STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM AFDELING ZUIVERE WISKUNDE

WN 13

Almost no sequence is well distributed

by

Gilbert Helmberg and Aida Paalman-de Miranda

mei 1964

BIBLIOTHEEK MATHEMATISCH CENTRUM AMSTERDAM S6

Almost no sequence is well distributed

by

Gilbert Helmberg and Aida Paalman-de Miranda

Let $\xi = (x_n)$ be a sequence of real numbers satisfying $0 \leq x_n < 1$ (n=1,2,...). Then ξ is said to be well distributed in [0,1] (in German: 'gleichmässig gleichverteilt'; Hlawka [5], Petersen [10]) if

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=h+1}^{h+N} \chi_{\left[\alpha,\beta\right]}(x_n) = \beta - \alpha$$

holds uniformly in h=0,1,2,... for every interval $[\alpha,\beta] \leq [0,1]$, $\chi_{[\alpha,\beta]}$ being the characteristic function of this interval.

Let $I_{\infty} = \prod_{n=1}^{\infty} I$ be the infinite dimensional unit cube, i.e. I_{∞} is the set of all sequences $\xi = (x_n)$ with $0 \leq x_n < 1$ (n=1,2,...), and let $\mu_{\infty} = \prod_{n=1}^{\infty} \mu_n$ be the completed product measure on I_{∞} where each μ_n is Lebesgue measure on I (cf. [3] § 38). Let ϕ be the mapping of I_{∞} onto [0,1] defined by

$$\phi(\xi) = \phi((x_n)) = \sum_{n=1}^{\infty} \frac{a_n}{n!}$$

where $a_n = [nx_n]$, i.e. a_n is the unique integer such that $\frac{a_n}{n} \leq x_n < \frac{a_{n+1}}{n}$ (n=1,2,...).

For any real number x, let {x} denote the fractional part {x} = = x - [x]. Referring to a result in [7] Dowidar and Petersen showed in [2] that a given sequence $\xi \in I_{\infty}$ is well distributed in [0,1[if and only if the sequence $\eta = (\{n! \ \phi(\xi)\})$ is well distributed in [0,1[. Furthermore they showed that the sequence ($\{n! \ \alpha\}$) is well distributed in [0,1[for μ -almost no α . Hence, in a certain sense, almost no sequence ξ is well distributed in [0,1[. Obviously, the two notions of "almost no" as used in this statement on the one hand and in the sense of product measure on I $_{\infty}$ on the other hand do not quite coincide. For instance, the set of all sequences $\xi \in I_{\infty}$ with $x_1 = 0$, having μ_{∞} -measure zero, is mapped by ϕ onto [0,1], its image thus having μ -measure one. We shall show, however, that it actually follows from Dowidars and Petersens result that μ_{∞} -almost no sequence ξ is well distributed in [0,1[. We shall also give a direct proof of this statement, using essentially an argument employed by Dowidar and Petersen in order to show that the sequence ($\{k^n \ \theta\}$) is not well distributed in [0,1[for any integer k and any real number θ . This argument also carries through in the case of sequences in any compact Hausdorff space, so that the theorem and its proof will be given in this more general setting.

<u>Theorem 1.</u> The mapping ϕ is a Borel-measurable transformation on I_{∞} onto [0,1] and

$$\mu(B) = \mu_{\infty} (\phi^{-1}B)$$

for every Borel-set $B \subset [0,1]$.

α =

or

<u>Proof.</u> Let \hat{B} be the σ -algebra of Borel-sets in [0,1] and let \hat{B}_{∞} be the corresponding σ -algebra of measurable sets in I_{∞} . It suffices to show that, for every $\alpha \in]0,1]$, ϕ^{-1} $[0,\alpha [\epsilon \hat{B}_{\infty} \text{ and } \mu_{\infty} (\phi^{-1} [0,\alpha[) = \alpha$ The corresponding statements will then follow for every finite union of disjoint half-open intervals $[\alpha, \beta [c [0,1]] \text{ and, by } [3]$ § 15 and §13A, for all Borel sets B.

We observe that for every $\alpha \in]0,1]$ we have either a unique expansion

 $(0 \leq a_n < n)$

$$\sum_{n=1}^{\infty} \frac{a_n}{n!}$$

(1)
$$\alpha = \sum_{n=1}^{k} \frac{a}{n!} = \sum_{n=1}^{\infty} \frac{a'}{n!}$$
 where $a_k > 0, a'_n = \begin{cases} a_n & \text{for } 1 \leq n < k \\ a_k - 1 & \text{for } n = k \\ n - 1 & \text{for } k < n < \infty \end{cases}$

S7

The set A of α having two expansions is countable and dense in [0,1]. Let us first assume that α is of the form as given in (1). Then

$$\phi^{-1} \{\alpha\} =$$

$$= \mathbf{I} \times \left[\frac{\mathbf{a}_{2}}{2}, \frac{\mathbf{a}_{2}+1}{2}\right] \times \cdots \times \left[\frac{\mathbf{a}_{k-1}}{k-1}, \frac{\mathbf{a}_{k-1}+1}{k-1}\right] \times \left[\frac{\mathbf{a}_{k}}{k}, \frac{\mathbf{a}_{k}+1}{k}\right] \times \left[\mathbf{0}, \frac{1}{k+1}\right] \times \left[\mathbf{0}, \frac{1}{k+2}\right] \times \cdots \times \left[\frac{\mathbf{a}_{k-1}}{k-1}, \frac{\mathbf{a}_{k-1}+1}{k-1}\right] \times \left[\mathbf{0}, \frac{\mathbf{a}_{k}}{k}\right] \times \left[\frac{\mathbf{a}_{k}}{k-1}, 1\right] \times \left[\frac{\mathbf{a}_{k}+1}{k+2}, 1\right] \times \cdots \times \left[\frac{\mathbf{a}_{k-1}}{k-1}, \frac{\mathbf{a}_{k-1}+1}{k-1}\right] \times \left[\mathbf{0}, \frac{\mathbf{a}_{k}}{k}\right] \times \left[\frac{\mathbf{a}_{k}}{k-1}, 1\right] \times \left[\frac{\mathbf{a}_{k}+1}{k+2}, 1\right] \times \cdots \times \left[\frac{\mathbf{a}_{k}+1}{k+2}, \frac{\mathbf{a}_{k}+1}{k+2}, 1\right] \times \cdots \times \left[\frac{\mathbf{a}_{k}+1}{k+2}, \frac{\mathbf{a}_{k}+1}{k+2}, 1\right] \times \cdots \times \left[\frac{\mathbf{a}_{k}+1}{k+2}, \frac{\mathbf{a}_{k}+1}{k+2}, \frac{\mathbf{a}_{k}+1}$$

and

$$\begin{split} \bar{\phi}^{1} \left[0, \alpha \right[= I \times \left[0, \frac{a_{2}}{2} \right] \left[\times I \times I \times \dots \right] \\ & \bigcup I \times \left[\frac{a_{2}}{2}, \frac{a_{2}^{+1}}{2} \right] \left[\times \left[0, \frac{a_{3}}{3}, \left[\times I \times I \right] \dots \right] \\ & \bigcup \dots \\ & \bigcup I \times \left[\frac{a_{2}}{2}, \frac{a_{2}^{+1}}{2} \right] \left[\times \left[\frac{a_{3}}{3}, \frac{a_{3}^{+1}}{3} \right] \left[\times \dots \times \left[0, \frac{a_{k}}{k} \right] \times I \times I \times \dots \right] \\ & I \times \left[\frac{a_{2}}{2}, \frac{a_{2}^{+1}}{2} \right] \left[\times \left[\frac{a_{3}}{3}, \frac{a_{3}^{+1}}{3} \right] \left[\times \dots \times \left[\frac{a_{k}^{-1}}{k}, \frac{a_{k}}{k} \right] \times \left[\frac{k+1}{k+1}, 1 \right] \left[\times \left[\frac{k+1}{k+2}, 1 \right] \times \dots \right] \\ & = 1 \\ & = 1 \\ \end{split}$$

(we define [0,0] to be the empty set). Therefore, $\phi^{-1}[0,\alpha] \in \hat{B}_{\infty}$ and

$$\mu_{\infty} \phi^{-1} \left[0, \alpha \right[\right] = \frac{a_2}{2!} + \frac{a_3}{3!} + \dots + \frac{a_k}{k!} - 0 = \alpha .$$

For an $\alpha = \sum_{n=1}^{\infty} \frac{a_n}{n!} \not\in A$ we put $\alpha_k = \sum_{n=1}^k \frac{a_n}{n!}$ and obtain
 $\phi^{-1} \left[0, \alpha \right[= \bigcup_{k=1}^{\infty} \phi^{-1} \left[0, \alpha_k \right] \notin \hat{B}_{\infty}$

and

$$\mu_{\infty}(\phi^{-1}[0,\alpha[)] = \lim_{k \to \infty} \mu_{\infty}(\phi^{-1}[0,\alpha_{k}]) = \lim_{k \to \infty} \alpha_{k} = \alpha$$

<u>Corollary 1.1.</u> μ_{∞} -almost no sequence $\xi \in I_{\infty}$ is well distributed in [0,1[. <u>Proof.</u> Let $E \subset I_{\infty}$ be the set of all ξ that are well distributed in [0,1[. As Dowidar and Petersen [2] have shown we have $\mu(\phi E) = 0$. Let $B \supset \phi E$ be a Borel set of Lebesgue measure 0 (cf. $[3] \S 13B$ and $\S 15$). Then we have $E \subset \phi^{-1} \phi E \subset \phi^{-1}B$ and, by theorem $1, \mu_{\infty}(\phi^{-1}B) = 0$ which implies $\mu_{\infty}(E) = 0$.

Now let X be any compact Hausdorff space satisfying the 2nd axiom of countability and let μ be a normed Borel measure on X. Let X_{∞} be the compact topological product space of countably many copies of X, i.e. $X_{\infty} = \prod_{n=1}^{\infty} X_n$ with $X_n = X$ (n=1,2,...), and let μ_{∞} be the completion of the product measure on X_{∞} corresponding to μ . A sequence $\xi = (x_n) \in X_{\infty}$ is said to be μ -uniformly distributed in X if, for every Borel set $E \subset X$ whose boundary has μ -measure zero and for h=0, we have

(2)
$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1+h}^{N+h} \not >_E(x_n) = \mu (E)$$

 $(\chi_E$ again denoting the characteristic function of E); ξ is said to be μ -well distributed in X if, for every such set E, (2) holds uniformly in h=0,1,2,... Equivalently we may require

(3)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1+h}^{N+h} f(x_n) = \int_X f(x) d\mu(x)$$

for every continuous complex-valued function f on X and for h=0 resp. uniformly in h=0,1,2,... (cf. $\begin{bmatrix} 5 \end{bmatrix}$, $\begin{bmatrix} 6 \end{bmatrix}$).

Let T be the mapping of X_{∞} onto X_{∞} defined by $T(x_1, x_2, ...) = (x_2, x_3, ...)$. It is well known that T is measure preserving and ergodic with respect to $\mu_{\infty}(cf. [4])$. A sequence $\xi \in X_{\infty}$ is called completely μ -uniformly distributed (Korobov [8]) if the sequence $(T^n \xi)$ is μ_{∞} -uniformly distributed in X_{∞} , which implies, in particular, that ξ is μ -uniformly distributed in X.

Theorem 2. Suppose that μ is not a point measure. If the sequence $\xi \in X_{\infty}$ is completely μ -uniformly distributed in X, then ξ is not μ -well distributed in X.

<u>Proof</u>. Since μ is not concentrated in one point we can find an open set E C X such that $0 < \mu$ (E) < 1. Without loss of generality we may assume that the boundary of E has μ -measure zero. (Let, for instance, x_1 and x_2 be two different points of the support of μ and let f be a Urysohn function such that $f(x_1)=0$, $f(x_2)=1$. Then we may put $E = \{x: f(x) > \varepsilon\}$ for a suitable choice of ε , $0 < \varepsilon < 1$). Let N be given and let $F_{\infty} = \prod_{n=1}^{\infty} F_n$ where $F_n = E$ for $1 \leq n \leq N$ and $F_n = X$ for n > N. Then F_{∞} is open in X_{∞} and its boundary has μ_{∞} -measure zero. Furthermore, we have $0 < \mu_{\infty}(F_{\infty}) < 1$. Since the sequence $(T^n \xi)$ is by assumption μ_{∞} -uniformly distributed in X_{∞} , there exists a positive integer h_N such that $T^N \xi \in F_{\infty}$. Hence, for every choice of N, we have

$$\frac{1}{N} \sum_{n=1+h_{N}}^{N+h_{N}} \chi_{E}(x_{n}) - \mu(E) = 1 - \mu(E) > 0.$$

Thus, the sequence ξ cannot be well distributed.

<u>Corollary 2.1.</u> Suppose that μ is not a point measure. Then μ_{∞} -almost no sequence $\xi \in X_{\infty}$ is μ -well distributed in X.

<u>Proof</u>. By the individual ergodic theorem, μ_{∞} -almost all sequences $\xi \in X_{\infty}$ are completely μ -uniformly distributed in X (cf. [5] § 6, [1] 3). The assertion then follows from theorem 2.

The two statements "the sequence ξ is μ -well distributed in X" and "the sequence ($T^n \xi$) is μ_{∞} -well distributed in X_{∞} " should well be distinguished:

Corollary 2.2. Suppose that μ is not a point measure. Then there is no sequence $\xi \in X_{\infty}$ such that $(T^n \xi)$ is μ_{∞} -well distributed in X_{∞} .

<u>Proof.</u> Such a sequence ξ would, in particular, have to be completely μ -uniformly distributed in X on the one hand, and μ -well distributed in X on the other hand, a contradiction.

The last corollary is also a consequence of a result of Oxtoby ([9] theorem 5.5) which then, extended to not necessarily 1-1 transformations and applied to the shift transformation T in X_{∞} , essentially asserts that the sequence $(T^{n}\xi)$ is μ_{∞} -well distributed in X_{∞} iff μ_{∞} is the only T-invariant normed measure on X_{∞} (this remark is due to J. Cigler who also, for special sequences in I_{∞} , has used a reasoning similar to theorem 2 in a talk at the Mathematical Center in Amsterdam in February 1964). Corollary 2.2 also contains the statement of Dowidar and Petersen that the sequence ({ $k^{n} \theta$ }) is not well distributed in [0,1 [for any real number θ and any integer k > 1. In order to see this one has to identify [0,1 [(via k-adic expansion) with the infinite product space of the discrete space containing k elements, each carrying measure $\frac{1}{k}$ and to observe that in [0,1 [multiplication (mod 1) by k amounts to applying the shift transformation T in this product space (cf.[4]).

REFERENCES

- Cigler, J., Der individuelle Ergodensatz in der Theorie der Gleichverteilung mod 1. J.reine u. angew. Math. <u>205</u>, 91-100 (1960).
- 2. Dowidar, A.F. and Petersen, G.M., The distribution of sequences and summability. Can. J. Math. 15, 1-10 (1963).
- 3. Halmos, P.R., Measure Theory. Van Nostrand, New York 1956.
- Lectures on ergodic theory. Publications of the math. society of Japan 3, Tokyo 1956.
- 5. Hlawka, E Zur formalen Theorie der Gleichverteilung in kompakten Gruppen. Rend. Circ. Mathem. Palermo Ser. II <u>4</u>, 33-47 (1955).

S11

- 6. Hlawka, E. Folgen auf kompakten Räumen. Abh. math. Sem. Univ. Hamburg 20, 223-241 (1956).
- 7. Keogh, F.R., Lawton, B. and Petersen, G.M., Well distributed sequences Can. J. Math. <u>10</u>, 572-576 (1958).

8. Korobov, N.M., On completely uniform distribution and jointly normal numbers (Russian). Izvestija Akad. Nauk SSSR, Ser. math. 20, 649-660 (1956).

9. Oxtoby, J.C., Ergodic sets. Bull. Amer. Math. Soc. 58, 116-136 (1952).

10. Petersen, G.M., Almost convergence and uniformly distributed sequences. Quart. J. Math. Oxford II Ser. 7, 188.-191 (1956).

typ: EJ