ be the projection of M1x C onto M1

, and define the 
autohomeomorphism p i C 1-+ CI through 

(p, € M1 ,je.C). Then ,: = ,c o a- -1 maps C I continuously onto 
M, and f1:=,:; cp. ,. 
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c' - m ), c' 

1~ 
q/ 

lx 
Mv ) M' 

1;.-1 \I -1 
Ci 

f M !), M 

f) The category K(L0 9 -m.) of all order-preserving mappings 
between :inearly ordered spaces of power 1'11, is an example 
of a category for which universality results can be obtained, 
but not by means of the constructions described in this noteg 
these constructions are fundamentally useless for this cate­
goryo 

The fundamental difficulty does not so much concern the 
validity of (u) and (U),although here there are probl~ms al­
ready. If ·m is finite 9 (U) and (U) a re evidently satisfied o 
If -m = 1(

0
;; (U) holds toog it is well-known that the set Q 

of all rational numbers is a universal object (ct'o" [ 18 ]) • 
The same set is a dual-universal object for -11t, = Jl0 g if A is 
any denumerable linearly ordered set 9 then the cartesian pro­
duct Ax Q 9 ordered lexicographically 9 is order-isomorphic 
to Q (as •17.11= 1'/ for every denumerable ord.er-type Y,; cf.[17] 
p.231) o As the map (ex., q)-+ 01. is an epimorphism A x Q -+ A 9 

there also exists an epimorphism Q-lj>,Ao 
For ffl > 1?

0
, the question of existence of a universal 

object in K(L0 9 -m) is a vexing open ~roblem of set theory 
(cf. [18] 9 [14]) o The problem of the existence of dual-uni­
versal objects is open too for these m, at least for the 
author of this noteo 

More serious trouble arises, however, if one proceeds to 
(D) or (U ) and their dual properties. In fact 3 none of 

4t 1t, 

these can be valid-even if one takes (U) for granted- as 
soon •as m > 1 9 as is seen from the next two propositions. 
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Proposition 1. In K(LO 9 "flt,) 9 -m ► 1 9 no free join of two or 

more objects exists. 

Proof'. 

Let card (A)~ 2 9 let X« be an object of K(L0 9 1tt.) for 
each Q(."-A.9 and suppose 

Take o< 1 , ti(. 2 €. A with ~1 /. Of. 2 • Let Y be any object of K(LO.9-m); 

as 11t>1, there are 'Y/ 1 ,'7 2 ~ Y with '71'c.''Pf2 • We define 'P« gX«-+Y 

as followsg 

~<p<t!. =17 1 , for all l (ix«., if (J/.1-~ 2 ; !'Pm
2
='>'! 2 for all !E-Xoc

2
• 

As all 'l'@t are morphisms of K(LO,, m) there exists a morphism 
tt1 g X-..Y in K(LO,,-m) such that ff"{f =Cf. 9 for all«(;,,A. 
T !Ji; <I< 

It follows that ) 1 a-ct

1 
< ) 2 tr ~

2 
in X 9 for a 11 ! 1 ft x«

1 
and 

~ 2 and ~ 2 E. XO<. • But in the same way one can show that 
2 

t a-Ci. > ~ er 0(. 9 for a 11 1
1 

<i- x«.
1 

and 2 rt Xct. ,, which is 
(1 ,1 ( 2 2 2 2 

contradictory. 

Proposition 2. Let m > 1. For any object X of K(L0 9 -m) and 

any set A with card (A)> 1 9 ~ (X 9 A) admits no direct join. 

Proof. 

Suppose Y= 1f X (~ct) 9 where X,,,= X for all O! ~ A. 
O!,E. A (j{ "" 

Let «19 oc 2 E- A 9 Of.1 -/, o< 2 • 

First we remark that there exists a y G:. Y such that y Tiiot < 
1 

y 1e« • For take ~ 9 ~ 6. X.11 ~ .i:: ~ , and define <f. g Y➔X as 
2 l1 /2 l1 (2 « a( 

followsg ~«="K01. if O£/.et19 « 2 ; Y<po<.
1 

= ~
1 

for all yGY, 

y 'f ~ = ~ , for a 11 y E. Y. There exists a morphism q, gY--+ Y such 
2 l2 

that 'f"M=~"' 9 for all c.t1:.A. Then (y ¢p)1v ,. t < ~ =(y,)11;_, JI 

~ ""' IX1 l1 l2 .... 2 
for .all y '3 Y. 



-24-

. Let yg A➔ A be the map that exchanges e<.1 and oc.2 and 

leaves all other C'J..E-A fixed. We saw in §5 that K(LO,m) 
~ ~ 

contains a morphism Y'g Y+Y such that yr.w:«=lt'«y, for all 

«eA. Take any yfc.Y such that Y7lio< 1 < y"1t"C( 2 ; then 

:, 

is order-preserving, 
1t" 

Similarly hence, as 7C « Y'f < y. 
2 

if" 

y lf/ 71:«,, = y 7(;0<. > y7ti0( J 

. 2 1 

implying 
?t-

YV" > y, which is contradictory. 

Nevertheless it is possible to obtain results about 

universality properties of the categories K(LO,m). For in­

stance, in [3] it i.s shown that K(LO,m).,m ➔ .>c;,., contains 

universal morphisms and bimorphisms if and only if it con­

tains universal objects. ( For 1 < ?71. < Jt0 there are evi.dently 

no universal morphisms or bimorphisms). 

9. Categories of topological spaces. 

Consider the category K(T,m) of all continuous maps 

between completely regular spaces of weight m • If -m;,;.~ , 
-m 

(U) holds for K(T, -1n)., as the Tychonoff cube I-m =(0, 1] is 

a universal object. And (Dn) holds for K(T,·m) as soon as 

111.n=ffl(still supposingmto be transfinite). Hence we have 

Theorem 1o If ·m>~ and-m-n=-m, the category K(T 9 m) con­

tains n -universal semigroups of morphisms and n -universal 

groups of bimorphisms. 

Corollary. If ffl ~~, then K(T 3 -m) contains uni,,ersal mor­

phisms and bimorphisms. 
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However 9 in this case these results are not quite sa­
tisfactory9 as our methods in fact give moreo The trouble 
is that in most categories of topological spaces monomor­
phisms and epimorphisms are not what one wants them to beg 
topological maps into and continuous maps onto 9 respectivelyo 
This follows from the next proposition., which is easily 
showno 

Proposition 1o A morphismµ,g X➔Y of K(T 3 -m.) is a monomor­
phism if it is 1-1, and it is an epimorphism if X)JI is dense 
in Yo 

In the case of the categories K(CMAG) and K(OCM) of the 
previous section there were,afterall,no difficultiesi as all 
objects o.f these categories are compact., their mono- and epi­
morphisms are what they ought to beo 

In the case of K(T.,11t,) and other categories of topolo­
gical spaces., results like theorem 1 can be strengthened even 
if not every monomorphism and epimorphism in the category is 
nice, because of the following resultso 

Proposition 20 Let X be a topological space. If the map 
f i A-+B is of finite multiplicity» the S-map 'P•i xB~xA is 
openo 
Proofg evident. 

Remat'ko We say that ff i A-+-B is of finite multiplicity if 
(p)ep - 1 is finite for every ~ E. Bo A map -e- g X➔Y is called 
open if -c is open as a map X➔ X"ti o 

Proposition ,30 Let X be a topological spaceo For every 
homomorphism~ of a semigroup Finto the semigroup of all 
continuous maps X,,,.X 3 the embedding map r i X--+XF is topo­
logical o 
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Proofo 
We know already that ~ is 1-1 o As t-wm= ( q:, )11' is cont i-

v T ~ 

nuous 9 for every cp E- F 9 <r is continuous o Finally tr 9 con-
sidered as a map X➔X lf. 9 has a continuous inverse g 

Thus we obtain from theorem 1, or rather from the con­
struction behind it, the followi~g results of Jo de Groot 
[7] g 

Theorem 28
0 Let -11t 9 n be cardinal numbers such that 

-111.• n = m ~ >t
0 

o Then there exists a semigroup F of mappings 
of the Tychonoff cube Im into itself with the following 
propertiesi 

(i) the abstract semigroup Fis a free semigroup-with­
unit withn generators, 

( ii) every <p e, F is an S-map I ~ I 9 hence is conti-
ffl m 

nuous; 
(iii) if Xis any completely regular space of weight 

" <1fl , and if G is any semigroup of continuous maps x ~ X 

such that the abstract semigroup G can be generated by at 
most n of its elements, then there exists a topological 
map ,:; i X ~ I such that X-c is invariant under F and such 

1ft 
that (X 9 G) and (X-c ,FIX'&') are equivalento 

Theorem 2b o If m.. n .. m "° X: 9 there exists a group F of 
0 

mappings I ....... r with the following propertiesg 
·m. -m 

(i) Fis a free group with n generators; 
(ii) every <p €. F is a topological S-map of F onto itsPlf'; 

(iii) if Xis any completely regular space of weigtt 
~ -ffl , and if G is any group of autohomeomorphisms of X that 
can be generated by at most ·n of its elements, then there 
exists a topologica 1 map -o ~ X--=+ Im such that X,; is F-in­
variant, while (X 3 G) and (X~ 3 FI Xi, ) a re equivalent o 

4'I. 
(As m/-n = m3 \n is homeomorphic to I ffl ) • 
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Furthermc}l>e.11 if K(OSM)is the category of all continuous 
maps of one separable metrizable space into another, then §8 
theorem 5 can be strengthened to 

Theorem 3o K(OSM) contains~ -universal semigroups of mor­
e 

phisms and Jt
0

-universal groups of bimorphismo 
These can be taken as sub(semi) groups of H(C 9 C)o 

,, 
Leaving altogether the idee-fixe of categories 9 propositions 
29 3 together with §§2-4 lead to the following resultso 

Proposition 48
0 Let X be a topological space 9 A a non-void 

set 9 card (A) = -n ~ ?t
0 

o Then H(XA 9 XA) contains a subsemi­
group F with the following propertiesi 

(i) the abstract semigroup Fi~ a free semigroup-with­
unit withn generators; 

(ii) every <f e. F is an S-map x.A ~ xA 9 hence is co~tinuous 
(iii) for any semigroup G of continuous transformations 

X ~ Y wl,t,:tt card ( G) ~ n. there exists a topological map 
p.. g X ._.. xA such that X,)h is F-invar:>iant while (X 9 G) and 
Xµ, 9 FI xµ,) a re equivalent ( by means of_µ.) o 

Proposition 9bg obtained from propo 98 by substituting 
"group" for every occu!'.'rence of II semigroup" and 11 topologica 1 11 

for every occurrerice of 11 continuous 11 
o 

)l' 
Corollaryo If X O is homeomorphic to X (which is the case if 

~ 
and only if X = Y G 9 for some Y) 9 then there exist an auto-
homeomorphism ~ of X and a continuous map f i X➔X with the 
following propertyg if f is any other autohomeomorphism of X 

(iryr is any other continuous map x_....x) there exists a topo­
logical map ~i X--+X such that ,,u.qi = <p/M..)k "'l':"f P, 9 respect­
ively ) o 

In other words 9 <f? contains already all other autohomeo= 
morphisms of X» and ·t contains all continuous maps X~Xo 
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Examples of spaces X for whicr. this I•esul t holds ai"e the 

cantor set C ( for which we established it already in the 
previous section) » the generalized cantor discontinua{oa1}

1
'', 

--m > .X: 9 the Hilbert fundamenta 1 cube 9 a 11 Tychonoff cubes 
I-MS » '1'ft ~ ~ 9 the infini te-dimensiona 1 torus Tit 9 etc. 

,. 

10. Application to compactification. 

All results in this section are taken from Jo de Groot 
and R.H. Mc Dowell (11]. 

Definition 1o ((11] p.251 )o Let X be a completely regular 
space 9 and let G be a set of continuous maps / _: X--+X. A 
space Xis called a G-compactification of X if Xis a com­
pact space containing X as a dense subsf't 9 and if every 1E. G 
can be extended continuously toad g x-x. 

Theorem 1o (Jo de Groot and R.Ho Mc Dowell (11]). Let X be a 
completely regular space 9 and let G be a set of continuous -maps/ g X➔X. Then X admits a G-compactification X; the 
weight of X can be taken ~ weight (X). card (Or), ?t

0 
• 

Proof. 
Without loss of generality we may assume G to be a semi­

group containing ix» and we may assume weight (X)= ·m ~ ?t., o 

Then (X 9 G) is equivalent to (X 1
9 F(X 1 

) 9 where Fis some uni­
versal semigroup of continuous mappings Im-+> I~ o For X we 
take (a space homeomorphic to) the closure of X1 in the com­
pact space I-m.. 

Corollary 1. If Xis a separable netrizable space and G is 
countable» X has a separable metrizable G-compactification. 

If Xis a zero-dimensional separable metrizable space 9 

one can embed X topologically in C instead or in ~ 9 and 
take, for F a universal semigroup in K(OSM) o Hence 0 



Corollary 2o If Xis zero=dimensional separable metrizable 
and G is ccuntable 3 X has a zero=dimensional separable metri­
zable G=compactificationo 

If every f e G is a homeomorphism 3 then in the proof of 
theorem 1 we may suppose,) without loss of generality,) that G 
is a group 3 and we may take for Fa universal group or auto­
homeomorphismso Hence 

Corollary 3 o If every r~ G is an autohomeomorphism of XJ) the 
G-extension X of theorem 1.9 corollary 1 or corollary 2 can be 
taken in such a way that all extensions to X of feG are 
autohomeomorphisms of Xo 

110 Application to linearizationo 

Definition 1o Let Ebe a topological vector space,) and let 
S be a set of continuous Jinear operators E-Eo If Tis a 
set of continuous maps of a topological space X into itself 
we say that (X 3T) can be linearized by (E 3 S) if there exists 
a topological embedding -c ~ X-+E such that X"t' is S=invariant 
while (X 3 T) and (X~ J) SjX~) are equivalent by means of ~o 

We also say in this case that T can be linearized in Eo 

The unit interval I being a subspace or the topological 
vector space of 
a subset of' the 
propso 4 and 5s 

all real numbers R3 we can identify Im with 
-m. locally convex linear space R o From § 2 

§ 5 prop o 1 and § 9 theot"em 2 we derive i 

Theorem 1 o Let flt. n,,, m ~ ~: o There exists a semigroup F 
of continuous linear operators of the locally convex space 

"111. 
R into itself with the following propertiesg 

(1) Fis a free semigro~p-with= unit with n generators; 
(ii) (R111 J) F) linearizes all semigroups (X.11G) where X is 

a completely regular space of weigh4 ~ m and where G is a 
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semigroup of continuous maps X-+X that can be generated by 

at most n or its elements o 
Similarly there exists a group F of invertible con-

,,,,, ?fl, 

tinuous linear operators R -';R which is a free group with 
n generators and which linearizes all (XsG) with weight (X) 
.$ -ffl etc,, such that all f E G are autohomeomorphisms of Xo 

The restriction -m ~ Jl;, is not essentials of course. For 
1nstance 9 the following is trueo 

Proposition 1o (AoH 8 Copeland Jr,, and J. de Groot [6]). Let 
M be a separable metric space of finite dimension m , arc 

let G be a semigroup of continuous maps M➔M or fir:.ite order 
n .• !rh.e,n G can be linearized in the finite-dimensional eucli­
dean space Rk, with k ~ n {2m + 1). 

Proof. 
Embed M topologically into 

S-maps / i {R2m+1 )G-+- (R2m+1 )G 
9 

R2m+1 • The semigroup 6 of all 

{ 4S G, linearizes G. 

Remark 1. The number n{2m+1) is far too high; cfa (5] and (12]. 

Remark 2. S-maps in a euclidean space are particularly nice; 
they are eago orthogonal maps. 

For arbitrary separahle metric spaces theorem 1 is not 
the correct generalization of prop. 1 9 as it gives a lineari­
zation in the non=metrizable locally convex space R~. As any 
separable metric space can be embedded in separable Hilbert 
space 9 one would expect that linearization of countable sets 
of continuous maps would be possible by bounded linear 
operators in Hilbert space. In facts this is indeed possibleg 

Theorem 2. ( J. de Groot). There exists a semigroup F of 
bounded linear operators in the separable Hilbert space H 
with the following propertiesg 



(i.) F is a free semigroup=with-unit with denumerably 
many generators; 

(ii) every denumerable semigroup G of continuous maps 
of a separable metric space Minto itself can be linea­
rized by (H 9 F) o 

Similarly there exists a group F of invertible bounded 
linear operators in H that linearizes every denumerable 
group G of autohomeomorphisms of any separable metric space 
Mo 

Proofo 
First we remark the followingo Let L be the Tychonoff 

cube I]t and let F be either a free semigroup-with-unit or 
(ll 

a free group 9 with denumerably many generatorso Then it 
suffices· to show that the (semi) group F of S-maps LF ~ LF 
can be linearized in H9 as this (semi) group is universal 
for all countable (semigroups of continuous maps of~ sepa­
rable metric space into itselfo (In the case of a free grou2 
F 9 we must also take care to linearize by invertible 
operators) o 

For each <p~ F 9 let H'f be the separable Hilbert space 12 ; 

let K1 be the fundamental cube in 129 and let Kc:«>= cf K1 9 

where the c~ are real
2
non-zero constants 9 to be fixed later 9 

such that c1=1, L c < oo • 
fE--F <'f 

As Fis denumerable 9 the Hilbert sum Hof all Hf is 
again separable 9 and its subset K 3 consisting of all 
x = (xr,,) F such that x E. K 9 is precisely the topological 

T{fE (fl 'f' 
product of all Kf. 

Let f be any homeomorphism of L onto K1 9 and define 
-c i LF-4K as followsg if y = (Ycp\>toF 6 LF 9 we put 

(1) Y'fl = (c<f> 0 Yq, f) 'f' e F 0 

. F 
Then~ clearly is a homeomorphism of L onto Ko 
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If cp E- F 9 -c=1 ; ,: is a continuous map K➔K (a topological 
map of K onto itself if~ is invertible in F)o As K spans H9 

there is at most one linear ope'::"ator ip i K.-K with 
~IK = ,:;= 1 ~,; o And this linear operator tp 9 if it indeed ex­
istst must evidently have the form 

(2) 

C 
with d'Y = ~- Hence the theorem will be proved if we succeed 
in choos1ng"~he constants Cyr in such a way that all linear 
operators (2) exist and are bounded in Ho The possibility of 
doing this is an immediate consequence of the lemma below. 

Lemma 1. (J. de Groot) Let F be a free group or a free semi­
group-with-unit with at most denumerably many generators. 
There exist non-zero constants c(f 9 ~ G F 9 such that 

( ) ~ 2 0 i c 1 = 1 9 L- cf < co /J 

qieF 

( 11) Cf 

Proofo 
Let ~ 19«29 .oo be the free generators of F. We treat the 

case of a free group F; the case of a free semigroup is pro­
cessed along exactly the same lines. 

Every ff E F 9 ff -,J 1 9 can be uniquely written as a reduced 
word 

(3) 

we take 

and put 

Then the cf are non-zero real numbers. If one ~efines the 
length of the element <p given by (3) as f. j 1c r I 9 then one 

' 6' =1 
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easily shows inductively that 

'2: { c~ g <p£.F and length (q,) = n} '- (J )n; hence L c: < co o 

<pE- F 
To conc:Iude the proof JI we show that (11) holds for this system 

(c'l')<f6F 0 

First suppose <p arbitrary and . 'fl of length 1 o Then -yr is 
t =n of the form «n JI E. = ± 1. If q> =1 9 then c'f' cir = cy,= 2 = c<pY," 

If~ is given by (3)JI then 

-n Hence for all q,e.F we haveg c<f- c.iy-= 2 c<f> .~ c'PI/'"" For 
arbitrary V ~ F (11) now follows readily (using induction 
on the length of \/') • 

Remark 1. 

Henceg 

C - -1 In the proof of theorem 2 we have g dw =~ , c • 
T Cf Y, 'fl 

Remark 2. In the particular case of a free group with one 
generator we can represent Fas the additive group of all 

-!vi integers. Then cy = 2 JI for v = 0 JI ± 1 JI ±2»,,.. ; H is re-
presented as the Hilbert sum of separable Hilbert spaces 
HY JI Y = OJI ±1$ ±2JI •• " JI and the generator of F is linearized 
by the invertible continuou~ operator A i H➔H such that JI 
for X= (xv) £ H JI x /\ = y - (y v L with 

Yy = 2sign(v) xv+1· 

This is exactly the operator of which AcHc Copeland Jr. and 
J. de Groot proved in ( 6] that it is universal for all auto­
homeomorphisms of separable metrizable spaces. 

The assumption of separability is not essential for 
theo~em 2g by means of lemma 1 we easily prove: 
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Theorem 3o Let H be a Hilbert space of infinite (Schauder) 

dimension mo There exists a semigroup F of bounded linear 
operators in H (a group F of invertible bounded linear 

operators in H) with the following propertiesi 

(i) the abstract semigroup (group) Fis frees with X'
0 

generators; 

(ii) (HsF)linear1zes all pairs {MJ)G) where Mis a metri­
zable space of weight ~ m and G is a countable eemigroup of 
continuous maps M-+M (a countable group of autohomeomor­
phisms of M, respectively)o 

Proofo 
Let F be the free semigroup (group) with ~o generators; 

choose a system of rea 1 non-zero constants (c 4?) cp 
6 

F satis­
fying the requirements of lemma 1 o For each cp E- F J) let H'P be 

a copy of H; in the Hilbert s~ of all H'P 9 we defines for 
each 'f'£ F 9 a linear operator 'f' by 

(xq,)(feF'f= (df x'lf"~)<pE-F J) 

I" 

with d<p == fL o 

Then each ij'Yis bounded ( in fact II f ll ~ c 'i' 1 ) 9 and f is invert­
ible iff 'Y is invertible in F. 

Now let• M be any metrizable space of weight ~ 111. J) and 
let G be any countable semigroup (group) of continuous maps 
M ~ M. Then M can be topologically embedded in H (cf. [ 19] ) e 

It then follows that M can also be embedded topologically in 
the unit sphere of H ( take Mc He. H@ R; project M into the 
upper hemisphere of the unit sphere of H<e R with 9 say 9 1 ES 1 

as center of projection). 
Let f be a homeomorphism of M into the unit sphere S of 

H9 and let~ be a homomorphism of F onto G. We define 
,: g M......, <EBF H in the following manner g if' _p, e. Ms, then 

(f>E. VJ 
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Indeed "t' maps intoq,f>F Hq> 9 as cp""f:F c; < oo and as 
II (f-) (<pcs-) f \I .$ 1, for all P,f- M and qJ'=- F. Clearly ,: is con­
tinuous; as 1~ = iM, ~ is 1-1 and has a continuous inverse. 
Hence "t' is a topological embedding of Minto f,F Hf. 

We finish the proof by showing that ,:;cp = (q,cr )1C , for 
all C(>~F. Indeed., if ft,E.M then 

µ,-r. ~ = (cy.(µ.) ('fer) f )lf'E-Fq> = (c'Y.(,u) ((qnr )a-)f)'j"eF= 

= (c.t.((p,) (<po-)) ('Ytr)J).ifeF =fk(<p<r)T. • 

Though theorem 3 is an improvement on theorem 1 for the 
case of metrizable spaces of weight m ~ ')t

0 
- as it asserts 

the existence of linearization in Hilbert spaces - it is 
evidently deficient in one respect~ it only guarantees 
linearization of countable systems. 

This defect can be done away with if one restricts one­
self to compact groups of autohomeomorphisms of metrizable 
spaces [9]. An exposition of proofs of this fact and related 
ones will be given in a forthcoming note of J, de Groot and 
P o:C. Baayen [10] 

,. 
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