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1. Introduction 

A commutative semigroup of mappings of a set Xis a 
family of mappings x~ X which is a commutative semigroup 
under composition of functions. A commutative polynomial 
semigroup of mappings of a subset X of the real line R 
(shortly~ an X-cps) is a commutative semigroup of 
mappings X-+ XJ> all elements of which are restrictions 
to X of (real) polynomials on R. Such a semigroup Sis 
called maximal if every continuous map g i X-.1PX which 
commutes with all f e S itself belongs to SJ> and entire 
if it contains (restrictions to X of) polynomials of every 
non-negative degree. 

If Si is a semigroup of continuous maps Xi_,.. Xi 
(i = 1,2), and if~ is a homeomorphism of x1 onto x2 
such that s2 = {,; o 'f O -r-

1 I f e. s1}, then s1 and s2 are 
called equivalent (by means of~). In that case the 

-1 transformation f ➔ "t.ofo"t is an isomorphism of the ab-
stract semigroup s1 onto the abstract semigroup s2 • 

In this note we determine, up to equivalence, all entire 
I-cps, where I is the closed unit segment [o,1]. Moreover, 
we establish which of these I-cps are maximal and which 
not. 

2. Commutative :Qol:y_-nomial semigroups of mappings R-+- R 

It follows from results of J.F. Ritt [6,7] and of 
H.D. Block and H.P. Thielman [ 5) that the every entire 
R-cps is equivalent by means of a linear transformation 
to one of the following three semigroups of polynomials: 

(i) the semigroup P, consisting of the maps 
P

0
, P1 P2 , ••. with 
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n 
:::; X . , 

( ) 
. ¼'- 1 

ii the semigroup P , consisting of all Pn, n ~ , 
lf-and the map P
0 

such that 

P; (x) = 0 for all x; 

(iii) the semig~0up.T-of all Chebyshev polynomials 
T

0
, T1 , T2 , •.. , where 

Tn(~) = cos (n. arc cos x). 

The first two semigroups are not max~mal; in fact: 

Lemma 1. There exists a unique maximal commutative semi~ 
group P (~) of continuous maps R~ R containing P ( P~, 

respectively). The semigroup P (P:"i-)consists of the follow-
ing map;:,: .. all maps -X➔ 

t 
x -+ \ x -I • sign x . , t a 
( in P * , respectively) . 

Proof. 

E. 
\ x.\ , e a real number.; all maps 
real number; and all maps in P 

It is immediately verified that P and P* are commuta
tive semigroups. In order to show the-ir maximality., and
the fact that.they are the. only maximal semigroups contain
ing P or P * , we proceed as follows . 

Let f be, any continuous map R-+ R commuting with all 
maps in P or in Plf-. Take any a with 0 < a < 1 and let 
f (a) = «. As « = P2f: Va) :1 oc ~ 0 If ot=0 , it follows that 
f(ar) = c.<. r =0 for all rational r_. because f©P2 = P,...@f • 

C 2 
Hence f(x) =0 for x ~ 0 ; if x ~ 0 , P2f(x) = f(x) = 0 
implies again f(x) = 0. Thus f is identically zero. 

Assume 0( > 0 and let. ~ e R with a i:. = ,~{. Then as f and P 2 
commute, f(ar) = are for all rational r; hence f(x) = xe 

2 f 
for x ~ 0. If x < 0, then P2f(x) = fP2 (x) = (x ) , hence 
f (x) = .:!: I x Is . As f is continuous, the lemma follows. 
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The situation is different for the semigroup Tg this 
semigroup is maximal. In order to show this, we consider 
the following mappings of the unit interval I into itself, 

first introduced in [2]i 

for all x ; 
and, if n ~ 1: 

I 
t (fili) =0 , t (2k+1 ) = 1 

n n n n 

t · j [ ~ k+1 ] is ld.near 
n n ' n 

(k = 0, 1, 2, ••• , [ ~ ] ) ; 

(k = 0,1,2, ••• , n-1). 

These so-called multihats are easily seen to constitute a 
commutative semigroup M; in fact, t o t = t +. In [2] n m n m 
P.C. Baayen., ·:l.Kuyk and M.A. Maurice proved much more: 
the semigroup of all tn ~ n = 0,1,2, ••• , is a maximal 
commuti ve semigroup of continuous maps I~ I. 

Lemma 2. The semigroup Mis equivalent to the semigroup T' 
of all Chebyshev polynomials Tn, restricted to the segment 
[-1., +1]., by me~ns of the homeomorphism~~ [0.,1]➔ G1,1J 
such that 

't' X = COS 7C X • 

Proofg immediate. 
Now let f be a continuous map R-+- R commuting with all 

Tn. Then, as foTn = Tnof implies that f maps the set of 
all fixed points of Tn into itself, and as the set of all 
fixed points of all Tn with n ~ 1 is contained and dense 
in [-1, +1], f must map this segment into itself. It 
then follows from lemma 2 that f ~ T. 
Hence we have shown: 

Lemma 3. The R-cps Tis maximal. 

This strengthens considerably a result of G.Baxter and 
J.T.Joichi [3], who showed that T cannot be embedded in 
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a 1-parameter semigroup of commuting functions. 
We conclude this section with a triviality. 

Lemma 4. Let ~,Q2 be polynomials commuting on some 
non-degenerate segment. Then Q1 and'½ commute every
where on R. 

3. Commutative polynomial semigroups of mappings I~ I 

It follows from the results of section 2 that every 
entire I-cps is equivalent by means of a linear trans
formation to a semigroup sjA, where Sis one of the 

* R-cps T,P,P, and A is a closed segment [a,b], a<:b, 
that is invariant under S. 

The only non-degenerate segment mapped into itself by 
Tis (-1,+1]. The only non-trivial segments mapped into 
themselves by Pare the segments [-a,1], with 0~ a~1; 
we write P(a) for the [-a,1]-cps of all Pnl[-a,1]., 
n=0,1,2, ..•• The only non-trivial segments invariant under 
p-N- are the segments [-a,b], with O.:'f a-" 1 , a2

"6 b ~ 1 , b~O ; 

we write p*(a 9 b) for the [-a,b]-cps of all Pnl [-a.,b] , n ~ 1 
together with P;\[-a,b]. 

Lemma 5. Each of the semi groups P (a)., O ~ a~ 1, is not 
maximal, and is contained in a uhique maximal [-a,1]-semi
group 'p"'("aT. Similarly each p* (a,b) is contained in a 
unique maximal (-a,b] -semigroup P*(a,b). 

Proof. 
In the same way as in the proof of lemma 1 one shows 

that 'p"'("aT = Pj[-a,1) is the unique maximal commutative 
semigroup of continuous maps [-a, 1]-+ [-a, 1] contalning 
P(a). Similarly P*(a,b) = P~l[-a,b]. 

Hence: 

Theorem 1. There are two maximal entire I-cps; they are 
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both equivalent to T' (or to M)o 

Proof. 
Every maximal entire I-cps must be equivalent by 

means of a linear map to T'= Tl[-1,+1]. There exist 
two linear maps of [-1,+1] onto I =[0,1]. 

Lemma 6. If afb , where 0~ a, b ~ 1., then P(a) and 
P(b) are not equivalent. 

Proof. 
Assume P(a) and P(b) are equivalent by means of a 

homeomorphism -c- i [.-a,1] ~[-b,1]. Then-c(1) = 1., as 1 
is the unique common fixed point of all f 6 P(a), and 
also of all f e P(b). Similarly ~(O) = 0, as O is common 
fixed point of all maps but one in P(a), and also of all 
maps but one in P(b). Of course the second end point -a 
must be mapped by~ onto -b. Now it is easily seen that 
~ must be linear; it then follows that a= b. 

The next two lemma 8 s are proved by similar observa
tions. 

2 
Lemma 7 . Let O ~ a. :S 1 , ai ~ b. ~ 1 , 

* 1 * 1 semigroups P (a1 ,b1 ) and P (a2 ,b2 ) 

only if a1 = a2 and b1 = b2 . 

b. f O (i=1,2). The 
1 

are equivalent if and 

Lemma 80 No semigroup P(a) is equivalent to a semigroup 
p*(b,c). 
Consequently we haveg 

Theorem 2. There are infinitely many non-equivalent non
maximal entire I-cpso Each of these is equivalent by means 
of a linear map ,: to one of the follow:i.ng semigroups., 
which are all mutually inequivalent: 

P(a)., 0~ a~1 
or 

p*(a,b), O.$a~1 
,, 

2 
, a -' b ~ 1, b f O. 
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Theorem 3o Every entire I-cps is contained in a unique 
maximal commutative semigroup of continuous maps I ➔ I. 
Two entire I-cps are equivalent if and only if the 

maximal commutative semigroups in which they are contain
ed are equivalento 

4. Remark on mappings commuting with Tn or Pn., n~2. 

It was shown by P. C. Baayen and W. Kuyk in [ 1] that 

every open map of I into itself that commutes with t 2 
is itself a multihat t . From this it follows almost n 
at once that every continuous map commuting with t 2 is 
either at or is everywhere oscillating (nowhere monotone). n 

This result has been improved very much by G.Baxter 
and J.T. Joichi [4], who showed the following theorem: 

If a continuous map f : I 4'- I commutes with some 
multihat t , n ~ 2., it is itself either a hat-function n 
or a constant map. 

Now we saw in section 2 that the semigroup M of all 
hats tn is equivalent to the semigroup T' of all Chebyshev 

polynomials on [-1., +1 J . 
Hence we concludei 

Theorem 4o Every non-constant continuous map of (-1.,+1] 
into itself that commutes with a Chebyshev polynomial 
Tn with n ~ 2., is itself a Chebyshev polynomial. 

For the maps P n, n ➔ 2, the situation is completely 
different. Consider e.g. continuous maps of [o,1] into 
itself which commute with P2 on that interval. 
There exist multitudes of such functions. For let O < a < 1, 

and let f be any continuous function of (a2 ,a) into 
o . 2~n 2-n 

(0,1). Tf le define~ f(O)=O, f(1)=1, f(x)=(f (x J) · 

. if x 1: ( a'2P., a2n-"1) ( n integer)., f will be a ~ontinuous 

map I~ I commuting with P2 • 
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