STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM AFDELING ZUIVERE WISKUNDE

WN 19

On topologies congruent with their classes

of dense sets

by

George E. Strecker

June 1966

6

On topologies congruent with their classes of dense sets

In this note a method is described for constructing topological spaces having the property that each non-empty set is open if and only if it is dense (i.e. the collection of non-empty <u>open</u> sets is precisely the same as the collection of <u>dense</u> sets). Such spaces will be called OD spaces.

As is seen below no OD spaces can be Hausdorff. In fact, in a sense they are all extremely non-Hausdorff. Also it is clear from the definition that no OD space has disjoint dense subsets.

In general it is not difficult to construct examples of OD spaces. Clearly a point with the indiscrete topology and the space (X, \mathcal{C}) where $X = \{a, b\}$ and $\mathcal{T} = \{\phi, X, \{a\}\}$ are examples. In fact T_0 OD spaces can easily be described on an arbitrary set X. Let p be some distinguished point of X and let

 $\boldsymbol{\tau}_{1} = \{\phi\} \boldsymbol{\upsilon} \{ A \boldsymbol{c} X \mid p \boldsymbol{\epsilon} A \},$ $\boldsymbol{\tau}_{2} = \{ X \} \boldsymbol{\upsilon} \{ A \boldsymbol{c} X \mid p \boldsymbol{\epsilon} A \}.$

Then both $(X, \mathbf{\tau}_1)$ and $(X, \mathbf{\tau}_2)$ are T_0 OD spaces.

However, to construct OD spaces with T_1 separation or indeed to determine the existence of such spaces presents a more difficult problem. To do this we first consider a class of spaces more general than the OD spaces.

The following proposition is easily verified.

<u>Proposition 1.</u> In a topological space the following properties are equivalent.

- i) every non-empty open set is connected;
- ii) every non-empty open set is dense;
- iii) every pair of non-empty open sets has a non-empty intersection.

We call a space <u>super-connected</u> provided it satisfies one of the conditions of proposition 1. The co-finite topology on a given set is a well known example of a super-connected space. The following three propositions are obvious.

Proposition 2. Every OD space is super-connected.

Proposition 3. Every super-connected space is both connected and locally connected.

Proposition 4. No super-connected space is Hausdorff.

It is known that super-connected spaces exist in profusion. In fact each non-compact Hausdorff k-space has an associated T1 superconnected space which determines it and is determined by it (cf. Epicompactness and anti-spaces, Report WN 20, Math. Centrum Amsterdam, June 1966). Below, a method is given for modifying any given T_1 super-connected space so that it becomes an OD space.

<u>Notation</u>. If f is a collection of subsets of X, then f^{∇} will denote the topology generated by \boldsymbol{f} (considered as an open subbase).

<u>Theorem 1</u>. For every T_1 super-connected space, (X, \mathbf{C}) , there exists an OD space (X, τ^*) such that τ^* is finer (stronger) than τ .

Proof. Suppose that (X, \mathcal{X}) is super-connected. Let \mathcal{D} be the collection of all **T**-dense subsets of X. Well order $\boldsymbol{\mathcal{P}}$; i.e. let $\boldsymbol{\mathcal{P}} = \{ D_{\alpha} \mid \alpha < \gamma \}$ where each α is an ordinal number greater than 0. Let $\tau_{\alpha} = \tau$. Proceeding by induction, suppose that α is an ordinal number such that 0 < α < γ and such that for all $\beta < \alpha, \Upsilon_{\beta}$ has been defined. We define Υ_{α} as follows:

 $\boldsymbol{\tau}_{\alpha} = \begin{cases} (\bigcup_{\beta < \alpha} \boldsymbol{\tau}_{\beta} \cup \{D_{\alpha}\})^{\nabla} \text{ if this topology has no isolated points and if} \\ D_{\alpha} \text{ is dense in } \boldsymbol{\tau}_{\beta} \text{ for all } \beta < \alpha. \end{cases}$ $(\bigcup_{\beta < \alpha} \boldsymbol{\tau}_{\beta})^{\nabla} \text{ otherwise.} \end{cases}$ In this manner $\boldsymbol{\tau}_{\alpha}$ is determined for all $\alpha < \gamma$. Let $\boldsymbol{\tau}^{\star} = (\bigcup_{\alpha < \gamma} \boldsymbol{\tau}_{\alpha})^{\nabla}.$

We claim that (X, τ) is an OD space.

Suppose that B is dense in (X, \mathcal{K}) . Since \mathcal{K} is finer than \mathcal{T} , B is dense in (X, \mathbf{T}) . Thus B**\epsilon \mathbf{D}**, so that B = D for some $\alpha < \gamma$. Suppose that D $\mathbf{e} \mathbf{T}_{\alpha}$. Then since \mathbf{T}_{α} is coarser than $\mathbf{T}_{\alpha}^{\mathbf{X}}$, we have B $\mathbf{e} \mathbf{T}_{\gamma}^{\mathbf{X}}$; i.e. B is τ-open. ç

2

If $D_{\alpha} \notin \tau_{\alpha}$, then either

or

a) D_{α} is not dense in $\boldsymbol{\tau}_{\beta}$ for some $\beta < \alpha$,

b) $(\bigcup_{\alpha \in \alpha} \boldsymbol{\tau}_{\beta} \cup \{D_{\alpha}\})^{\nabla}$ has an isolated point.

<u>case a</u>) Since D_{α} is τ -dense it must be τ_{β} -dense for all $\beta < \gamma$, since each τ_{β} is coarser than τ . Thus this case cannot occur.

<u>case b</u>) In this case there must exist some $\beta' < \alpha$ and some $U \in \mathcal{T}_{\beta}$, such that $U \wedge D_{\alpha} = \{p\}$. But since \mathcal{T} is T_1 and \mathcal{T}_{β} , is finer than $\mathcal{T}, \mathcal{T}_{\beta}$, will be T_1 . Thus $(U - \{p\}) \in \mathcal{T}_{\beta}$. But $(U - \{p\}) \wedge D_{\alpha} = \emptyset$, so that D_{α} is not dense in \mathcal{T}_{β} , which, as shown in case a), is not possible. Hence we have shown that every \mathcal{T} -dense set is \mathcal{T} -open.

To show that every τ^* -open set is τ^* -dense, we assume that

$$G = U \wedge D_{\alpha_{1}} \wedge \cdots \wedge D_{\alpha_{m}} \text{ and}$$
$$H = V \wedge D_{\beta_{1}} \wedge \cdots \wedge D_{\beta_{m}}$$

are non-empty basic open members of \mathbf{T}^{\star} ; i.e. $U, V \in \mathbf{T}$ and $D_{\alpha_{i}}, D_{\beta_{j}} \in \mathbf{D}$, $1 \leq \alpha_{i} \leq n, 1 \leq \beta_{j} \leq m$. Then $G \cap H = U \cap V \cap D_{\delta_{1}} \cap D_{\delta_{2}} \cap \dots \cap D_{\delta_{k}}$, where the subscripts of the D's are arranged such that $\delta_{i} < \delta_{j}$ if i < j, $1 \leq i, j \leq k$.

Since Υ is super-connected, U,V $\epsilon \Upsilon$ implies that U \wedge V is Υ -dense and open. But $D_{\delta_1} \epsilon \mathfrak{D}$ implies that D_{δ_1} is Υ -dense. Thus U \wedge V $\wedge D_{\delta_1}$ is Υ -dense and Υ_{δ_1} -open. Now consider D_{δ_2} . Since $\delta_1 < \delta_2$, by the definition of Υ_{δ_2} , D_{δ_2} is Υ_{δ_1} -dense. Thus (U \wedge V $\wedge D_{\delta_1}$) $\wedge D_{\delta_2} \neq \emptyset$ and is, in fact, a member of Υ_{δ_2} . Continuing in this manner for a finite number of steps, we find that G \wedge H $\neq \emptyset$. Hence by proposition 1 every Υ -open set is Υ -dense.

3

Corollary 1. There exist T_1 OD spaces.

ø

Corollary 2. There exist connected, locally connected T_1 spaces which do not possess disjoint dense sets.