STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM AFDELING ZUIVERE WISKUNDE

WN 16

Bohr-compactifications are cocompactifications

Ъy

P.C. Baayen and A.B. Paalman - de Miranda

V∐(

1964

Sibilioihsek Centrum von versiende on kniformelite Amsterdam

Bohr-compactifications are cocompactifications

P.C. Baayen and A.B. Paalman - de Miranda

Let G be a topological group. A topological group G^* is called a <u>cogroup</u> of G if there exists a map ϕ of G onto G^* which satisfies the following two conditions:

- (i) ϕ is an isomorphism of the abstract group G onto the abstract group G^* ;
- (ii) ϕ is a compression map of the topological space G onto the topological space G^{*}; in other words, G^{*} is a cospace of G.

(For the concepts cospace, compression map and - below - closed base see [3]).

A <u>cocompactification</u> of G is a compact group G' which contains a cogroup of G as a dense subgroup.

We will prove that every locally compact abelian group (abbreviated to: LCA-group) has a cocompactification. The BOHR-compactification bG of an LCA-group G (cf. [1] or [2]) is an example of a cocompactification of G; conversely every cocompactification is topologically isomorphic to a generalized BOHR-compactification of G.

<u>Proposition 1</u>. Let G be a locally compact group, and let ϕ be a continuous isomorphism of G in a compact group H. The closure of $\phi(G)$ in H is a cocompactification of G.

Proof.

The collection Γ of all compact subsets of G is a closed base in G. As $\phi(C)$ is compact, hence closed, in ϕG whenever C ϵ Γ , the assertion follows from [3], §1.2, proposition 3.

<u>Corollary</u>. Every LCA-group G has a cocompactification. The BOHRcompactification bG of G is a cocompactification of G. <u>Proof</u>.

It is known that there exists a continuous isomorphism of G onto

a dense subgroup of bG (see e.g. [2], theorem 1.8.2).

In general, the BOHR-compactification bG is not the only cocompactification of the LCA-group G.

<u>Example</u>. Let Z denote the additive group of integers and T the circle group. The BOHR-compactification bZ of Z is the charactergroup of the discrete group T^d (the group T with the discrete topology). This group bZ is very large (it has 2⁶ points, where **é** is the cardinal number of the continuum; also its weight is 2⁶). However, every monothetic group is a cocompactification of Z (and every cocompactification of Z is a monothetic group); in particular, T itself is a cocompactification of Z.

A characterization of all cocompactifications of an LCA-group G can be obtained by means of the generalized BOHR-compactifications of G (cf. [1] §26). Let Σ be a collection of continuous characters of G. A map Φ_{Σ} of G into T^{Σ} is defined as follows:

$$\phi_{\Sigma}(\mathbf{x}) = (\chi(\mathbf{x}))_{\chi \in \Sigma}$$
, for all $\mathbf{x} \in G$.

Let $b_{\Sigma}^{C}G$ be the closure of $\Phi_{\Sigma}^{C}(G)$ in \mathbb{T}^{Σ} . It is easily seen that $b_{\Sigma}^{C}G$ is a subgroup of \mathbb{T}^{Σ} , and that Φ_{Σ}^{C} is a continuous homomorphism of G into $b_{\Sigma}^{C}G$. Moreover, Φ_{Σ}^{C} is an isomorphism if and only if Σ separates the points of G. If Σ consists of <u>all</u> continuous characters on G, then $b_{\Sigma}^{C}G = bG$.

From [1], theorem 26.13, we now conclude:

<u>Proposition 2</u>. Let G be an LCA-group. If Σ is a set of continuous characters of G which separates the points of G, then $b_{\Sigma}G$ is a cocompactification of G, and Φ_{Σ} is a continuous isomorphism of G onto a dense subgroup of $b_{\Sigma}G$. Conversely every cocompactification of G is obtained in this way up to a topological isomorphism. Returning to our example above, the cocompactification T of Z can be obtained as a $b_{\Sigma}Z$, where Σ consists of a single non-trivial character on Z. In other words, $\Sigma = \{\chi\}$ with $\chi(n) = e^{2\pi i n \theta}$, θ a fixed irrational number, for all $n \in \Sigma$.

References.

[1]	E. HEWITT and K.A. ROSS,	Abstract harmonic analysis I. Berlin,
		1963.
[2]	W. RUDIN ,	Fourier analysis on groups. New York, 1962.
[3]	Syllabus of a colloquium	on cotopology, Mathematical Centre, Amsterdam, 1964

typ.RMW

-3-