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Let X be a compact Hausdorff topological group with unite 

and let C(X) be the Banach space (under uniform norm) of continuous 

complex-valued functions on X. We denote by V the set of normed 

non-negative regular Borel measures on X, in particular byµ the 

normed Haar measure on X. Identifying measures and corresponding 

functionals on C(X), we shall write 

if 

v(f) =f f(x)dv(x) 
Jx 

for vfi.V, f £ C(X). 

A sequence { X }c.X (0~n<m) will be called swnmable (v-·summable) n 

1 
N 

1 
N 

lim N+l ~ f(x) exists (if lim N+l 1 f(x ) = v(f)) 
N +<1> n=0 n N+m n=0 

n 

for all f E C(X). A µ-summable sequence will be called uniformly 

distributed (u.d.). For technical reasons and without loss of 

generality we shall always put x = e. 
0 

In V convolution(*) is defined by 

for all f ! C(X). 

If {x} and {y} are v -summable and v2-summable sequences respect-
n n 1 

ively the problem arises whether they may be used in some sensible 

way to construct a v1*v 2-summable sequence {zn}. Of course one 

would expect that this can be done using in some way the set of all 

products x.y. (0,:;.i,j <ro): 
J. J 

e yl Y2 Y3 Y4 

xl xlyl xly2 xly3 
( 1) x2 x2yl x2y2 

x3 x3yl 

x4 

In (6) it has been shown that indeed the sequence 
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obtained by joining successively the finite sequences in (1) 

connected by broken line segments as in the following sketch (3) 

meets these requirements: 

(3) 

0 0 0 0 

0 

0 

0 

0 

0 

On occasion of the colloquium on uniform distribution at the 

Mathematical Center, Amsterdam (1963/64) it has been pointed out 

to me by Prof.Kuipers that it would seem more natural to consider 

the sequence 

which is obtained by joining in the array (1) successively the 

finite diagonal sequences connected by line segments in the fol­

lowing sketch (5): 

0 

(5) 

0 

As Prof.Kuipers has communicated to me, in an unpublished paper 

he has proved in the case of the additive group of reals mod 1 

that if x = na ( a irrational), y = nl3 (13 arbitrary), then the 
n n 

sequence {x }*{y} as defined in (4) is uniformly distributed mod 1. 
n n 

H·e conjectured that a similar result would hold in the case of a 

general compact group X. 

In the present paper the even sharper statements are proved 

that, if {x} and {y} are v -summable and v2-summable sequences 
n n 1 

respectively, then {xn}*{yn} as defined in (4) is v1*v2-summable 

(theorem 1) ancl that uniformly distributed sequences may be cha-
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racterized by the property of producing a summable (even uniformly 

distributed) sequence whenever composed by convolution (4) with 

any given sequence (theorem 3). It should be mentioned here that 

the corresponding statements are true if convolution is defined as 

in (2) ([6] theorem 1 and 2; the hypothesis of X being 2nd countable 

is superfluous for the proof of theorem 1 and may be replaced by 

the assumption of existence of u.d. sequences in theorem 2). Still, 

an initial segment of length approximately 2N of each of the sequen­

ces (2) or (4) is necessary in order to cover an initial segment of 

length N of the other sequence. Thus it seems not to .i1be possible 

simply to deduce the statements for one of these sequences from the 

corresponding statem~ts for the other sequence. 

The proofs of theorem 1 and 2 follow the same line as in [6], 
but involve second order (in place of first order) Cesaro means. 

We shall therefore need a special case of the following l.1emma which 

is stated with the usual notation for Cesaro means ([4] 5.4). 

Lemma 1: Let k > 1 be an integer, let {x } be a sequence in X, and 
n 

let f~C(X) be given. Then 

(6) f(x )+ CL 
n 

if and only if 

(7) f (x ) + et 
n 

(C,k) 

(C,1). 

Proof: The implication (7)=+,(6) is the well known statement that 

(C ,k) includes (C, 1) ( [4_] theorem 43). The implication (6)::+(7) 

follows from the fact that f is bounded ( [4] theorem 70). 

The sequence {x } is \!-summable if f(x) ➔ v(f) (C,1) for all 
n n 

f E. C(X). According to lemma 1 we could also have defined v-summabili ty 

of {x} by f(x )+ v(f) (C,k) for all f~C(X) (k~l). Thus, as far 
n n 

as continuous functions are concerned, all summation methods (C,k) 

(k~l) are equivalent for sequences in a compact group. For the 

case of reals mod 1 this result is due to Cigler ([2] theorem 1). 
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For k=2 we obtain in particular: 

Lemma l' : Let { x } be a sequence in X and let f E. C(X) be given. 
n 

Then 

(6 ') 

if and 

1 lim 
N+l N +oo 

only if 
N 

lim I 
N +co n=O 

N 

I 
n=O 

f(x) 
n 

= a. 

(N+l-n) f(x ) 
(N+2) n 

2 

= a . 

Theorem 1: Let {x0 } and {yn} be v1-summable and v2-summable sequen­

ces in X respectively. Then {z} = {x }*{Y} is v1*v2-summable. 
n n n 

Proof: Making use of the well known criterion of Weyl ( [9] theorem 

4) we have to show that, under the hypotheses of the theorem, for 

every irreducible unitary representation D of X the equation 

holds. We denote the degree of D by r. 

Let c:>o be given. L'sing the well known euclidean matrix norm 

IIAII =[ I 
k, 1 

1 1 
lak,ll 2] 2 = [trace (Ai(.A)]2 (see [s] § 1) 

we choose N1 such that 

(8) 
N 

IV 1 (D) I N+l-n 
D(x )4j < E for all N~ N1 -

(N+2) n=O 
n 

2 

(9) 
N 

N!l D(yn)I Iv 2 (D) - I < .: for all N~ N1 . 
n=O 

This is possible because of our hypothesis and lemma l'. 

If N is given we denote by N' the integer uniquely defined by 

the inequalities 



(10) 
(N'+l)(N'+2) 

2 
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·-- N+l< (N'+2)2(N'+3) 

(Without loss of generality we may assume N' >N1 ). As indicated by 

the following array (11) 

(11) 

e . 

XN'-N 
1 

XN'-N +1. 
• 1 

• ••• xN'-N YN 
. 1 1 

' xN'-N +lYN -1 
. 1 1 

N 
the sum L 

n=O 
D(z) decomposes as follows: 

n 

N 
N1 r-:l· 

i N' i 

. . 

(12) I 
n=O 

D(z) = 
n I 

i=O 
L D (xN' . y . ) + \ I D (xN' . y . ) + 

-1 J i·=lN . 0 -1 J 
j=O 1 J= 

M 
+ \ D(xN, 1 _y.) = 

.l + -J J 
J=O 

= 

( ( N2' +2).) A Note that M,;;;,N' and that A3 vanishes if N+l = ccording 

to (12) we also decompose the difference 

1 
N N1 (N1+1) 

v1 *v2 (D) I D(z) = 2(N+l) Vl* V2 (D) + (Bl) N+l 
n=O 

n 

1 
N1-1 i .., L D(xN' . y .) (B2) N+l l + 

. 0 -]. J i=O J= 

1 
N' 

i 
i 

+ -- I (i+l) [v 1 *V 2 (D) 
i+l I D(~,--Y .)]+ (B3) N+l . 0 l. J i=N J= 1 

M+l 
V * v2 (D) (B4) + -N+l 1 



1 
N+l 
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M 

l D(xN, 1 .Y .) 
. 0 + -J J J= 

and investigate the behaviour of every term Bk as N-+ ro 

since lim 
N-+ co 

N1 (N1+1) 

2(N+l) = O 

fi-+ 0 11B2 11 ~ 

11B4 11--+ 0 since, by (10), M+l < (N'+l)- 2 -+ O 
N+l = (N'+l)(N'+2) 

M+l 
N+l rr -- o 

We still have to investigate B3 Because of 

v 1*v 2 (D) = ff D(xy)dv 1 (x)dv2 (y) = v 1 (D)v 2 (D) 
xx . 

we can write 

N' i 
+ _l_ l (i+l)D(x . ) [v 2 (D) 

N+l N•-1 
i=N 

1 
i+l 

I D(y .)] 
. 0 J 

1 
J= 

where, since Dis unitary, 

N' 
IIB7 jl ~ N!l _I (i+l) lln(xN'-i)[v 2 (D) 

1=N 
.1 

N' 

- N!l i~N (i+l)llv2(D) 

1 

because of (9). 

Furthermore, we have 

i N' 

.\ l D(yJ.>ll<N!l I (i+l)E ~ E 
i+ . 0 i=N J= 1 

N' 
= (N'+l)(N'+2) [v (D) _ , i+l ·· D( fl (D) 

B6 2(N+l) 1 l (·N•+2)· xN'-i'.JV2 + 
i=O 2 
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Nl (Nl+l) 
2(N+l) vl {D)v2(D) + 

N -1 
1 1 

+ - I (i+l)D(xN 1 _ 1.)v2 (D) 
N+l i=O 

N' 

ll 8sll~llv1(D) - i~O (t:;2) D(xN,-i>llllv2<0>11 < e:llv2(D)II 

11B9 11 -+ 0 (as B1 ) 

Combining these estimates, we obt,ain 

(B ) 
10 

(because of (8)) 

N 

!lv1 ;.,_v2 (D) - N!l n!o D(zn) II~ IIB1II+ II B2 11 +IIB4ll+l!B5ll+llB7 ll+IIB8ll+IIB9ll+llB10 II < 

< ( 1 + llv 2 (D) 11 ) e: 

for all N that are sufficiently large. Since f: was arbitrary this 

proves the theorem. 

We note the following application, gen~ralizing a theorem of 

Eckmann ( [3] theorem 8): 

Theorem 2: Let the elements a,b £ X be given. The sequence {an}*{bn} 

is uniformly distributed if and only if the sequence {bn}*{an} is 

uniformly distributed or, equivalently, if and only if, for every 

non-trivial irreducible unitary representation D of X, 

(13) rank { [D(e)-D(a)J [p(e)-D{b)]} = 

= rank [D(e)-D(a)] + rank [D(e)-D(b)]- degree D 

Proof: Let Y and Z be the closed subgroups of X generated by a and 

b respectively. Let n and t be the corresponding normed Haar 

measures on Y and Zand define 



n'(E) = n(EnY) 

z;'(E) = 1;(EnZ) 

-8-

for all Borel sets EcX. 

Then we haven' ,1;'€ V and the sequences {an},{bn} are n'-summable 

and z;'-sum.mable respectively. Thus, {an}*{bn} is n'*l;'-summable and 

{bn}*{a n} is r; '*n '-summable. As shown in [1], n '*7; '-it is equivalent 

to l;'*n'""i.l and (13) is a necessary and sufficient condition for 

n '*1; 1==µ to hold. 

~e note that (13) is in particular satisfied, if at least one 

of the matrices D(e)-D(a), D(e)-D{b) has degree Das rank, i.e. if 

either D(a) or D(b) does not have Eigenvalue 1 (cf. [5] theorem 2). 

Theorem 3: Suppose that there exists a uniformly distributed 

sequence in X and let the sequence {x }CX be given. The following 
n 

statements are equivalent: 

a) The sequence {x} is uniformly distributed. 
n 

b) The sequence {x }i+{y} is summable for every sequence {y }ex. 
n n n 

c) The sequence {x }*{Y} is uniformly distributed for every 
n n 

sequence {y }c X. 
n 

Proof: We shall use the notation as in the proof of theorem 1. 

a)~c): Let {z} = {x }*{Y }. We have to show that, for any non-
n n n 

trivial irreducible unitary representation D of X, 

(14) 
1 N 

lim -.- l D(z) = O. 
N -+ro N+l n=O n 

Since the contribution of the last (possibly incomplete) diagonal 

1 N 
in (11) to the average N+l L D(zn) is small (B5 in the proof of 

n=O 

theorem 1), we may consider integers N of the form (N';2)-1 only 

(see (10)). Given e:<o we choose N1 such that 

N 
(15) II - 1- l D(x ) II < e: 

N+l n=O n 



We consider the decomposition 

1 N 
N+l l D(z ) 

n=O n 

N -1 
1 1 

= N+l i~O 

= 

We have, for N' ~ oo 

lie II -... o 
1 

1 1~211 N+l 

N' 

I (i+l) II[.\ 
i=N 1.+ 

1 

i 

I 
j=O 
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+ 

D(xj)J D(yN-i) II 

1 
N' 

~ 1!1 J0 D(x}jj = I (i+l) < £ N+l 
i=N 

1 

This proves (14). 

c)-~b) trivial. 

N' 
1 

i=N 
1 

= 

i 

l D(x .YN' . )= 
. 0 J -l. 
J= 

by (15). 

b)~a) Suppose b) holds but {x} is not uniformly distributed. 
n 

Two cases may happen: 

1) The sequence {x } is not summable at all. Select fE.C(X) such 
n 

N 
that 1 l f(x) diverges. Consider the sequence {z} = {x }*{e} 

N+l n=O n n n 

(yn = e for all n~ 0). For N+l = (N'+2) 
2 

we get 

1 
N N' 

i+l I f(z) = I (N'+2) 
f(~;-i) N+l 

n=O 
n 

i=O 2 

The left member converges by hypothesis b), therefore so does the 

1 N 
right member. By lemma 1' the same has to be true for N 1 l f(x ), 

+ n=O n 
a contradiction. 

2) The sequence {x} is v-summable and v~µ. Select f ~ C(X) such 
n 

that v(f) ~ ~(f). Let the sequence {y} be uniformly distributed. 
n 
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Then { x} *{ y } is uniformly distributed by theorem 1 and { x }*{ e} n n n 
is v-summable. If we join alternatingly finite sections (of appropri-

ately increasing length) of the sequences {y} and {e} we obtain a 
n 

new sequence {y'} with the property that for {z'}={x }*{Y'} the 
n n n n 

1 N 
sequence of the means N+l l 

n=O 
f(z') oscillates between V{f) and U(f), 

n 

a contradiction. 

We note that the existence of uniformly distributed sequences 

is in particular established under the hypothesis of the second 

axiom of countability ([s] theorem 7). 

Convolutions of sequences have also been investigated recently 

by G.Brauer [1]. In his paper Brauer studies the possibilities of 

defining convolutions of sequences of real numbers such that for 

certain summability methods~ the functional equation 

(16) H s }*{ t } = ~ { s } . ~{ t } n n n n 

is satisfied for all sequences in the domain of~- In fact, (16) 

also makes sense in our present context if "functionals" ~Don 

suitable domains SD of sequences in X are considered which are of 

the form 

1 N 
~D{s} = lim N+l l D(sn) 

n N-+ m n=O 

(D a finite dimensional representation of X). Thus, (2) and (4) 

define convolutions of sequences in X with the property that (16) 

holds for all ~D (D runs through all finite dimensional representati­

ons of X) and for all sequences { s } { t } in(\ S . 
n , n D D 

However, these sequences do not form a linear space (on which the 

~ ~D act as linear functionals) without considerable amount of iden­

tification. Thus, the investigations in [1] and in the present note 

aim in different directions and the definitions of convolution as 

given in [lJ are not applicable in the situation we are concerned 

with. 
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