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equivalent either to the group of 2ll rotations around an axis or to

the group of all proper orthogonal transformations.

In these thecrems groups of transformations of E3 are linearized
in the same space. In general this will not be possible, as can be
seen from examples of R.H. Bing [3] and of D, Montgomery - L. Zippin
[iZJ (cf. also [5] ). R.H. Bing constructed a "wild reflection', an
involutory homeomorphism of S3 with a wildly imbedded plane as set
of fixed points. D. Montgomery and L. Zippin modified Bing's example
and obtained a "wild rotation', a sense-preserving involution of E3
having a wildly imbedded topological line as fixed point set. Such
homeomorphisms clearly can only be linearized - if they admit linear-
ization at all -~ in a higher-dimensional En.

They can indeed be linearized. In 1957 G.D. Mostow showed:

Theorem [14]. Let G be a comﬁact Lie group operating faithfully on

a separable finite-dimensional metrizable space M. Assume G has only
a finite number of inequivalent orbits in M. Then G can be linear-

ized by unitary transformations of a euclidean space En.

Theorem [15]. Let G be a compact Lie group of homeomorphisms of a

compact manifold M. Then G can be linearized by orthogonal transform-

. . n
ations of a euclidean space E .

In the case of homeomorphisms of finite prime order of a finite-
dimensional separable metrizable spacs, fhe minimal dimension of a
euclidean space in which linearization is always possible has been
determined by A.H. Copeland Jr. and J. de Groot [5] . Their results
were extended to the case of compact abelian Lie groups with a finite
nunber of distinet isotropy subgroups by J.M. Kister and L.N. Mann
[11] .

All these theorems concern linearization in finite=dimensional
euclidean spaces. J. de Grogt [8] and A,H., Copeland Jr, and J, de
Groot [4] s [5] set off in another direction: they studied the pos~-
sibiﬁity of linearization by bounded linear operators in Hilbert

space. In [5] they proved:
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Theorem. There exists a bounded linear automorphism @ of separable
Hilbert space H with the following property: if M is any separable
metrizable space, and if ¢ is any autohomeomorphism of M, then (M,¥¢)

admits a linearization by (M, ).

This result was extended by J. de Groot in the following way

(cf. [2] ).

Theorem. There exists a free group [° of bounded linear operators
in a separable Hilbert space H with the following property: if M
is any separable metrizable space, and if G is any denumerable
group of autohomeomorphisms of M, then (M,G) can be linearized by

(H,P) .

In these theorems, the sepsrability assumption can be removed.

Moreover, similar results have been obtained for countable semi=-

groups of continuous maps; see [?] section 11.

Theorem 1 is best compared with the last two theorems mentioned,
There are some important differences,

In the first place the transformation groups in the last two
theorems need not be compact; consider e.g. the group generated by
one autohomeomorphism of infinite order., They are, of course, local-
ly compact (considered as discrete groups). It would be nice if a
theorem could be obtained to the extend that all locally compact
groups of autohomeomorphisms of some metrizable space are linear-
izable, or in any case all separable locally compact groups. (For
this class of groups a result éomewhat comparable to the theorem of
Eilenberg mentioned above, though weaker, is contained in J. de Groot
[7]:

Theorem., Let G be a locally compact ¢ -compact transformation group
acting on a metrizable space M. Then M can be metrized in such a
way that G acts uniformly on M, i.e. every )’eG is uniformly con=-

tinuous on M.)

&



We do not have such a theorem, a3 yet; but in section 3 of this
note a sufficient conditicn is given for a loecally compact transform-
ation group in order that it can be linearized, and this condition is
met both in the case of a countable discrete group and in the case of
compact groups; moreover, it is satisfied also by all Abelian separable
locally compact groups,

Secondly it should be remarked that in the case of countable

groups one obtains universal linearization (cf. 8 4) ., This universality

was also obtained in another case, by means of the same construction
(but independently), by G.-C. Rota [ 16 ] ,[_'17] . Where A.H. Copeland
Jr, and J. de Groot linearized arbitrary autohomeomorphisms¢ of
metrizable spaces by a universal bounded operator @ in Hilbert space
H, through a suitable, presumably very ''crooked" imbedding of M in H,
G.-C. Rota started with bounded operators in a Hilbert space and
showed that each such an operator with spectral radius « 1 is equi-
valent to a restriction to a suitable closed linear subspace of a
Hilbert space H of a universal bounded operator in H, by means of a

linear imbedding. We will say more about this in section 6,

For the sake of completeness we mention the fact that one can
also consider linearization in topological linear spaces that are
even more general then Hilbert space, In fact, if one admits such
locally convex linear spaces as are obtained through forming the full
direct product of an infinite number of copies of the real line, then
every group of homeomorphisms of an arbitrary completely regular
space can be linearized, and there exist universal linearizations

(J. de Groot [9] : see also [2] ).

We want to make some remarks concerning the ideas underlying
the proof of theorem.1l . These ideas are essentially the same as
those expounded in [2] ; they are inspired by the concept of the
graph of a mapping.

Let £ be a continuous mapping of a topological space X into a
topo}qgical space Y. As is well=known, the graph " of f, considered
as a subspace of the topological product X xY, is homeomorphic to X,

Consequently the quite arbitrary mapping f turns out to be topolo-
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glically equivalent to the restriction to [" of such a decent mapping as
the canonical projection X ¥ V-sY is (e.g. 1f X is a subspace of a
euclidean space " and Y a subsgpace of Em, then £ is equivalent to a
restriction of a linear map, a projection, in En+m)‘

In particular, if f is a continuous map of a space X into itself,
the graph may be used in order to linearize f by a mapping that sends
one copy of X into another copy of X, However, it is our aim to linear=-
ize £ by & map that again sends a suitable copy of X into itself, .

This objective is reached by considering not the graph, i.e., the
set of all pairs (x,fx), but the set of all orbits (x,fx,fzx,...,fnx,...).
If £ i8 an autohomeomorphism, and if one desires that the mappling by
which £ i3 linearized will again be 1-1 and onto, then one should take
the full orbite (...,f 2x,f
linearize a transformation group or semigroup G, one has to consider

x,%,f%,...), And in case one wants to

the orbits under G, Returning to the simplest case of one map £, it is
clear that as a linearizing map one can take the ghift, the map send-
ing the point (xl,xz.xs,...) onto (xz,xs,xé,...), as 1t transforms the
oribt of % into the orbit of the point f(x). Formally this amounts to
the sume thing as the use of the graph to changs f into a projection!
one skips the first coordinate, Of course the shift will only do, pro=-
vided one euccee%g in choosing a sultable topology in the set
X%XxXK.,,, =X © of which all orbits are elements (if a (semi=)
group G 18 considered, the orbits can be taken to be points of the set
x%,

Now in the case of the graph the product topology in X ¢ X = X2
turnes out to be useful, Hence it 18 plausible that also in XG the pro=
duct topology will suit our needs. The effects of this cholce were
explored in Ez] o It indeed leads to several useful results; however,
1t is clear that this topology cannot be taken if linearization in
Hilbert space is desired., For suppose X to be non=trivial and metrig=-
able; then the topologlcal porudet XG will be non=-metrizable, hence
non=imbeddable in any Hilbert space, a8 soon as ¢ ig uncountable,

&Thig i8 where the hypothesis of compactness or loeally compact-
neas of ¢ comes in, We exploit the faet that on such groupsHaar

a

measure is defined, and consider, instead of the "direet sum" X (or
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HG, where H is a suitable Hilbert space into which the metrizable space
X is imbedded beforshand) the "direct integral” L,(G,H). And this space,

of course, is a Hilbert space,

The results of section 2 all follow immediately from those in
section 3, Thus, the proofs in section 2 are, strictly speaking,super-
fluous. They are nevertheless given, as they illustrate the methods
used more clearly than the proofs in section 3. |

Except in *this introduction we use the notation of [2] ; in par-
ticular, the argument of a function will be written before the function

symbol,

2, Linearization of compact transformation groups

If G is a locally compact group and H is a Hilbert space, then
LZ(G,H) denotes the Hilbert space of all square-integrable functions
(square-integrable with regard to Haar measure) on Gwith values in H.

We want to consider LZ(G,H) as a subset of HG; that is, from
every element of Lz(GvH),'which is a class of equivalent functions, we
choose one representing function, This is done - once for all - in a
quite arbitrary manner, except that a continuous representing function
is chosen whenever possible. We will use the fact that every equi-

valence class contains at most one continuous function,

~
Definition 1, If /06 G, then zo denotes the map Lz(G,H)-—>L2(G,H)
such that, for x:elé(G,H)p (x) /0 is the function y with

Py = (f Px (feo.

Proposition 1. For each iée G the map /0 is a unitary operator in
o~

LZ(G,H); if H is non-degenerate (dim H> 0), then ,—9)/ is an isomor-

phism of G into the group of all unitary operators in LZ(G,H).
Proof: evident,

Theorem 1. Let G be a compact transformation group acting on a metric
space M of weight #7 , Then (G,M) c¢an be linearized by unitary oper-

ators in a Hilbert space H of weight 2 °}¢o'



Proof,

If Ho is any Hilbert space of weightm:ﬁbsthe space M can be im-
bedded topologically in H_ (ef. [19]). ror simplicity's sake we will
assume that M is already a subspace of Ho’

If ?e M, then “z"‘l‘: will dencte the function x : G—» H such that
J& = §f,

for all / € G, As G is a topological transformation group, each ‘{'C‘ is
a continuous function; as G is compact, it follows that %T € L2(G,Ho) . -
We will prove that the map T : M— LZ(G’HO) is topological.

First we show that T is continuous. Let xeMT' and &>0; we must
prove the existence of a neighborhood V of %: (L)x in M such that
"x-y "<é as soon as ye Mt and (L)yeV.

For each )/ € G, let U}, be a neighborhood of , in G and V/ a
neighborhood of 5 in M such that

[y - epX]< %

for all X € U,,Ylé‘V, . For these X s7 one has
[ k- ] < |or- o]+ oy - wx| <e.

Cover G by finitely many U/ , say by U “”’U}' , and let
n
V=V, n ...n V, . Then 1

1 n
[ X - @y <e
for eV n M and arbitrary Xé(}; i.e. ify=7mT, e VoaM:

|] Wx - Qy| <e&.

e =l = [ [ o= - s 2ap } e e

as soon as | eV,
Next we remark that T is 1-1; this is an immediate consequence
of the facts that (L)(‘i‘l’f) = % , for EGM, and that each %T is

continuous,
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Our next task is to show that T is continuous. Suppose
this were not the case at a point X, = ?o‘t € MT . Then there are

points x = %nfezvrc and an & > O such that

o= <% - il 2o

for all n. We assert that for every ‘}/e G there are a d,>0 and a

neighborhood Ui of [ in G such that, for all but finitely many X

"(,ﬁ)xo* (X)xn“? ()‘/ for all )(.eU/ .

Assuming for the moment the validity of this assertion, we proceed
in the following manner, Cover G by finitely many U), , say by
UJ, ,..,,U[ . Let J = min(J Jd, ). Then all but finitely many

Yo

xnlwill sa%isfy

“ (X)xo-(X)xn" >J for all ) e G.

Integrating the square of this expression over G, we obtain that
l " xo—xnﬂ; J for almost all X which is absurd. ’

In order to prove the assertion we assume it to be false. Then
for some ,oe G there exists a sequence J/H—-)[ such that, for each

n, 1

| <y o=, - (Xn’xk”? a

for infinitely many x

that

Select a subsequence { Xy } of {Xk} such

n
” (Xn)xo - (/n)xkn " < %
for all n. As (/n)xo—-)()’o)xo, it follows that (Xn)xk_» (/o)xo, i.e,
n

(%k)/n-_) (%o) )/o'

k'

Now Inﬁ. ()/0 implies that J/n_£—> [ohl, and we find

;kn“_” ?o N

£

contradicting the faect that " ‘fn-— %o “ 2> &€ for all n.



If /e(h then , is a unitary operator in LZ(G’HO)’ by prop., 1.
It is quite straightforwardly verified that

}'M‘C =-t“1)(1:;

hence (G,M) can be linearized in LZ(G,HO) by means of the embedding T .
Finally let H be the Hilbert subspace of LZ(G’HO) spanned by M.

As H contains a dense subset of power #7. )T the weight of H is at

most 7. f¢ . Each J’ sends H into itself as it sends Mt into itself,

Hence G is linearized by the unitary operators /1 H in H,

Remark 1. It follows from the proof of theorem 1 that the topology
-
J

71 induced in MT by L (G,H ) coincides with the weak topology 9

induced in MT by the product topology of H (or of M )

The fact thdt q; < 6—2 follows from the continuity of T :
llx~y" < & as soon as (l)y belongs to a small enough neighborhood
of (u)x.

The fact that 7; [~ W}iis implied by the continuity of ‘t_l.
For the continuity of T’l is equivalent to the continuity of the
map x —» (L)% on M<T ; as (/)x = ((b)x)/ , and as each J/eG is a con-
tinuous (even a topological) map M—M, it follows that each ''pro-
jection map" x-—+(/)x is continuous. And 7; is the weakest topology

with this property.

Remark 2, As soon as one knows that 9 = 9 _ on MT , the theorem

1 2
also follows from [2] 8 9 prop. 3.

3. Locally compact groups

The main difficulty in the case of a locally compact G that is
not compact lies in the fact that a eontinuous function G- H need
not be integrable. In particular, if ?eMcH the function x such
that (])x = (%)/ for )’eG‘ although continuous and hence measurable,
need not belong to L (G,H). Consequently the imbedding map T used in
the proof of theorem 1 will not be a fopologlcal map M->L (G,H) (it

remains, however, a topological map M—+I{)
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In order to meet this difficulty we change T through the use of a

scalar "weight function' f; (%)t will then be the x:elé(G,H) with
(Px = ([)f.(g)] , for y€G.

Definition 2, A weight function on a locally compact group G is a con~-

tinuous real-valued function f on G with the following properties:
1) (L =1, (/)f Z0 for all )’é G;

(ii) ()/)f.(J)fs ()/J)f , for all ), J e G;

(iii) f is square-integrable on G;
(iv) there exists a sequence {G } of compact subsets of G such
n
that
2
f l (/)fl dy——» 0.
G‘\Gh

Remark, If G is also o ~compact, condition (iv) is a consequence of

the other ones,

Definition 3, A locally compact group G is said to belong to the class

W (is a W-group) if there exists a weight function on G.

Proposition 2, Every compact group is a W-group. Every discrete count-

able free group is a W-group.

Proof.
I1f G is a'compact group, the function that is'identically 1 is a
weight function. For countable free groups the assertion follows from

[2] § 11 lemma 1.

Proposition 3. The additive group E of all real numbers, with the

usual topology, is a W-group.

Proof.

The function x-—;enlxl , XeE, is a weight function.

Definition 4. A topological group G belongs to the class HW (is an HW-

group) if it is the image of a W-group under a continuous homomorphism.,

Proposition 4. Every continuous homomorphic image and every subgroup

of an HW-group is an HW-group. Finite topological direct products of

HW-groups are HW-groups,
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Proof.
The first two assertions are evident. Now let Gl and G2 be HW-

groups. Let Fi be a W=group, fi a weight function on Fi’ and fi a

continuous homomorphism of Fi onto Gi (i=1,2). Then G, X0, is a

continuous homomorphism of le F2 onto qlx G2 (by definition,
= 0. 3 N
(?1,@2) c X0, ((Pla'l,q::z 2), for arbitrary (q:l,goz) €F X Fz), and

a weight function f on le F2 is defined by

(‘?1"Pz)f = (<pl)f1.((p2)f2 )

for arbitrary (@1,?2)6 le F2.
Corollary. Every countable discrete group is an HW-group.
Proof.,

Follows from the second assertion of prop.2 and the first as-

sertion of prop.4.

In fact, more can be said:

Proposition 5, Every countable discrete group is a W=-group.

Proof.
Let G be an arbitrary countable discrete group. Let ¢ be a
homomorphism of a countable free group F onto G.
In [2] g8 11 lemma 1 a weight function fo is constructed for F
with the additional property that (?)fo = 27" for some natural mem-
ber n, for each ¢ €¢F that is not the unit of F, Consequently, if

for /eG we put
(/)f = sup {(W)fo i Qe (/)Url },
then also

(/)f = max {(v)fo i g e(,)ﬁ’l .

Hence if )’1,]2 € G, there are ¢, ,p,€F such that ¢, & =/i and
(f;)f = (?i)fo (i=1,2); it follows that

‘ (YL 5 = @E (@ IE < @ P)f < (f ) )L,
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as (?1?2)f = (?15)0(?253 = /1 /2. Moreover

> pn? <Y eyt oo .
/eG QerF

Hence f is a weight function for G.

Proposition 6, Every locally compact, compactly generated Abelian

group G is a W-group.

Proof.

G is topologically isomorphic to a direct product E" x fanF,
where n and m are non-negative integers, Z is the infinite cyclic
group and F is a compact group (cf. e.g. [10] theorem 9.8). Now use
propositions 2,3,4,5,

Once again this proposition can be strengthened (see prop.8).

In order to do so we need:

Proposition 7. Let G be a topological group., If G contains a com=-

pact normal subgroup GO such that the factor group G/Go is discrete

and countable, G is a W-group.

Proof,

Let fo be a weight function for G/Go' We define, for /e(}
£ = (fGx .

Then (f)f # O for all JVeG; (¢)Ff = 1; and, for arbitrary , € G:
1’42

/)f ([2) = (}’IG E3 (j’zG e €
(/1(}0' /2Go)fo = (1}11 /2“'

As f is constant on ccsets and as every coset is open, f is
continuous, Moreover, the distinct cosets partition G in countably
many measurable sets; therefore

{((,}’)f)zd/ > f(()’)f)zd{ -

AEG/G

> i< o .
(o]

A€ G/G
(o]

it
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Propositicn 8. Every separable locally compact abelian group G is a

W=group.
Proof,

G is isomorphic to a direset product E" X G', where G' is a group
containing a compact subgroup Go such that G'/Gb is discrete (see
[éo] pag.l10). As G is separable, G'/Gb must be countable, Now use

propositions 3,7 and 4.
The main result of this section is the following

Theorem 2., Let G be a topclogical transformation group acting on a
metrizable space M of weight 72 , If G is an HW-group, then G can be
linearized by a group of bounded linear operators in a Hilbert space

H of weight #1. koo

Proof,

Let F be a W-group, f a weight function on ¥, and s a continuous
homomorphism of F onto G, As in the proof of theorem 1 we suppose M
to be imbedded topologically in a suitable Hilbert space Ho' We need
more precision then in the proof of theorem 1, however, and must as-
sume M to be imbedded in H0 as a bounded sel; say Mc:S«:HO, where S
is the unit sphere in Ho' (This is always possible; it follows from
the proofs in [19] , but also from the following consideration. If we
first only assume Mc:Hoy then we can imbed M topologically in the unit
sphere of the Hilbert sum HOGBEl by means of 'inverse stereographic

1

projection" with the ''north pole" (0,1) "as the center of projection).

If ?eM, we put %T;: erOF with
(¢Ix = ((P)f,(?)(wr),

for arbitrary ¢e F, As o' is a continuous map F—» G, and as %~—9(%)/
(? fixed in M) is a continuous map M—» M, the map @-a~(?)(¢¢r) is a
continuous map of F into the bounded subset M of Ho' On the other
hand, f is square integrable. 1t follows thsat xeaLz(F,Ho). Hence ©
maps M into LZ(FﬂHO).

Llearly ¥ is 1-1; for each %r is continuous, and if & is the
unit element of F, then (é}(gt} = (ﬁ}f.(;)(&r) = (?)L =? . We will

prove that T is topclogical. The proof is mcdelled after the proof
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of theorem 1.

First we show that T is continuous, Take any xe MT, say x = %r,
and any J> 0. If yeMv , say y =M% , then

2 2 _ 9
s |2 = Jjo* . [pesor - pien |%ae.
Let {Fn} be a sequence of compact subsets of F such that

2d(p——> o

F\F ,(q’)f
n

and let no be a natural number such that

/

FN\F
n
o]

2 5
((P)f‘ de < 16 *

As McS, we have

| - oo |

% (" (53‘9"'“ +" (’q)(pa'")zs 4;

hence

2

| =] stj |@2]? . | eor-m oo |Pag+ & .
’ n
o

For each @eF there exist a meighborhood U  of ¢o in G and a

neighborhood V‘P of ? in M such that

| 5 (p-eppf< J.ca fl((p)f,zdgo)_%:
F

for all /eU‘P and vleV'(p . The compact set Fn

may be covered by
finitely many of the sets (U(.P)O‘_l, say by U‘P od'ml,,.,..,U(P“‘_l; put
V=V n ,..n V_ , Then 1 n

(Pl <Pn

[ l(tp)flz ” ($) (o) - ('q).(;pr) “ 2ap < %2-
F

n
o]

for all meV. It follows that ” X=y “<r)' for all y =mtT with eV,

- Next we show that T — is continuous. Suppose this where not
the case at the point x

%'c‘ . Then there must exist a seguence of
points 'Ylne M and a J> O such that for all n
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| §7-n,T “<}£ S EEN L

We assert that for each )/66} there exist a J, > O and a neighborhood

U, of , in G such that, for all but finitely many n:

”(f),ﬁ-(nn)x ”@ JJ, for all X eU//.

This assertion is proved in exactly the same way as in the proof
of theorem 1.

Let n be a natural number such that /I (cp)flzdcp # 0. The com-
pact set Fn may be covered by finitely n many sets U o , say

-1 ~1 :
byUly 90.09U o . Let a’nzmzl-n(a.‘l?o--pc:}, )-
m

all klwe have tha%
|§ go-ap oo |*» 7, zor a11 ger, .

Then for almost

It follows that

.i,z_>"§~c_qk~r”2> f](cp)flz. (3)(<po-)—<nk)<cpo-)|[zd<p>

F
n

?an [,((y)flzd((’o
n

for almost all k, which is absurd.

Thus T is indeed a topological imbedding of M into LZ(F,HO). We
shall now exhibit the linear operators in L, (F,Ho) by which the /eG
are linearized.

. A . F

If P, e F and xe LZ(F,HO), then (x) ?, will denote the yeHo

with

2 2 S
@y = ((Poq’)f ((PO(P)X..

By def. 2, (ii), we have

@y | « copn™ . | o @]

’ A
it follows thi.t yeLZ(F,HO). Clearly ?, : LZ(F,HO)—->L2(F,HO) is

linear: and (po is also bounded, in fact
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H ?o “ € (((Po)f)—l"

S A A
We remark that (po (?1 = Cpo @l; i.e, P—@ is an isomorphism of F into

the group of all invertible bounded linear operators in LZ(F’HO)'

Assertion: if ]@G, then
Fa) -1 T
¢ lMT=T }l )

for each ¢ _ € F such that ¢ 6‘=[.
o o
Indeed, let cgm*:é/, %e M, and let ¢ be an arbitrary element of
F. Then

A @)1
@(§536) = -@3:—@- L PP GO =

- ?;;‘%f—f- C (@@ §) (g o) =
o]

(ff)fn(ﬁ)((g?o@’)(@@’)) = (?)f.(§j’)(§9@") =

(v)(g[‘f).

Finally we take for H the Hilbert subspace of LZ(F’HO) spanned
A
by MT . As each ¢, p&F, sends MT into itself, it also sends H into
itself, Hence all Cﬁ?gH, (f@F are bounded linear operators in H, The
weight of H obviously does not exceed 7% ,}5\0, where ## is the weight

of M,

Remark 1, It once again follows from the proof that on M% the topo-

logy induced by L2 (F,HO) coincides with the weak topology.

A —
Remark 2. We saw in the proof of theorem 2 that Htf ”é((&p)f) L. Now
if F is a topological transformation group acting on a Hilbert space
H and consisting of bounded linear operators in H, the real-valued

function f on F, defined by
. , -1

satisfies conditions (i) and (ii) of definition 2. Moreover, f is
lower semicontinuous. For let ¢ € F and € >0 be chosen arbitrarily.

Let x_e H such that I (xo)@oﬂ > TI 9, "-— —2'7‘1 , “xo ”: 1. Let U be a
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neighborhood of (po such that " (xo)s? - (Xo) (gollg €2 for all oel.
RUNSBL

for all pe U.
Hence if F is also locally compact, f is Haar-measurable, If

Then

2

(xo>¢'~'u;"” <5§b) N ERZR gcpo ” -€,

moreover F is ¢ -compact, all conditions for a weight function will
be satisfied by f as soon as
| e o
P el
Even if this is not the case, it may still well be that the con-
dition that a transformation group G be a HW-group is not only suf-

ficient but also necessary in order that G admits linearization in

Hilbert space. For the moment: this remains an open problem.

As was mentioned already in the introduction, theorem 1 follows
at once from theorem 2 (cf, proposition 2). The same holds for part of
[2] 8§ 11 theorem 3, stating that every countable group of autohomeo-
morphisms of a meﬁrizable space admits linearization. Moreover,

theorem 2 together with prop.8 gives us:

Corollary. Let G be a separable locally compact abelian transformation
group acting on a metrizable space M of weight 22 . Then (G,M) can be
linearized by a group of bounded linear operators in a Hilbert space

H of weight '}to'

4, Linearization of semigroups of continuous mappings

In the proof of theorem 2 the left invariance of the Haar inte-
~ -1
gral was only used in showing that " ¢ "$ ((@)f) =, for @eF, and
clearly it would suffice for this purpose to have a left weakly sub-

invariant integral on G, i.e, an integral such that

. [(J/o[)f d}/s £(j/)f d[

G
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for all integrable nonnegative f and for all /g,

Another property of the Haar integral, namely the fact that the
integral cof a nonnegative integrable function which differs from zero
on an open set is always different from zero, was also used in an es-
sential way (a.o. in proving that the imbedding map T is 1-1).

We did not use the existence of inverses in G except in showing
that the bounded linear opef?tOf $ igf%%yertible (for this is shown
by exhibiting an inverse: ¢ ¢ = ¢ "¢ = 1I). Hence if we do not
ask for linearization by invertible operators, we may also start with

a semigroup G of transformations.

Definition 5. A topological semigroup G of transformations of a to-

pological space X is called a topological transformation semigroup if

it contains the identity transformation of X as its unit and if the

map

(x,)) — )}

is a continuous map X x G=3 X,

Definition 6. A weak integral on a locally compact semigroup G is an

integral on G which is left weakly subinvariant:
Gf ()/O/)f dfs G_/()/)f af

for all integrable nonnegative f and all ioe'G’ and which has the
property that the integral of a nonnegative integrable function which

differs from zero on an open set is itself non-zero.

Definition 7. A topological semigroup G is said to belong to the class

WW (is a WW-semigroup) if there exists a weak integral on G and a con-
tinuous real-~valued function f satisfying conditions (i)-(iv) of de-
finition 2 with regard to this integral.

A topological semigroup belongs to the class HWW (is an HWW-semigroup)

if it is the image of a WW-semigroup under a continuous homomorphism,
The proof of theorem 2 can immediately be adapted to show:

Theorem 3. Let G be a topological transformation semigroup acting on a

metrizable space of weight #2, If G is an HWW-semigroup, then G can be
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linearized by 3 semigroup of bounded linear operators in a Hilbert

space H of weight ﬁmnffgq

Topological semigroups with a weak integral are rarely met (at
least if they are not groups). They do however exist; examples are

all discrete countable semigroups G, with

{({)f af = }Z;G (D1

Hence we have (cf, [2] g 11 theorem 3):

Corollary. Every countable system of continuous maps of a metrizable
space M can be linearized by bounded linear operators in a Hilbert

space H of weight ){geweight M.

5. Remarks on universal linearization

It follows from the proof of theorem 2 that the following

theorem is valid:

Theorem 4. Let F be a W-group and let #7 be a transfinite cardinal
number., There exists a Hilbert space H and an isomorphism @-ad? of

F onto a subgroup ﬁ of the group of invertible bounded linear oper-
ators in H, with the following property. If M is any metrizable space
of weight &« ## , and if G is any topological transformation group
acting on M such that the topological group G is a continuous homo-

~
morphic image of F, then (G,M) can be linearized by (F,H).
Similarly we have

Theorem 4'. Let F be a WW-semigroup, and let 722 be a transfinite car-
dinal number. There exists a Hilberi space H and an isomorphism
@-*-$ of F onto a subsemigroup § of the semigroup of all bounded
linear:s operators in H, with the following property. If M is any
metrizable space of weight € ##, and if G is any topological trans-
formation semigroup acting on M such that the topological semigroup
G is a continuous homomorphic image of F, then (G,M) admits linear-

A
ization by (F,H).
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Corollary 1. (cf. [2] 8§ 11 theorem 3). Let 72 be a transfinite cardinal,

and let H be a Hilbert space of weight 77 . Then there exists a (free)
countable group G of invertible bounded linear operators in H (a (free)
countable semigroup of bounded linear operators in H) that is universal
for all countable groups of autohomeomorphisms (semigroups of continuous

self-maps) of metrizable spaces of weight ¢ #7z .
In particular:

Corollary 2 (cf. [5] ). Let H be a Hilbert space of transfinite weight
74 . There exists an invertible bounded linear operator é in H (a
bounded linear operator qV in H) that is universal for all autohomeomor~
phisms (for all continuous self-maps) of metrizable spaces of weight

'sml

As remarked in the proof of prop.6, every locally compact compactly
generated abelian group G is topologically isomorphic to a direct pro-
duct E%x an F, The integers n,m and the type of F are invariants of G:
if G is also topologically isomorphic to En'x Zm'x F', then n=n', m=m'

and F is topologically isomorphic to F'(cf. [io] theorem (9,13)).

Corollary 3. Let n be a nonnegative integer, 72 a transfinite cardinal

number and F a compact group. There exists a group G of invertible
bounded linear operators in some Hilbert space H which is a universal
linearization for the class of all those topological transformation
groups G0 such that Gb acts on a metrizable space of weight ¢ »2 while
the group G is topologically isomorphic to a direct product

E °x H xFo, with nos:n, H discrete countable, and FO and continuous

homomorphic image of F,

Proof.
A
Let G = H, where H is the topological direct product of En, F
A
and a free group with }fo generators, and where H consists of the
A

maps X ’ x € H, constructed as in the proof of theorem 2.

Remark, If F is a W-group and G a continuous homomorphic image of F,
A
each )A,eG can be linearized by a ¢, ¢eF. A "dual result” would be

something of the following sort: let G be a topological transformation
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group, and suppose G is a subgroup of a W-group F such that the re-
striction of the integral in F to G is non=trivial, (Then G is itself
a W-group, by means of the restriction to it of a weight function on
F). Then each transformation Ie G can be lifted to a (’p\ » PEF.

We do not know whether this is true. Possibly some conditions
should be imposed on the space on which G acts. In any case we men-
tion the following,

The map ¥ such that (x)¥ = le, for x'sIQ(F,H), is evidently a
2?unded linear operator of LZ(F,H) onto LZ(G,H). If /tiG, let
, : L2(G,H)—9-L2(G,H) be defined as in the proof of theorem 2; if
@ e F, we denote momenE?rily the corresponding linear operator
L, (F,H) — L, (F,H) by o . Then for each f€ G the diagram

A
LZ(F,H) —-—,—-—> LZ(F,H)
y A vi
LZ(G,H) ._ml;__ﬁ; L2(G,H)

A

is commutative. That is, each [ s /e(L may be lifted to a transform-
Fa
ation in F,

6, Linear imbedding

The same basis idea underlying the proofs of theorems 1 and 2 -
2
to make use of the orbits (x,x¢ ,x¢ ,...,x(pn,...) as points of a
new space - has been applied by G.-C.Rota ([i6] , [17] ; cf. also

[18]) in order to obtain universal operators in Hilbert space.

Definition 8, A semigroup G of bounded linear operators in a Hilbert

space H is said to be universal for a class K of semigroups G' of

bounded linear operators in Hilbert spaces H', if for every (G',H')
in K there exists an invertible bounded linear operator T mapping H'
onto a closed linear subspace of H in such a way that the action of
G on H'T is équivalent to the action of,G' on H', More precisely,’ -
H't ;é invariant under every )’6G, and if G{H'C is the semigroup of

all J|HE'T, f€G, then



~22=

-1
HH“:-——> 'B(HH'T)'G
is an isomorphism of G’H’T onto G',
A group G of invertible bounded linear operators in a Hilbert
space H is defined to be universal for a class K of such groups in

a similar way.

In the'terminology of G,~-C. Rota, G would be called a universal

model for all G'e K,

Theorem 5, Let H be a Hilbert space of infinite weight ## ., There
exists a semigroup S of bounded linear operators in H that is universal
for the class of all countable semigroups G' of bounded linear oper-
ators in a Hilbert space H' of weight €# .that are uniformly bounded
in the operator norm (i.e. there exists a real constant ¢ such that

Iy

possible to choose S in such a way that the abstract Semigroup 8 is

1
€ ¢ for all [ € G') and contain the identity operator. It is

a free semigroup-with-unit with )fo generators.,

Proof,

Let F be a free semigroup~with-unit with )f; generators, and let
f be a weight function on the discrete group F. Let Ho be a Hilbert
space of weight #2 ; let H = H0 for each @€ F, and let H be the Hil-

¢
bert sum
H= @ =H
GeEF ¢’
H is again a Hilbert space of weight #z¢ . If (p eF, c? will be the
bounded linear operator in H such that, for x = (x )?ej?efi(each
’ A
X(Pe HO), X@, =Y, where
(e
*x .
Yo = To 9% ‘PO<P
(£ -1 ' 2 2 2
as ~BL . (gD “ TR
(ﬂﬁhﬁ o @eF @eF "

A . —

?, is indeed a bounded linear operator in H (with norm g ((?o)f) 1)
It is immediately verified that the map ¢-—b$ is an isomorphism of
F into’the semigroup of all bounded linear operators in H, Let S be

its image.
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Now let H' be any Hilbert space of weight¢#sz and let G' be any
countable semigroup of bounded linear operators in H', such that
"!'lls ¢ for all /'e G and a suitable real c¢. We may assume with-
out loss of generality that H' is a Hilbert subspace of Ho'

Let ¢ be any homomorphism of F onto G', sending the identity
€ of F into the identity operator ¢ in G', If 5 € H' we put
Ef:stwﬁm

¢

The point x indeed belongs to H, as
%F “ X‘Puz =“. EFI,((PMJZ' ﬂ‘(‘z’)(?ﬁ‘) "26
< |y "‘2:02. > @< oo .

goeF

x, = @) (pE).

Moreover, € 1is a linear operator H'—p H, and ¥ is bounded; in fact
|-

| ¢ 20 > [wz)®.
pe F

As "'(?'"t:)£ = (é)f.(%)(écr) =§,’€ is 1-1; and "c—1 is bounded, as

”?" RN GEROICY g U

Consequently € is a linear homeomorphism, so H't is complete and
thus a closed linear subspace of H.
As was the case in the proof of theorem 3 one easily verifies

that R 1
| He =% (th;

all assertions of the theorem now readily follow.

If one considers semigroups G' with a certain finite number of
generators, one can take for S a free semigroup with the same number
of generators, In particular, considering semigroups G' generated by
one bounded linear operator:

&
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Corollary. Let#z be any transfinite cardinal number, There exists a
bounded linear operator U in Hilbert space of weight 7# that is uni-
versal for all bounded linear operators T in a Hilbert space of weight
£ 72 such that the norms of the iterates ™ are uniformly bounded
(l‘Tn u € ¢, n=1,2,..., for some real constant c¢). (Hence in any case

U is universal for all T with uTﬂ £ 1;cf.l}6] ).

The free semigroup-with-unit S with one generator may be identi-
fied with the additive semigroup of all natural numbers, If a is any

real number > 1, (n)f = a—n is a weight function on S. It follows that

U can be choosen in such a way that‘lU ls a, I.e., for each £ >0 there

exists a universal operator U of norm ¢ 1+ & .

Both the hypothesis that G' is uniformly bounded and the use of
a weight function serve to obtain that %I’eH for all EeH'. If G' is

such that there exists a homomorphism & of F onto G' with the proper-
v > e |*<o
@eF

then no other hypothesis on G' is needed, and weight functions are

superfluous: just put it'z X, where

X(P = (%)(P ’
A
and let @0, @oe.F, be the bounded linear operator in H such that
A

X(Po = y, where
y, =X .
2 N

In the case of semigroups G' generated by one bounded linear

operator T, this means that we want that
20 2
> ™ |P<oo .
n=1

The latter is certainly the case if T has spectral radius € 1: see
[17] p.470, In this way G.-C. Rota obtained the following result,
which is stronger than the above corollary ([i7] theorem 1):

Theorem. There exists a bounded linear operator U of norm 1 in
Hilbert space of weight #7 that is universal for all bounded linear
operators T in a Hilbert space of weight ## that have spectral radius

<1,
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A result similar to theorem 7 is valid for linear homeomorphisms;

the proof is a copy of the proof of theorem 7.

Theorem 5'. Let H be a Hilbert space of infinite weight ## . There
exists a group F of linear autohomeomorphisms (invertible bounded
linear operators) of H that is universal for the class of all count-
able groups G' of invertible bounded linear operators in a Hilbert
space H' of weight € 7# that are uniformly bounded in the operator
norm, It is possible to choose G in such a way that the abstract group

G is a free group with ffo generators,

If one restricts oneself to groups G' with a certain finite num-
ber of generators, then G can be taken to be a free group with that

same number of generators. In particular:

Corollary. Let ## be any transfinite cardinal number. There exists a
linear homeomorphism U in Hilbert space of weight #2 that is universal
for all invertible bounded linear operators T in a Hilbert space of

weight £ 72 such that the norms of the iterates Tn are uniformly bounded,

The universal operator U can again be chosen such that "U"<1+£ .

Moreover, a stronger result can be proved:

Proposition 9, There exists a linear homeomorphism U (of norm 1).in

Hilbert space of weight 72 that is universal for all invertible bounded
linear operators T in a Hilbert space of weight €72 that have spectral

radius <1,

The proof is similar to Rota's proof of [17] theorem 1, as indi-
+00

cated above, except that one uses a Hilbert sum n€B Hn’ while % is
==00

mapped on the full orbit

(.....,fT'?‘,‘fT”l,%,}'T,...)
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