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equivalent either to the group of all rotations around an axis or to 

the group of all proper orth~gonal transformations. 

In these theorems groups of transformations of E
3 

are linearized 

in the same space. In general this will not be possible, as can be 

seen from examples of R.H. Bing [3] and of D. Montgomery - L. Zippin 

[12 J (cf. also [ 5 J ) . R.H. Bing constructed a "wild reflection", an 

involutory homeomorphism of s3 
with a wildly imbedded plane as set 

of fixed points. D. Montgomery and L. Zippin modified Bing's example 

and obtained a "wild rotation", a sense-preserving involution of E
3 

having a wildly imbedded topological line as fixed point set. Such 

homeomorphisms clearly can only be linearized - if they admit linear

ization at all - in a higher-dimensional En. 

They can indeed be linearized, In 1957 G.D. Mostow showed: 

Theorem [14]. Let G be a compact Lie group operating faithfully on 

a separable finite-dimensional metrizable space M. Assume G has only 

a finite number of inequivalent orbits in M. Then G can be linear

ized by unitary transformations of a euclidean space En. 

Theorem [15]. Let G be a compact Lie group of homeomorphisms of a 

compact manifold M. Then G can be linearized by orthogonal transform
n 

ations of a euclidean space E. 

In the case of homeomorphisms of finite prime order of a finite

dimensional separable metrizable space 9 the minimal dimension of a 

euclidean space in which Hnearization is always possible has been 

determined by A.H. Copeland Jr. and J. de Groot [5]. Their results 

were extended to the case of com.pact abelian Lie groups with a finite 

number of distinct isotropy subgroups by J.M. Kister and L.N. Mann 

[11]. 

All these theorems concern linearization in finite-dimensional 

euclidean spaces. J. de Groot [s] and A.H. Copeland Jr. and J. de 

Groot [ 4 J 9 [ 5] set off in another direction: they studied the pos-

si bi'li ty of linearization by bounded linear opera tors in Hi 1 bert 

space. In [ 5 J they proved: 
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Theorem. There exists a bounded linear automorphism I of separable 

Hilbert space H with the following property: if Mis any separable 

metrizable space, and if cp is any autohomeomorphism of M, then (M,'(J) 

admits a linearization by (M, ~). 

This result was extended by J. de Groot in the following way 

(cf. [ 2 J ) . 
Theorem. There exists a free groupr of bounded linear operators 

in a separable Hilbert space H with the following property: if M 

is any separable metrizable space 11 and if G is any denumerable 

group of autohomeomorphisms of M9 then (M,G) can be linearized by 

(H 11 P). 

In these theorems, the separability assumption can be removed. 

Moreover 9 similar results have been obtained for countable semi

groups of continuous maps; see [2] section 11. 

Theorem 1 is best compared with the last two theorems mentioned. 

There are some important d:ifferences. 

In the first place the transformation groups in the last two 

theorems need not be compact; consider e.g. the group generated by 

one autohomeomorphism of infinite order. They are, of course, local

ly compact (considered as discrete groups). It would be nice if a 

theorem could be obtained to the extend that all locally compact 

groups of autohomeomorphisms of some metrizable space are linear

izable, or in any case all separable locally compact groups. (For 

this class of groups a result somewhat comparable to the theorem of 

Eilenberg mentioned above, though weaker, is contained in J. de Groot 

[1]: 

Theorem. Let G be a locally compact a- -compact transformation group 

acting on a metrizable space M. Then M can be metrized in such a 

way that G acts uniformly on M, i.e. every {E- G is uniformly con

tinuous on M .) 



We do not have such a theorem 9 a3 yet; but in section 3 of this 

note a sufficient cond:i ticn :is given for a locally compact transform

ation group in order that it can be linearized 9 and this condition is 

met both in the case of a countable discrete group and in the case of 

compact groups; moreover, it is satisfied also by all Abelian separable 

locally compact groups. 

Secondly it should be remarked that in the case of countable 

groups one obtains universal linearizat:ion (cf.§ 4). This universality 

was also obtained in another case, by means of the same construction 

(but independently), by G.-c. Rota [ 16] , [ 17 J . Where A.H. Copeland 

Jr. and J. de Groot linearized arbi. trary au tohomeomorphi smscp of 

metrizable spaces by a universal bounded operator tin Hilbert space 

H, through a suitable 9 presumably very "crooked" imbedding of Min H, 

G.-C. Rota started with bounded operators in a Hilbert space and 

showed that each such an operator with spectral radius < 1 is equi

valent to a restriction to a suitable closed linear subspace of a 

Hilbert space H of a universal bounded operator in H, by means of a 

linear imbedding. We will say more about this in section 6. 

For the sake of completeness we mention the fact that one can 

also consider l:inearization in topological linear spaces that are 

even more general then Hilbert space. In fact, if one admits such 

locally convex linear spaces as are obtained through forming the full 

direct product of an infinite number of cop:ies of the real line, then 

every group of homeomorphisms of an arbitrary completely regular 

space can be linearized 9 and there ex.ist universal linearizations 

(J. de Groot [9 J ; see also [ 2] ) . 

We want to make some remarks concerning the ideas underlying 

the proof of theorem. 1 • These ideas are essentially the same as 

those expounded in [2]; they are inspired by the concept of the 

graph of a mapping. 

Let f be a continuous mapping of a topological space X into a 

topological space Y. As .i.s well~known 9 the graph r of f 9 considered ,. 

as a subspace of the topologieal product X lC Y 9 is homeomorphic to X. 

Consequently the quite 8.rbi trary mapping f turns out to be topolo-
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gically equivalent to the restr:i.ction to r of such a decent mapping as 

the canonical projection X ,c Y-+Y is (e,g, if X is a subspace of a 
n m euclidean space E and Ya subspace of E , then f is equivalent to a 

ti ti f j ti in En+m), res r c on o a linear map, a pro ec on, 

In particular, if f is a continuous map of a space X into itself, 

the graph may be used in order to linearize f by a mapping that sends 

one copy of X into another copy of X, However, it is our aim to linear

ize f by a map that again sends a suitable copy of X into itself. 

This objective is reached by considering not the graph, i.e. the 
2 n set of all pairs (x,fx), but the set of all orbits (x,fx,f x,, •• ,f x, •• ,). 

If f is an autohomeomorphism, and if one desires that the mapping by 

which f is linearized will again be 1-1 and onto, then one should take 
. . -2 -1 the 1!:11 orbits (.,,,£ x,f x,x,fx,,,,). And in case one wants to 

linearize a transformation group or semigroup o, one has to considu 

the orbits under o. Returning to the simplest case of one map f, it is 

clear that as a linearizing map one oan take the shift, the map send

ing the point (x
1

,x2 ,x3 , •• ,) onto (x2 ,x3 ,x4 , •• ,), as it transforms the 

oribt of x into the orbit of the point f(x), Formally this amounts to 

the same thing as the use of the graph to change f into a projection: 

one skips the fir-st coordinate. Of course the shift will only do, pro

vided one succee~ in choosing a suitable topology in the set 

Xx X l< X ,c • , • fill! X O of which all orb:i.ts are elements (if a (semi-) 

group G is considered, the orbits can be taken to be points of the set 
XO). 

2 Now in the oHe of the graph the product topology in X 1t X • X 
G turns out to be useful, Hence it is plausible that also in X the pro-

duct topology will suit our needs, The effects of this choice were 

explored in (2]. It indeed leads to several useful results; however, 

it is clear that this topology cannot be taken if linearization in 

Hilbert space is desired, For suppose X to be non-trivial and metriz• 

able; then the topological porudot x0 will be non•metrizable, hence 

non•imbeddable in any Hilbert space, ~e soon as G is uncountable. 

C 
This is where the hypothesis of compactness or locally compactm 

nets of G comes in. We exploit the fact that on such sroupsHaar 

m1uumre 11 Cl.efined, and consider, instead. of the "direct sum" x0 (or 
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HG, where H is a suit9.ble H:ilbert space into which the metrizable space 

Xis imbedded beforehand) the "direct integral" L2 (G,H). And this space, 

of course, :is a Hilbert space. 

The results of section 2 all follow immediately from those in 

section 3, Thus, the proofs in section 2 are, strictly speaking,super

fluous. They are nevertheless given, as they illustrate the methods 

used more clearly than the proofs in section 3, 

Except in this introduction we use the notation of [2] ; in par

ticular, the argument of a function will be written before the function 

symbol. 

2, Linearization of compact transformation groups 

If G is a locally compact group and His a Hilbert space, then 

L2 (G,H) denotes the Hilbert space of all square-integrable functions 

(square-integrable with regard to Haar measure) on Gwith values in H, 
G 

We want to consider L2 (G,H) as a subset of H ; that is, from 

every element of L2 (G,H), which is a class of equivalent functions, we 

choose one repre_sent:ing function, This is done - once for all - in a 

quite arbitrary manner, except that a continuous representing function 

is chosen whenever possi.ble. We will use the fact that every equi-

valence class contains at most one continuous function. 

Iff
0

6G, 
N 

Definition 1. then fo denotes the map L
2 

(G, H) ~ L
2 

(G, H) 
,v 

such that, for x € L2 (G,H) • (x) lo is the function y with 

( f e G). 

~ Proposition 1. For ea,ch f
0 

e G the map io is a uni tar! operator in 

L2 (G,H); if H is non-degenerate (dim H > 0), then f ~ f is an isomor

phism of G into the group of all unitary operators in L
2

(G,H). 

Proof: evident. 

Theorem 1. Let G be a compact transformation group acting on a metric 

space M of weight m . Then (G,M) can be linearized by unitary oper

ators i.n a Hilbert space H of weight -m. Jt . 
0 
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Proof. 

If H
0 

is any Hi.lbert space of weight m.,.>i-
0

, the space M can be im

bedded topologically in H
0 

(cf. [19]). 1'01· i::iimplicity's sake we will 

assume that Mis already a subspace of H. 
0 

If f E M, then l-c will denote the function x G~ H such that 

j(x) = <r>f , 

for all f ~ G. As G is a topological transformation group, each f't" is 

a continuous function; as G is compact, it follows that I-c e.L
2

(G,H
0

) •. 

We will prove that the map 't' : M-+L
2

(G,H
0

) is topological. 

First we show that 't is continuous. Let x6M,: and E>O; we must 

prove the existence of a neighborhood V of [ = (1.)x in M such that 

llx-y II< e as soon as y c; M-r and ( 1,)y E. v. 
For each f E. G, let U f be a neighborhood of f in G and Vf 

neighborhood of) in M such that 

!<Pf- <11>~11< ½ 
for all X 6 Ur • 114:, V f . For these X '11 one has 

II <pt- <-ri> j II< ll<z>,l - <z> d II + ll<P/ - <11>X II 
Cover G by finitely many Uf , say by u

11
, ... ,Ufn' and let 

V = V f /' . . . f\ VJ' n. Then 

II <PX - <YL>XII < t 

for '11. '- V n M and arbitrary X ~ G; i .e, if y = 11,i:-, 11. E. V ri M: 

Consequently 

< €. 

II i " - 'l" II = II x-d = [ l II< 1 ) x - < X l Y II 
2 

d 1 t < e 

as soon as 'Yl e V. 

a 

Next we remark that~ is 1-1; this is an immediate consequence 

of the facts that (L)('i1:') = 2, for ~ !iaM, and that each f,; is 

continuous, 
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Our next task is t:o show that 't'-l is continuous. Suppose 

this were not the case at a po:i.nt x = 'i "t ISM,; . Then there are o {o 

points xn = l n i: ,e M"t and an t ~ O such that 

for all n. We assert that for every f e G there are a Jf > 0 and a 

neighborhood ul of r in G such that, for all but finitely many xn' 

for all 

Assuming for the moment the validity of this assertion, we proceed 

in the following manner. Cover G by finitely many Uf, say by 

u! , ... 'u I . Let J' = min(J'f , ••. 'Jr ) . Then all but finitely many 

x 1will sa¥isfy 
1 

n n , 

for all / 6 G. 

Integrating the square of this expression over G, we obtain that 

II x -x ~ ~ i1 for almost all x , which is absurd. o nl n · 
In order to prove the assertion we assume it to be false. Then 

for some i 
O

E G there exists a sequence f ~ f such that, for each 

n, 

for infinitely many xk. Select a subsequence { xk } of { xk} such 

that 
n 

for all n. As <f n)x
0

~ ({
0

)x
0

, it follows that ({ n)xk~ (f
0

)x
0

, i.e. 
n 

r II v -1 V -1 Now n--:,.d 
O 

implies that On ---+-p
0 

, and we find 

contradicting the fact that II }n - }
0 

II ➔ € for all n. 
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,v 

If rE.G, then dis a unitary operator in L
2

(G,H
0
), by prop. 1. 

It is quite straightforwardly verified that 

hence (G,M) can be linearized in L
2

(G,H
0

) by means of the embedding T. 

Finally let H be the Hl.lbert subspace of L
2

(G,H
0

) spanned by M. 

As H contains a dense subset of power -flt• .X- , the weight of H is at 
U N 0 

most m .I'\ • Each Y sends H into itself as it sends M,: into itself. 
0 u N 

Hence G is linearized by the unitary operators r I H in H. 

Remark 1. It follows from the proof of theorem 1 that the topology 

fi induced in M-c by L
2 

(G,H
0

) coincides with the weak topology ~
2 

induced in MT by the product topology of HG (or of MG). 
0 

The fact that q-
1 

c:: o/
2 

follows from the continuity of 't' : 

jj x-y II < e. as soon as ( 1.)y belongs to a small enough neighborhood 

of (1,)x. 
r. -1 

The fact that :J 
2 

c: lf"
1 

is implied by the continuity of ,: 

For the conti.nui ty of ,:-l is equivalent to the continuity of the 

map x-+ ( t.)x on M't' ; as {f)x = (( t.)x) { , and as each f E. G is a con

tinuous (even a topological) map M-4M, it follows that each "pro

jection map" x-+ (f)x is continuous. And r; is the weakest topology 

with this property. 

Remark 2. As soon as one knows that q-'
1 

= r-
2 

on M"t' , the theorem 

also follows from [ 2] § 9 prop. 3. 

3. Locally compact groups 

The main difficulty in the case of a locally compact G that is 

not compact lies in the fact that a continuous function G---:1-H need 

not be integrable. In particular, if l E. Me H the function x such 

that <j)x = <pr 9 for fGG, although continuous and hence measurable, 

need not belong to L
2

(G,H). Consequently the imbedding map T used in 
;. e 

the proof of theorem 1 will not be a topological map M~L
2

(G,H) (it 

remains, however, a topological map M ➔ HG) • 
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In order to meet this difficulty we change '"C through the use of a 

scalar "weight function" f; <p-c will then be the x e L2 (G, H) with 

(j>x = <{)f.<pf 'for reo. 
Definition 2. A weight function on a locally compact group G is a con

tinuous real-valued function f on G with the following properties: 

(i) 

(ii) 

(iii) 

(iv) 

(t,)f = 1; </)f-/: 0 for all f e G; 

for all J , o 6 G; 

f is square-integrable on G; 

there exists a sequence f Gn} of compact subsets of G such 

that 

I 
G\G 

n 

Remark. If G is also er-compact, condition (iv) is a consequence of 

the other ones. 

Definition 3. A locally compact group G is said to belong to the class 

W (is a W-group) if there exists a weight function on G. 

Proposition 2. Every compact group is a W-group. Every discrete count

able free group is a W-group. 

Proof. 

If G is a compact group, the function that is identically 1 is a 

weight function. For countable free groups the assertion follows from 

[2] § 11 lemma 1. 

Proposition 3. The additive group E of all real numbers, with the 

usual topology, is a W-group. 

Proof. 

The function x ➔ e -j x I , x E. E, is a weight function. 

Definition 4. A topological group G belongs to the class HW (is an HW

group) if it is the image of a W-group under a continuous homomorphism. 

Proposition 4. Every continuous homomorphic image and every subgroup 

of an HW-group is an HW-group. Finite topological direct products of 

HW-groups are HW-groups. 
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Proof. 

The first two assertions are evident. Now let G1 and G2 be HW

groups. Let F. be a W=group, f. a weight function on F., and ~. a 
1 1 1 1 

continuous homomorphism of F. onto G. (i=l,2). Then ~1 x cr
2 

is a 
1 1 

continuous homomorphism of F1 X F2 onto G1 lC G2 (by definition, 

(cp
1 

,f 
2

) c; 
1 

x o-
2 

= ('f'
1

a-
1 

,<p
2

o-
2
), for arbitrary (<f

1 
,<p2) e F

1 
K F2), and 

a weight function f on F
1 

I< F2 is defined by 

Corollary. Every countable discrete group is an HW-group. 

Proof. 

Follows from the second assertion of prop,2 and the first as

sertion of prop,4. 

In fact, more can be said: 

Proposition 5, Every countable discrete group is a W-group. 

Proof. 

Let G be an·arbitrary countable discrete group. Let ill" be a 

homomorphism of a countable free group F onto G. 

In [2] § 11 lemma 1 a weight function f is constructed for F 
0 

with the additional property that (~)f = 2-n for some natural mem
o 

her n, for each q, 6 F that is not the unit of F. Consequently, if 

for {6 G we put 

({)f = sup {<~)f
0 

then also 

Hence if fl ,y 2 E:. G, there are <fl ,Cp 2 ES F such that <pi er = f i and 

<yi)f = (~i)f
0 

(i=l,2); it follows that 
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Hence f is a weight function for G. 

Proposition 6. Every locally compact, compactly generated Abelian 

group G is a W-group. 

Proof. 

G is topologically isomorphic to a direct product En x ,z!ll x F, 

where n and mare non-negative integers, Z is the infinite cyclic 

group and Fis a compact group (cf. e.g. [10] theorem 9.8). Now use 

propositions 2,3,4,5, 

Once again this proposition can be strengthened (see prop.8). 

In order to do so we need: 

Proposition 7. Let G be a topological group. If G contains a com

pact normal subgroup G such that the factor group GIG is discrete 
0 0 

and countable, G is a W-group, 

Proof. 

Let f
0 

be a weight function for GIG
0

• We define, for feG 

Then <j)f ,/; O for all ft:;G; (t.)f = 1; and, for arbitrary {l' / 2 eG: 

<¥ 1) f. <J' 2) = <f 1 Go) f o • ( I 2 Go) f o -' 

<f1°o· f2Go)fo = <f1 f2)f. 

As f is constant on ccsets and as every coset is open, f is 

continuous. Moreover, the distinct cosets partition Gin countably 

many measurable sets; therefore 

J «f)f) 2
df = L 

G A e GIG 
0 

=L 
A6 GIG 

0 

( (A)f ) 
2 < oo • 

0 



Proposi t.icn 8. Every separable locally compact abelian group G is a 

W-group, 

Proof. 
n 

G is Lsomorph:ic to a direr~t product E }( G' P where G' is a group 

containing a compact subgroup G 
0 

[20] pag.!10). As G i.s deparable, 

propositions 3, 7 and 4. 

such that G'/G is discrete (see 
0 

G'/G must be countable. Now use 
0 

The main result of this section is the following 

Theorem 2. Let G be a topological transformation group acting on a 

metrizable space M of weight 111. • If G is an HW-group, then G can be 

linearized by a group of bounded linear operators in a Hilbert space 

Hof weight m. k. 
0 

Proof, 

Let F be a W-group, f a weight function on F\ and IJ" a continuous 

homomorphism of F onto G. As in the proof of theorem 1 we suppose M 

to be imbedded topologically in a suitable Hilbert space H. We need 
0 

more precision then in the proof of theorem lp however, and must as-

sume M to be imbedded in H as a bounded set; say Mc S c: H , where S 
0 0 

is the unit sphere in H. (This is always possible; it follows from 
0 

the proofs in [19], but also from the following consideration. If we 

first only assume Mc H 9 then we 
0 1 

sphere of the Hilbert sum H ~ E 
0 

projection" with the "north pole" 
F 

If l 6 M, we put ~ "C = x <;. H 
0 

c:an imbed M topologically in the unit 

by means of " . inverse stereographic 

(0 9 1) ·as tbe center of projection). 

with 

('f')X = (Cf) f, (p ( <('1:) 9 

for arbitrary <p e F. As 11· is a continuous map F--,.. G 9 and as ) ~ (') / 

q fixed in M) is a continuous map M-.+ M9 the map cp-+ ( p ( 'f o-) is a 

continuous map of Finto the bounded subset M of H. On the other 
0 

hand, f is square integrable. It follows tha.t x E L
2 

(F ,H
0
). Hence ,: 

maps Minto L2 (F,H
0
). 

,Clearly "t" is 1-1; for each ~t." is conttnuous 1 and if f:. is the 

unit element of F, then (t:) q-e) = (€) f. <p (€>t:) = <}) (, =' . We will 

prove that,: is topological. The proof is mcdelled after the proof 
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of theorem 1~ 

First we show that "I;' is continuous. Take any XE: M,:- ' say X = rt:' 
and any d > 0 ~ If y E: Mi:- , say y = 'rt "C , then 

be a sequence of compact subsets of F such that 

J l<cp)fl2dcp~ 0 
F\F n 

and let n be a natural number such that 
0 

f 
F\. F 

n 
0 

As Mc: S, we have 

hence 

For each 

neighborhood Vcp 

cp E. F there exist a neighborhood U<f of <p<r in G and a 

of i in M such that 

ll<p<p-<-rz><r>ll< cJ.(4 f j<q,)fl 2
d<p)-½, 

F 

for all r GU,,, and 7l c,; Vm • The compact set F may be covered by 
T T -1 no -1 -1 

finitely many of the sets (Uci>)cr , say by Uro <r , ••• , U <r ; put 
T Tl <pn 

o o o n 

, II 2 ;,2 
(7t) ( <f' er) d<p < 4 

F 
n 

0 

for all 'It G V. It follows that II x-y II< cT for all y =7!'C with '1 & V. 
-1 

~ext we show that ~ is continuous. Suppose this where not 

the case at the point x = l~. Then there must exist a sequence of 

points 11n 1c. M and a d> 0 such that for all n 
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We assert that for each r E. G there exist a ;r, > 0 and a neighborhood 

Uf off in G such thatv for all but finitely many n: 

for all 

This assertion is proved in exactly the same way as in the proof 

of theorem 1. 

Let n be a natural number such that f 1 (rp)f l2 d<p -f- O. The com-

pact set F may be covered 
-1 n ·-1 

F -1 
by finitely n many sets U/ a- , say 

On= min('j
1

, ... ,1m). Then for almost by U j 
1 
o · , .. op U I <r • Let 

all k we have thai 

It follows that 

f I <,)f 1
2 

• 

F 
n 

for almost all k, which is absurd. 

Thus,; is :indeed a topological imbeddJng of M into L
2

(F,H
0
). We 

shall now exhibit the linear operators in L
2

(F,H
0

) by which the j'e.G 
are linearized. 

If 

with 

(cp) y = (f)f . (~ ~)x. 
(<p or:p)f o 

By def. 2, (ii), we have 

A 

it follows th!t yeL
2

(F,H
0
). Clearly cp

0
: L

2
(F,H

0
)-+L

2
(F,H

0
) is 

linear; and <p 
O 

i.s also bounded, in fact 
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~ A A 
We remark that q,

0 
q,1 = q,

0 
<p1 ; i.e. 'P ➔ 'P is an isomorphism of Finto 

the group of all invertible bounded linear operators in L
2

(F,H
0
). 

Assertion: if f €,G, then 

A I -1 
<po~ Mi; = i; t "t ' 

for each <p 
O

E. F such that <p
0 

fS' = f. 
Indeed, let lfO-= r, ! e M, and let Cf be an arbitrary element of 

F. Then 

= (f)f 
(fof)f 

= (q,)f 
Uf o <p) f 

= (<p)f.(P((<fo(y')(q,cr)) = (cp)f.(1f)(fJ:1") = 

= (q>)( ! f "t) • 

Finally we take for H the Hilbert subspace of L2 (F,H
0

) spanned 
A 

by M"t. As each<f,Cfl'-F, sends M"C into itself, it also sends H into 

itself. Hence all cp I H, <p E- F are bounded linear operators in H. The 

weight of H obviously does not exceed 11'& • ft , where m is the weight 
0 

of M, 

Remark 1. It once again follows from the proof that on M~ the topo

logy induced by L
2

(F,H
0

) coincides with the weak topology. 

Remark 2. We saw in the proof of theorem 2 thatllo/ ll~((f)f)-
1

• Now 

if Fis a topological transformation group acting on a Hilbert space 

Hand consisting of bounded linear operators in H, the real-valued 

function f on F, defined by 

satis£ies conditions (i) and (ii) of definition 2. Moreover, f is 

lower semi continuous. For let q, ,;. F and f > 0 be chosen arbitrarily. 

Let x
0

1<-H such that ll<x
0
)'f

0
1 > jjc,

0
II- ~, jjx

0 
II= 1. Let Ube a 
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neighborhood of <p 
O 

such that II (x
0

)rp - (x
0

) cp 
0
jj< f;2 for all ep E. U. 

Then 

for all 'f ~ U. 

Hence if Fis also locally compact, f is Haar-measurable. If 

moreover Fis o--compact, all conditions for a weight function will 

be satisfied by fas soon as 

f < 00 • 

F 

Even if this is not the case, it may still well be that the con

dition that a transformation group G be a HW-group is not only suf

ficient but also necessary in order that G admits linearization in 

Hilbert space. For the moment· this remains an open problem. 

As was mentioned already in the introduction, theorem 1 follows 

at once from theorem 2 (cf. proposition 2). The same holds for part of 

[2] § 11 theorem 3, stating that every countable group of autohomeo

morphisms of a metrizable space admits linearization. Moreover, 

theorem 2 together with prop.8 gives us: 

Corollary. Let G be a separable locally compact abelian transformation 

group acting on a metrizable space M of weight -m. Then (G,M) can be 

linearized by a group of bounded linear operators in a Hilbert space 

H of weight -m . }f • 
0 

4. Linearization of semigroups of continuous mappings 

In the proof of theorem 2 the left invariance of the Haar inte

gral was only used in showing that II ~ 11~ ( ( Cf ) f) -l, for <p E. F, and 

clearly it would suffice for this purpose to have a left weakly sub

invariant integral on G, i.e. an integral such that 

c, f Cfof)f df ~ fq>f d/ 
G G 
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for all integrable nonnegative f and for all y
0

• 

Another property of the Haar integral, namely the fact that the 

integral of a nonnegative integrable function which differs from zero 

on an open set is always different from zero, was also used in an es

sential way (a.o. in proving that the imbedding map "C' is 1-1). 

We did not use the existence of inverses in G except in showing 
A 

that the bounded linear opera tor <p 
A~ 

by exhibiting an inverse: <f <p = 

i~nvertible (for this is shown 
-1" <p cp = I). Hence if we do not 

ask for linearization by invertible operators, we may also start with 

a semigroup G of transformations. 

Definition 5, A topological semigroup G of transformations of a to

pological space Xis called a topological transformation semigroup if 

it contains the identity transformation of X as its unit and if the 

map 

is a continuous map X ~ G➔ X. 

Definition 6, A weak integral on a locally compact semigroup G is an 

integral on G which is left weakly subinvariant: 

f <j)f df 
G 

for all integrable nonnegative f and all f
0

G G, and which has the 

property that the integral of a nonnegative integrable function which 

differs from zero on an open set is itself non-zero, 

Definition 7. A topological semigroup G is said to belong to the class 

WW (is a WW-semigroup) if there exists a weak integral on G and a con

tinuous real-valued function f satisfying conditions (i)-(iv) of de

finition 2 with regard to this integral. 

A topological semigroup belongs to the class HWW (is an HWW-semigroup) 

if it i.s the image of a WW-semi group under a continuous homomorphism. 

The proof of theorem 2 can immediately be adapted to show: 

Theorem 3. Let G be a topological transformation semigroup acting on a 

metrizable space of weight m. If G is an HWW-semigroup, then G can be 
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linearized by a semigroup of bounded linear operators in a Hilbert 

space H of weight -m. ,Jf , 
0 

Topological semigroups with a weak integral are rarely met (at 

least if they are not groups). They do however exist; examples are 

all discrete cou.ntable semigroups G, with 

f cpr d( = 
G 

Hence we have (cf. [2] § 11 theorem 3): 

Corollary. Every countable system of continuous maps of a metrizable 

space M can be linearized by bounded linear operators in a Hilbert 

space Hof weight k •Weight (M). 
0 

5, Remarks on universal linearization 

It follows from the proof of theorem 2 that the following 

theorem is valid: 

Theorem 4. Let F be a W-group and let m be a transfinite cardinal 
/\ 

number. There exists a Hi.lbert space H and an isomorphism Cf'-?<{' of 
,A 

F onto a subgroup F of the group of invertible bounded linear oper-

ators in H, with the following property. If Mis any metrizable space 

of weight~ '1'n, and i.f G is any topological transformation group 

acting on M such that the topological group G is a continuous homo-

" morphic image of F, then (G,M) can be linearized by (F,H}. 

Similarly we have 

Theorem 4' • Let F be a WW-semi group, and let -m be a transfinite car

dinal number. There exists a Hilbert space Hand an isomorphism 
~ ~ 

<f-+ <p of F onto a subsemigroup F of the semi group of all bounded 

linear,,operators in H, wJth the following property. If Mis any 

metrizable space of weight ~ ffl, and if G is any topological trans

formation semi.group acting on M such that the topological semigroup 

G is a continuous homomorphic image of F, then (G,M} admits linear-,,. 
ization by (F ,H). 
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Corollary 1. (cf. [2] § 11 theorem 3). Let m be a transfinite cardinal, 

and let H be a Hilbert space of weight ffl. Then there exists a (free) 

countable group G of invertible bounded linear operators in H (a (free) 

countable semigroup of bounded linear operators in H) that is universal 

for all countable groups of autohomeomorphisms (semigroups of continuous 

self-maps) of metrizable spaces of weight $ m. 

In particular: 

Corollary 2 (cf. [5] ). Let H be a Hilbert space of transfinite weight 

m. There exists an invertible bounded linear operator~ in H (a 

bounded linear operator 'f' in H) that is universal for all autohomeomor

phisms (for all continuous self-maps) of metrizable spaces of weight 

As remarked in the proof of prop,6, every locally compact compactly 

generated abelian group G is topologically isomorphic to a direct pro

duct En x Zn x F. The integers n,m and the type of F are invariants of G: 
n' m' 

if G is also topologically isomorphic to E x Z x F', then n=n', m:::;m' 

and Fis topologically isomorphic to F 1 (cf. [10] theorem (9.13)). 

Corollary 3, Let n be a nonne~ative integer, m a transfinite cardinal 

number and Fa compact group. There exists a group G of invertible 

bounded linear operators·in some Hilbert space H which is a universal 

linearization for the class of all those topological transformation 

groups G 
0 

such that G acts on a metrizable space of weight.!{. m while 
0 

the group 
no 

G is topologically isomorphic to a direct product 

E x H l'F , with n ~ n, H discrete countable, and F 
0 0 0 

and continuous 

homomorphic image of F, 

Proof. 

Let G =*•where His the topological direct product of En, F 

and a free group with k generators, and where H consists of the 
A 0 

maps X , XE: H, constructed as in the proof of theorem 2. 

Remark. If Fis a W-group and Ga continuous homomorphic image of F, 
A 

each y,.& G can be linearized by a <p , <p E F. A "dual result" would be 

something of the following sort: let G be a topological transformation 
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group, and suppose G is a subgroup of a W-group F such that the re

striction of the integral in F to G is non-trivial. (Then G is itself 

a W-group, by means of the restriction to it of a weight function on 
A 

F). Then each transformation f '=- G can be lifted to a <p , 'fl e F, 

We do not know whether this is true. Possibly some conditions 

should be imposed on the space on which G acts. In any case we men

tion the following. 

The map v such that (x)iJ = x ja, for x E. L
2 

(F ,H), is evidently a 

bounded linear operator of L
2

(F,H) onto L
2

(G,H). If feG, let 
I\ i: L2 (G,H) ➔ L2 (G,H) be defined as in the proof of theorem 2; if 

f 6 F, we denote momentarily the corresponding linear operator 
A 
A 

L
2

(F,H) -iP L
2

(F,H) by <p • Then for each t €. G the diagram 
~ 

L:lH) f 

L
2

(G,H) 

A 

is commut~tive. That is, each ; , f~G, may be lifted to a transform-

ation in F. 

6, Linear imbedding 

The same basis idea underlying the proofs of theorems 1 and 2 -

to make use of the orbits (x,xf ,xqi2, ••• ,xq:,n, ... ) as points of a 

new space - has been applied by G.-C.Rota <[16], [11]; cf. also 

[1s]) in order to obtain universal operators in Hilbert space. 

Definition 8. A semigroup G of bounded linear operators in a Hilbert 

space His said to be universal for a class K of semigroups G' of 

bounded linear operators in Hilbert spaces H', if for every (G' ,H') 

in K there exists an invertible bounded linear operator~ mapping H' 

onto a closed linear subspace of Hin such a way that the action of 

G on H'i; is equivalent to the action of,G' on H'. More precisely,·. 
,. 

H',:; is invariant under every r E. G, and if GIH''t: is the semigroup of 

all i I H ' -r , f E. G, then 
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is an isomorphism of GIH'~ onto G'. 

A group G of invertible bounded linear operators in a Hilbert 

space His defined to be universal for a class K of such groups in 

a similar way. 

In the terminology of G.-c. Rota, G would be called a universal 

model for all G' e K. 

Theorem 5. Let H be a Hilbert space of infinite weight m. There 

exists a semigroup S of bounded linear operators in H that is universal 

for the class of all countable semigroups G' of bounded linear oper

ators in a Hilbert space H' of weight ~1ft .that are uniformly bounded 

in the operator norm (i.e. there exists a real constant c such that 

11 f' II , c for all j' E. G') and contain the identity operator. It is 

possible to choose Sin such a way that the abstract semigroup Sis 

a free semigroup-with-unit with 

Proof. 

Jt genera tors. 
0 

Let F be a free semigroup-with-unit with N: generators, and let 
0 

f be a weight function on the discrete group F. Let H be a Hilbert 
0 

space of weight flt ; let H'P = H
0 

for each <e e. F, and let H be the Hil-

bert sum 

H = EB H'P 
(p€. F 

A 
H is again a Hilbert space of weight m . If cp 

O
E. F, cp will be the 

bounded line:r opera tor in H such that, for x = (xq,) q, E. FE. H ( eac~ 

x 6 H ) , x q, = y, where 
<p O 0 

~o is indeed a bounded linear operator in H (with norm~ ((~
0
)f)-1). 

,A 

It is immediately verified that the map <p-+cp is an isomorphism of 

Finto the semigroup of all bounded linear operators in H. Let S be 

its image. 
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Now let H' be any Hilbert space of weight ;51)'z and let G' be any 

countable semigroup of bounded linear operators in H', such that 

I//' II ~ c for all /' t G and a suitable real c. We may assume with

out loss of generality that H' is a Hilbert subspace of H. 
0 

Let~ be any homomorphism of F onto G', sending the identity 

E of Finto the identity operator~ in G'. If!~ H' we put 

ti: = x €. H wi th 

x<p = (<p)f.(f}CCp<r). 

The point x indeed belongs to H, as 

Moreover,~ is a linear operator H'---+- H, and tis bounded; in fact 

-1 
is 1-1; and "C is bounded, as 

II 1 II 2 
= II <t > f • <p cu·> II 2 ~ Iii-ell 

2 
• 

Consequently"C' is a linear homeomorphism, so H'"'C' is complete and 

thus a closed linear subspace of H. 

As was the case in the proof of theorem 3 one easily verifies 

that :. I -1 T H '"C = 1: (cp<r),:; j 

all assertions of the theorem now readily follow. 

If one considers semigroups G' with a certain finite number of 

generators, one can take for Sa free semigroup with the same number 

of generators. In particular, considering semigroups G' generated by 

one bounded linear operator: 
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Corollary. Letm be any transfinite cardinal number. There exists a 

bounded linear operator U in Hilbert space of weight f1l that is uni

versal for all bounded linear operators Tin a Hilbert space of weight 

~ m such that the norms of the iterates Tn are uniformly bounded 

( II Tn ~ , c, n=l ,2, •.. , for some real constant c). (Hence in any case 

U is universal for all T with f Tl~ l;cf. [16] ). 

The free semigroup-with-unit S with one generator may be identi

fied with the additive semigroup of all natural numbers. If a is any 
-n 

real number> 1, (n)f = a is a weight function on S, It follows that 

U can be choosen in such a way that II U II ~ a. I.e. for each f > 0 there 

exists a universal operator U of norm ~ 1+ ~ • 

Both the hypothesis that G' is uniformly bounded and the use of 

a weight function serve to obtain that }'t"E.H for all i EH'. If G' is 

such that there exists a homomorphism~ of F onto G' with the proper-

ty ~ ll<<r>a- II 2 < 00 

<p e, F 

then no other hypothesis on G' is needed, and weight functions are 

superfluous: just put ti;= x, where 

and let 
/\ 

A 
~, ~ e F, be the bounded linear operator in H such that 

0 0 

x <p 
O 

= y, where 
y = X • 

'P '?o'P 

In the case of semigroups G' generated by one bounded linear 

operator T, this means that we want that 

The latter is certainly the case if T has spectral radius< 1: see 

[11] p.470. In this way G.-c. Rota obtained the following result, 

which is stronger than the above corollary <[11] theorem 1): 

Theorem. There exists a bounded linear operator U of norm 1 in 

Hilbert' space of weight 1'ft that is universal for all bounded linear 

operators Tin a Hilbert space of weight m that have spectral radius 

< 1. 
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A result similar to theorem 7 is valid for linear homeomorphisms; 

the proof is a copy of the proof of theorem 7. 

Theorem 5'. Let H be a Hilbert space of infinite weight m . There 

exists a group F of linear autohomeomorphisms (invertible bounded 

linear operators) of H that is universal for the class of all count

able groups G' of invertible bounded linear operators in a Hilbert 

space H' of weight ~m that are uniformly bounded in the operator 

norm. It is possible to choose Gin such a way that the abstract group 

G is a free group with Jt generators. 
0 

If one restricts oneself to groups G' with a certain finite num

ber of generators, then G can be taken to be a free group with that 

same number of generators. In particular: 

Corollary. Letm be any transfinite cardinal number. There exists a 

linear homeomorphism U in Hilbert space of weight 1'1t that is universal 

for all invertible bounded linear operators Tin a Hilbert space of 

weight,$ m. such that the norms of the iterates Tn are uniformly bounded. 

The universal operator U can again be chosen such that II U j~l+ E. • 

Moreover, a stronger result can be proved: 

Proposition 9. There exists a linear homeomorphism U (of norm l)_in 

Hilbert space of weight m that is universal for all invertible bounded 

linear operators Tin a Hilbert space of weight ~m. that have spectral 

radius < 1. 

The proof is similar to Rota's 

cated above, except that one uses a 

mapped on the full orbit 

proof of [11] theorem 1, as indi-
+oo wh1· le ,. 1· s Hilbert sum ~ H , 

n=-oo n 

- -2 -1 
( ••••• ,!T ,}T ,),,T, ••• ) 
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