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On topologies congruent···with·their classes of dense sets 

In this note a method is described for constructing topological 

spaces having the property that each non-empty set is open if and 

only if it is dense (i.e. the collection of non-empty~ sets is 

precisely the same as the collection of dense sets). Such spaces 

will be called OD spaces. 

As is seen below-no OD spaces can be Hausdorff. In fact, in -a sense 

they are all extremely non-Hausdorff. Also it is clear from the 

definition that no OD space has disjoint dense subsets. 

In general it is not difficult to construct examples of OD 

spaces. Clearly a point with the indiscrete topology and the space 

(X,'t') where X = {a,b} and "1'= {$, X, {a}} are examples. In fact TO 
OD spaces can easily be described on an arbitrary set X. Let p be 

some distinguished point of X and let 

tr1 = {$} V{Ac.X I peA}, 

rr-
2 

= {x} u {Acx l p tA}. 

Then both (X.,'t'1) and (X,'t;) are TO OD spaces. 

However, to construct OD spaces with T1 separation or indeed to 

determine the existence of such spaces presents a more difficult 

problem. To do this we first consider a class of spaces more general 

than the OD spaces. 

The following proposition is easily verified. 

Proposition 1. In a topological space the following properties are 

equivalent. 

i) every non~empty open set is connected; 

ii) every non-empty open set is dense; 

Hi) every pair of non-empty open sets has a non-empty intersection. 

We call a space super-connected provided it satisfies one of the 

conditions of proposition l. Th_e 'co-finite topology on a given set is 

a well known example of a super-connected space. 

,. 



2 

The following three propositions are obvious. 

Proposition 2. Every OD space is super-connected. 

Proposition 3. Every super-connected space is both connected and 

locally connected. 

Proposition 4. No super-connected space is Hausdorff. 

It is known that super-connected spaces exist in profusion. In 

fact each non-compact Hausdorff k-space has an associated T
1 

super­

connected space which determines it and is determined by it (cf. 

Epicompactness and anti-spaces, Report WN 20, Math. Centrum .Amsterdam, 

June 1966). Below, a method is given for modifying any given T1 
super-connected space so that it becomes an OD space. 

Notation. If f is a collection of subsets of X, then JV will denote 

the topology generated by ,J (considered as an open subbase). 

Theorem 1. For every T1 super-connected space, (X,'t'), there exists an 

OD space (x,t() such that rt' is finer (stronger). than 't". 

Proof. Suppose that (X,'t") is super-connected. Let ~be the collection 

of all't"-dense subsets of X. Well order2>; i.e. let~= {D I a< y} 
, a 

where each a is an ordinal number greater than O. Let tt
0 

= 't'. Proceeding 

by induction, suppose that a is an ordinal number such that O <a< y 

and such that for all S < a, <t'S has been defined. We define 't'
0 

as follows: 

( V 'L's v{D
0

})v if this topology has no isolated points and if 
S<a 

D
0 

is dense in't'S for all S < a. 

( U 't'S) V 
S<a 

otherwise. 

In this manner 't' is determined for all a < y. Let ,(" = ( V 't' ) V. 
a* a 

We claim that (X,1:' ) is an OD space. a<y 

Suppose that B is dense in (X, t(°). Since "t'" is finer than 't', B is 

dense in (X,'t'). Thus BEV, so that B = D for some a < y. Suppose that 
- . . a ,...* .. D E. ·"" • Then since 't' is coarser than '1' , we have B ~ ·'- ; i.e. B is 

_ ,a a a 
1:'"-open. 
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If D t/:'t , then either 
Cl, Cl, 

a) Da, is not dense in 'ts for some S < a, 

or 

b) ( lJ 't's V {DCI.} )'
1 

has an isolated point. 
S<ct 

case a) Since Dais ~-dense it must be't"S-dense for all S < y, since 

each 't"S 1s coarser than rr:. Thus this case cannot occur. 

case b) In this case there must exist some S' < a and some U E't"S, such 

that U /\ D a = {p}. But since 't"' is T 
1 

and 't'S, is finer than 't", 't" S, 

will be T1• Thus (U - {p} )E't'S'. But (U - {p}) (\ Dct = ¢, so that Dct 1s 

not dense in "t'S, which, as shown in case a), is not possible. Hence we 

have shown that every't'*-dense set is <-open. 

* * To show that every 't' -open set is "t' -dense, we assume that 

G=U(\D f\ 
Cl, 1 

... I\D 
Cl, 

n 

H=V(\Ds (\ ••• f\Ds 
1 m 

and 

are non-empty basfo open members of~; i.e. U,VE't"and Da.' DS~r,, 
1 J 

1 < ct. < ri, 1 < S. < m. Then G f\ H = U AV f\ D
O 

f\ DO (\ • • • f\ D
O 

, 
-i- -J- 1 2 k 

where the subscripts of the D's are arranged such that o. < o. if i < j, 
1 J 

1 ~ i ,j 2.. k. 

Since It;" is super-connected, U, VE. 't' implies that U f\ V is 't'-dense 

and open. But D0 ef) implies that D
0 

is't-dense. Thus U /'\V f\D
0 

is 
1 1 1 

'L-derise and 'r
0 

-open. Now consider D
0 

• Since o
1 

< o2 , by the definition 
1 2 

of '['
0 

, D
O 

is ~ -dense. Thus (U f\ V f\D O ) f\D O ,f. ¢ and is, in fact, 
2 2 1 1 2 

a member of 't"
02

• Continuing in this manner for a finite number of steps, 

we find that G f'\ H ,f. ¢. Hence by proposition 1 every <-open set is 

* 't" -dense. 
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Corollary 1. There exist T1 OD spaces. 

Corollary 2. There exist connected, locally connected T1 spaces which 

do not possess disjoint dense sets. 


