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Properties that are closely related to compactness 

Introduction 

Let P be some topological property defined on a suitable class of to

pological spaceso (eogo the class of completely regular spaces). 

In category theory it is natural to ask, whether there exists a 

functor y from the category.£ of spaces in consideration, to the sub

category 12, of spaces satisfyingf. which is left-adjoined to the for

get-full functor from D to Co In topology this means that we ask - -
whether it is possible to embed an arbitrary space X (of the class in 

consideration) densely in a space yX satisfying~ such that each con

tinuous map of X into any space Y satisfying'? has a continuous exten

sion which carries yX into Y. Now take forP the compactnessproperty 

and for.£ the class of completely regular spaces, then every space X 

has indeed such a "maximal~-fication" = maximal compactification. Its 

name is BX, the ~ech-Stone compactification of X and the functor in 

consideration is e. 
The question is: how can we characterize all the properties that 

admit maximal q-fications? It turns out (this is the main result of 

section 1) that every space has a maximal 1'-fication if and only if 

(Pis closed-hereditary, productive-and almost fitting. (for definitions 

cf. §1 of these notes). 

In section 2 we define for each cardinal number El the property 

!!!;-ultracompactness which satisfies this maximility condition. If,!_ is 

a finite cardinal number, then ,!_-ultracompactness coincides with com

pactness; for El= ~it is closely related to realcompactness (cf. [1J 
or §3 for the definition of realcompactness). 

Section 4 is devoted to the study of a generalized notion of the 

Lindelofproperty~ A space is called a generalized Lindelofspace pro

vided that there exists a subbase for its topology such that each open 

cover of it by members of the subbase has a countable subcover. 



Almost-fitting properties 2 maximal embedding. 

Until explicitly stated, all spaces in consideration are comple

tely regularo Bold face letters stand for cardinals, ftstands for the 

cardinalnumber of a countable set, c denotes the cardinal of the con

tinuum. If 1.l is a family of· subset: of a space X, then the symbol 'lIX, 

or simply il will be used to denote the family of all UX for which UE'l.L 

The union and intersection of a family of sets 1l will be denoted by 

Vtl or f'\U. respectively. 

(1.1) Conventionso Let P be a topological property defined on the 

class of completely regular spaces. 

q is called productive or sometimes arbitrary productive if the product 

of an arbitrary collection of spaces enjoying? , has property P. 
':(is called countable productive (respectively finite productive) if the 

product of a countable (respectively finite) collection of spaces en

joying? has property Po 
<_Pis called hereditary (respectively closed-hereditary) if every sub

space (respectively closed subspace) of a space satisfying?, has pro

pertyq.>o 

~ is called almost-fittin~ property, if whenever f is a perfect 1) map 

of a space X onto a space Y, then X has property 'f if Y has property?. 

q is called a fitting property, if whenever f is a perfect map of a 

space X onto a space Y, then X has property? if and only if Y has 

property?. 

Compactness and realcompactness2 ) are examples of properties that are 

almost fitting; closed-hereditary and productiveo 

1
) A mapping f of a space X into a space Y will be called perfect if 

f is continuous,closed (the images of closed sets are closed) and 

tminverses of points are compacto 

2
) For the definition of realcompactness cf t1~ or section 3 of these 

"noteso 
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Local compactness 9 a-compactness 0 countable compactness, paracom

pactness, countable paracompactness 9 ~ech~completeness are examples 

of properties that are fitting and closed=hereditaryo (but not pro

ductive). Each of these properties at infi1ity is also a fitting 

property which is closed-hereditary o For further information we 

refer to [2] o 

If a topological space Xis densely embedded in a space YX with 

property P then we call YX aP-fication of Xo 

Sometimes YX is of the type that to each continuous mapping f of X 

into any space Y with property ~ 11 we can find a continuous extension 

of f which carries YX into Y,, yX is then said to be a maximal P-fication 

of X. 

If to every space X it is possible to find a maximal 1Lfication yX of 

x, then yX is uniquely determined to x. 

Indeed, if YX and oX are two maximalP-fications of x, then the identity 

mappings igX -+ YX and j gX -+ oX have continuous extensions i and j 

to all of oX and yX respectively,, j o i ~ ox-+ oX takes the dense sub

set X fixed and is consequently the identity map of oX onto oX 

{recall that two continuous mappings f and g defined on a Hausdorff

space X with range Y coincide, if they coincide on a dense subset of X)e 

Similarly we show that i o j is the identity map of yX onto yXo 

Consequently yX and oX are topologically equivalent. 

Compactness and realcompactness are indisputable the most interesting 

properties having the property that every (completely regular) space 

admits a maximalP-fication (respectively called ~ech-Stone compacti

fication and Hewitt realcompactification)o 

With this in mind it seems to be of minor importance to look for all 

the other properties possessing this featureo 

But the following theorem which is the main result of this section 

actually shows that these properties are most familiar to uso 
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Main result of §1~ 

If 9) is a topological property which is possessed by some non-empty 

space, then the following statements are equivalento 

(a) Every space has a maximal P-ricationo 

(b) !Pis almost-fitting, closed=hereditary and productiveo 

Before we attack the proof, we give some preliminary results which 

are of interest in itselfo 

(1o2) LemmaG If¢ is a continuous map of a space Y into a space Z into 

a space Z9 whose restriction to a dense set Xis a homeomorphism, then 

¢ carries Y\x 1 into z\¢ (X) o 

Proofo Suppose on the contrary ¢(p)E¢X and p € Y \ Xo Let X' = XV{p}. 

The restriction map ¢IX has an inverse*~ ¢X ➔ X which is continuous. 

Consequently* o ¢IX' is a continuous mapping from X1 into X' whose 

restriction to the dense set Xis the identity on Xo 

X' is a Hausdorffspace, hence it follows that* o ¢IX' is the identity 

map of X' onto]') In particular we have *(¢(p)) = p 9 contradicting 

p ~ Y\Xo 

(1o3) LemmaQ If, is a perfect map of a space X onto a space Y and r 
is the extension of -r which carries SX 1) onto SY 9 then it ( sx\x ' = SY\y 

For the proof we refer to [2] po 87 Lemma 1o5o 

( 1 o 4) Lemmao Let §) be a topological property which is productive and 

closed-hereditaryo 

If Z is a space and {xalaEA} is a collection of subspaces with property 

Pthen X = O{X I aEA} satisfies property~Po 
a 

An analogous result is obtained for properties that are only countably 

or even finite productiveo 

1) 
SX denotes as usual the Cech-Stone compactification of Xo 
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Proofo Let Y = n{ X laEA},and ACY given by 6 = 
a 

Va
1

, a2 E. A}. 
It is not hard to see that Xis homeomorphic to the subspace 6.Since §> 
is topological it remains to show that 6 has property ~o 

Y has property fP since each X has property (P and ~ is productive. . a 
6 is a closed subset of Y because each X is a Hausdorffspaceo Hence 6 

a 
has property P since§> is closed-hereditary. 

( 1 • 5) Corollary. If a topological property 1> is closed-hereditary, 

productive and an invariant for the taking of open subsets, thenPis 

hereditary. 

Indeed, if Y is a space having <y and X C. Y then X = n { Y\{P} I p~Y\x} i.e. 

Xis intersection of open subsets of Yo By assumption each open subset 

Y h (i) h . • . • of as v and t e preceding lemma yields that every intersection of 

spaces enjoying ft> has <J. Consequently X has property~. 

This corollary can serve as a test to decide whether some property is 

inherited bJ open subsets, closed subsets or (arbitrary) topological 

products. 

F 
. . . 1) . . . 

•or instance it is easy to see that the property k is an invariant for 

the taking of open and closed subsets. Since the property k is not here

ditary the above result shows that the property k is not productive. 

Next we observe that if~ is a property which is closed-hereditary, 

almost-fitting and is possessed by some nonempty space, then g:>is 

possessed by all compact spaces. For if Y is any nonempty space satis

fyineP, and C is any compact space, then the image of the topological 

sum X of C and Y under the perfect mapping f that coincides with the 

identity on Y and sends C to some fixed point of Y is Yo f is almost

fitting and closed-hereditary so X and hence Chas propertyl}). 

1) A space X has property k provided that a subset is closed if it has 

a compact intersection with each compact subspace of X. 
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Proof of the main resulto 

(a) ==> ( b )o Let ~ be a property such that every space has a maximal~

fication o We will show that g>satisfies the desired invariance proper

ties. 

Let {x I a.€A} be a collection of spaces enjoying 1> and X = ir{X I a.EA}. 
Ct. Ct. 

Each projection map ,r : X + X has a continuous extension ir*: yX + X o 
Ct. Ct. Ct. Ct. 

Let i*: yX + X be defined by the conditions (i*(x)) = ir*(x) (a.EA). 
Ct. Ct. 

i* is the identity on X, so we have by (1.2) that yX\X =$ i.eo yX = X. 

Consequently X has property 1->. 
Let X be a closed subset of a space Y satisfyingCJ. The inclusion map 

of X into Y has a continuous extension i* of yX into Y. By (1.2) the 

preimage of the closed set X under i* is X; hence Xis closed in yX i.e. 

yX = X. It follows that X has property~ 

Now let, be any perfect mapping of a space X onto a space Y satisfying 

P. Consider the extension i' of, which carries $X (zie 1) pag 4)) onto 

$YO Sine y has ~' there is an extension (TIX r of TIX which carries yX 

into Y. 

The inclusion map i:X+$X has a continuous extension i* which carries 

yX into y$X = $X. 

We have Tix= i' o i, so (fix)*= i' o i* (by uniqueness of continuation). 

:By (1o2) i*(yx\x:csx\x and by (1.3) (;' o i*)(yx\X)CsY\Y. But (i'lxr' 

(yx\X)C. Y i.e. yX\x = $, Consequently X satisfies:P. 

(b) ""'>(a). Let1>possess the already cited invariances; let X be a space 

and $X its ~ech-St?ne compactification. 

Consider for each continuous mapping f which sends X onto a subset of 

a space Y satisfyingP, the extension f off which carries $X onto SY, 

and set X(Y,f) = r-1 (Y). For each space X(Y,f) the restriction map 

flx(Y,f) is a perfect mapping from X(Y,f) onto Y. (remark that this 

mapping is the restriction of a perfect mapping to a total inverse). 

Consequently every space X(Y ,f)satisf'.i.es9remuse <})is an a:lm:>st-fitting proper

ty. Now let yX =n{x(Y,f)IY satisfies:}); f:X + y continuous; fX dense 

in Y}. 

Xis clearly densely embedded in yX moreover (1.4) shows that yX is 

even aCJ-fication of X. 
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We shall prove that yX is a maxima11-fication. If g i~ any continuous 

mapping from X,into a space Z satisfying~, then let Z' be the closure 
• v • • Q . 6.>J . 1 d h . of gX in z. Z satisfies u since is c ose - ereditary. 

Now we have yX CX(Z',g) (g considered a a mapping of X into Z') and 

gjyX ~ yX ➔ Z'CZ is a continuous extension of g which carries yX into Zo 

The following proposition gives us a simple criterium to decide whether 

some property is closed-hereditary or notg 

( 1 o 7) Proposition. Let~ be a topological property which is possessed 

by all compact spaceso If Wis inherited by intersections of two sub-
. . . . C? 0· spaces one of which is compact and the other satisfying0, then vis 

closed-he~editary. 

Proof. Let Y be a space satisfying 5) and X a closed subset of Yo 

Let oY be a compact extension of Yo XoY and Y are subspaces of oY both 

satisfying~ while x0
y is compact o Hence their intersection which equals 

X hasg. 

There exists also a criterium to decide whether some property is pro

ductive or noto It is a "generalisation" of the Tychonoff product theorem. 

(1.8) Proposition. Let<s be an almost-fitting property which is an in

variant of !.1) intersections (i.eo each intersection of a family of car

dinal < m of subspaces satisfying~ has ~). Then every product of m --
spaces enjoying 1>, has ~. 

Proof. Choose an indexset A with cardinal m. Let {x jaeA} be a collec-
- a 

tion of spaces satisfying~ and X = ,r{XajaEA}. Each projection map ,ra 

of X onto X has a continuous extension ff which carries ex into ex o a _
1 

a a 
For ae.A set X(a) = \l (Xa)o Each X(a) has property9since 1ralx(a) 

is a perfect mapping of X(a) onto Xa' 

1) !. denoting a finite or an infinite cardinal number. 

,, 
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By assumption X' = () { X(a.) I a.€A} has property~ But X is densely embedded 

in X' and the mapping 1 g X' ➔ X defined by the conditions (i(x)) = a. 
= J (x) {a.€. A) is a continuous mapping which is the identity on X. 

a. 
Consequently it follows from ( 1 o2) that X9 = X i.eo X has property g>o 

From (1o4), (1o7) and (108) we obtain~ 

(1o9) Theoremo For an almost-fitting property(Pthe following conditions 

are equivalento 

(I) .o ~ is an invariant for the taking of arbitrary intersections and 

each compact space has ~o 

(II).g>is closed-hereditary and arbitrary productive. 

The equivalence between (I) and (II) remains satisfied if we replace 

"arbitrary" by "countable" or "finite"o 

§2o Examples; the notion _!-ultracompact. 

We are dealing with the following problemg are there "enough" almost

fitting properties that are closed-hereditary and productive? The theory 

above would obviously be not succesful if real-compactness and compact

ness were the only candidates. 

Definition. A family of subsets of a topological space X has the _!-2:.!l::, 

tersection property(,! finite or infinite cardinal number) provided 

that every subcollection of cardinal< m has a nonempty int€rsection. 

Definition. An ultrafilter~in Xis said to be an m-ultrafilter if 

the closed sets of X that are members of :f: satisfy the m-intersection 

property. 
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Definitiono .A space Xis called .!,-ultracompact provided that every 

m-ultrafilter in Xis covergento 

Obviously compact implies .!,-ultracompact for every.!,; if.!!,.::,.!. then 

.!!,-ultracompact implies .!,-ultracompact. 

It is also easy to see that if X has the.Lindelofproperty then Xis 

h'0 ultracompact. The connection between .H'0 -ultracompactness and real

compactness is considered in the next sectiono 

(2o 1) Lemma. Let~ be an !E,-ultrafilter in a space X and f ~ X -+ Y a 

continuous mappingo The collection 1 = {f(F)IF e.:r} constitutes a base 

for an m-ultrafilter in Y. 

Proofo A well knovm argument shows that~ is base for an ultrafilter ~• 

in Xo Let {salaE.A} be a family of closed sets of~• with cardinal~ .!,o 

Clearly every S intersects every f(F) (Ff:~), Consequently every 
a 

f- 1(s) (a€A) is a closed subset of X and meets every member ofo/
a 

Hence, since'.:F' is an .!,-Ultrafilter, {f-1(sa)la€A} is a subcollection of 

~ and n{f-\s ) lae-A}~ $. It follows that {s laEA} has non-empty inter-a a 
sectiono 

(2o2} Theoremo The property .!,-ultracompact is closed-hereditary and 

productive for every !E.• Moreover !E,-ultracompactness is an almost-fitting 

property (we shall see in the next section that !E,-ultracompactness is 

even a fitting property). 

Proof. Let {xala~A} be a collection of !E,-ultracompact spaces and 

X = 1r {x I CJ.EA} o Take an m-ul trafil ter ~ in X and let for a€A 
a -

o/ = { 1T Fl Fey}. By the previous lemma, each:r is base for an m-ultra-a a a 
filter in X which is convergent to a point p in X. a a a 
Let p be the poin~ of X whose a'th coordinate is p. A well known argu

a 
ment shows that p is limitpoint ofry", i.eo ~ is convergent (since Y is 

an ul trafil ter} • 
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rrow let f be any perfect mapping of X into Y and suppose Y is .!:!,-ultra

compact. We will show that Xis necessarily ~-ultracompact; hence it 

follows that (y is almost-fitting and closed-hereditaryo (recall that 

if Xis closed in Y, then the inclusion map f ~ X + Y is perfect). 

Take any !!!-ultrafilterc:F in Xo The preceding lemma shows that 

~ = {f(F)jFE~} is base for an m-ultrafilter 1' in Y which is conver

gent, say to peY o f is a closed mapping, so we have pe: f\{"rml F~ = 

=n{f(F)IFc.<'F}. Clearly {f-\p)r-\FIFE.o/} satisfies the finite intersec

tion property, and compactness of f- 1 (p) yields n{f-1 (p)nFIF~} ,f. $. 

ConsequentlyO{FIFEo/} ,f. <l> ioe.g:° has a limit point in X. 

(2o3)Lemma. If Xis an !!!-ultracompact space and every open cover of it 

of cardinal< m has a finite subcover, then Xis compact. 

Proof o Let~ be an arbitrary ultrafilter in X. Clearly the family of 

closed subsets of X that are members of~ satisfy the .!:!,-intersection 

property (otherwise their complements would constitute at least one open 

cover with cardinal< m that has no finite subcover). --
!!!-ultracompactness of X now yields that~ is convergento Consequently 

each ultrafilter in Xis convergent i.e. Xis compact. 

In particular it follows that a topological space Xis cpmpact if Xis 

ff; ultracompact and countably compacto Actually a stronger result is 

true: Xis compact<-> Xis pseudocompact and realcompact. 

(2.4) Theoremo For each (infinite) cardinal number!!! there exists a 

normal space X which is .!:!,-ultracompact but not !!_-ultracompact for n < m. 

Proof. We may suppose m > ft.. 
- 0 

Let a be the smallest ordinal number of potency.!:!,• Let W ={~ordinal 

l~<a} and w* = {~l~~a} be supplied with the usual order topology. 

Wis !!!-ultracompact. For, since 8W is homeomorphic tow*, and ultrafilter 

~in W that has no limit point in W must contain the~ sets F
8 

= 

= { ~EWj ~~8} ( 8 < a) a Since n{F 
8 
I 8<a} = <l> 'Y cannot be an m-ultrafilter. 
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If~<!;, then Wis not ~-ultracompact. Indeed .!!,-ultracompactness would 

together with the fact that every open cover of W of cardinal~ n has a 

finite subcover, disprove (2.3)o 

ll• Relationship between fro-ultracompactness and realcompactness 

Definition. A space Xis called realcompact provided that every maximal 

centered family of zerosets1) which satisfies the countable intersec

tion property has non empty intersection. 

It is well known (cf.[1]) that a space Xis realcompact if and only if 

Xis homeomorphic to a closed subset of a product of real lines. 

Consequently the!property realcompactness is closed-hereditary and 

productive. 

The notion, realcompact is closely related to the notion J)"c.-ultracom

pact. It appears that these concepts coincide for countably paracompact 

normal spaces: 

(3.1) Theorem. Every realcompact space is ,¾-ultracompact 2 ). Every 

countably paracompact normal ~-ultracompact space is real=compact 3). 

1) ZOC is a zeroset in X if there exists a real-valued continuous func

tion f on X such that Z = {xcXI f(x) = o.}. 

2 ) The Tychonoffplank is an example of a space which is ~-ultracompact 

but not realcompact. 

3 ) Added in the proof: Jsing a result of Frolik (cf.[3]) I can prove that 

(3.1) remains true for normal spaces. The same holds for (4.3). 
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Proofo The first statement is clear since we know that ffo-ultracompact

ness is closed-hereditary and productive whence it follows that a closed 

subset of a product of real lines is ft. -ul tracompact o 
0 

The second statement is settled in the following non trivial lemma. 

Lemmao Leto= {7.l} be the family of all countable open covers of a space 

x. For each 1(€.o and member u of u., set it' C ex\x\u13X and 1[ = {u*I ue:u.} O 

(1) If Xis a countably paracompact normal space then 

n {vul'U..Eo} = n{vtt" exlU£o} 
(2) If Xis an &

0
-ultracompact space then 

x = f\ {v-u..*lt.t..E.o} 
If in particular Xis sY

0
-ultracompact and countably paracompact nor

mal it follows that X, being intersection of o-compact subsets of BX, 

is realcompact. 

Procf(1)o Let X' denotes the left-hand side of (1) and X11 the right 

side. It is obvious that X'CX" • To prove X'' CX' let U.. be an arbitrary 

fixed countable open cover of X. Choose a countable open cover?Jsuch 

that for each Vin 1Jthere exists U€U.such that V and x\u are comple

tely separatedo 

Such a cover exists because Xis countably paracompact and normal. 

Clearly v;fX C VU and we have proved X" CX'. 

Proof of (2)o Let us suppose that there exists a point qe.X'\X. Leto/ 

be the collection of all open neighbou~hoods of q in f3Xo Put~= 

= {F11XjF€~}o 

It is easy to see that~ is a filterbase in X and hence contained in 

some ultrafilter~'o We will first show that S' is an H'
0
-ultrafilter 

in X. Indeed, if gis a countable family of closed members of~, with 

empty intersection then the collection {x\s1S€~} is a countable open 

cover of X and hence there exists S€.i such that qe(X\S) *. Consequent-

ly X\SEiC s~. 
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But x\s and Sare two members of the filter 91 with empty intersection. 

This is impossible and we conclude that~, is an ft-ultrafilter in X. 

Now the ff
0
-ultracompactness of X yields nwX #~.In particular it is 

possible to choose a point rE:X such that rErif. 
But { q} = n~SX and clearly nf = n<fXnx = ~. This is a contradiction 

and it completes the proof of (2). 

(3.2) Theorem. For a countably paracompact normal space X, the Hewitt

realcompactification vX satisfies: 

(a) If a countable family of closed subsets of X has empty intersec

tion in X then their closures in vX have empty intersection in vX. 

Proof. Use the same notation as in the proof of the preceding lemma. 

Take any countable collection g of closed subsets of X with empty inter

section. {x\s!Se~} is a countable open cover of X and consequently 

v{(x\s)*lseg}:)X'. By the very definition of the* operator we have 
sx -sx -x, 

for SE.~ {x\s)* = sx\s • Hence 0£ niX' =~ i.e. 0$ = ~. 

The proof of the theorem is complete when we have shown that X' is the 

Hewittrealcompactification of X. 

Indeed, it is evident that X' is a realcompactification of X since by 

(3.1) X' is the intersection of o-compact subspaces of SX and Xis 

densely embedded in X'. 

Moreover we have proved that X' 1s a realcompactification of X with 

the following property. 

(s) If a countable family of zerosets of X has empty intersection 

then their closures in X' have empty intersection. 

Hence by the characterization of the Hewitt-realcompactification vX 

(cf. [1]) we actually have vX = X'. 

(3.3) Theorem. The image under a perfect map of a countably paracom

pact normal realcompact space is countably paracompact normal and real

compact. 
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Since the perfect image of a countably paracompact normal space is coun

tably paracompact normal this theorem is by virtue of (3o1) a direct 

consequence of the following more general result. 

Every space Y which is the perfect f-image of some JY0 -ultracompact 

space X is ~-ultracompact. 

Proof. Letly'be an arbitrary ~-ultrafilter in Y and 9 an ultrafilter 

in X which contains the family f-1(~) = {f-1(F)IFE9=}. 

We shall first prove that~ is an ~-ultrafilter in X. Let us suppose 

that there exists a countable familyg of closed members of§ with 

empty intersection. Without lost of generality we may suppose that$ 

is closed under finite intersections. The members of f(t) = {f(S)lse.$} 

are closed subsets of Y and they intersect each member of o/• Consequent

ly f{$'}Cr and we are able to choose pE.flf~) sinee ~ is an ,&0 ultra

filter rn Y. Now {f-\p)Oslse$} is a centered system in X and compact

ness of f- 1(p) yields n{f-1(p)nslsE:$},; <1>. Hence~,; <1>. The space X 

being }j0 -ultracompact, we have nJX 'f <I>, and in consequencen~y 'f <I>. 

Note. (3.3) is not a new result. Frolik proved this theorem in [3] 

using the notion almost-realcompactness which is somewhat weaker than 

,.&0 -ultra~ompactness o 

Frolik showed that each almost realcompact normal space is realcompacta 

(However there is an incorrect proof in [3]). 

§4o Generalized Lindelofspace. 

Definition. A family ,S of subsets of a topological space satisfies the 

Lindelofproperty provided that every cover of it by members of~ has 

a countable subcover. 
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A space X will be called a generalized Lindelofspace if there exists 

a subbase for its topology with the Lindelofpropertyo 

Obviously a Lindelofspace is a generalized Lindelofspaceo 

The converse is false because every discrete space D of cardinal< c is 

a generalized Lindelofspaceo 

(One can suppose that D is a subset of the real lineo Let l> be the col

lection of all subsets of D of the form {xsnlx<a},{xeDlx~a},{xEDlx>a}, 

{ xGDI x~a} (~ IR) o ~ is a subbase for the discrete topology for D which 

satisfies the Lindelofproperty). 

The following proposition is obvious. It is a dual formulation of the 

notion of generalized Lindelofspace. 

(l~.1) Proposition. A space Xis a generalized Lindelofspace if and only 

if there exists a subbase S for the closed sets such that each subcol

lection of~ with the countable intersection property, has non empty 

intersection. 

(4.2) Theorem. Every topological product of generalized Lindelofspaces 

is a generalized Lindelofspace. 

Proof. Let X = n{X I aEA} and & a subbase for the closed sets of X 
a ~a a 

with the property that each subcollection with the countable intersec-

tion property has nonempty intersection. 

Let~ be the subbase for the product topology consisting of all sets 

of the form n-1(c) where n is the projection into the a'th coordinate-
a a 

space and C a member of ~a. 

Let i, be a subcollection of~ with the countable intersection proper

ty»we will show that~ has a nonempty intersection in X. 

For aeA let P, be the subcollection of P consisting of the sets n S ~a ~a a 
for which s€t'. For each a £~ has the countable intersection proper-

ty and it is therefore possible to choose a point p in <t{n (S)IS€(.)'}. 
Ct Ct ~ 
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The point p of X whose a'th coordinate equals pa is in the intersec

tion of~, o 

Uoteo The property "being a generalized Lindelofspace" is not an inva--
riant for the taking of open subsets (this is immediate from the next 

theorem and the examples given on page 9)o 

I don 1 t know whether it is true that every closed subset of a genera

lized Lindelofspace :isa@neralized Lindelofspace or what comes to the 

same(because of (4.1~ that every realcompact space is a generalized 

Lindelofspace. 

(4o2) Theorem. Every generalized Lindelofspace is ff
0
-ultracompacto 

Proof. Choose a sub base ~ for the topology of X with the Lindelofpro

perty o Suppose on the contrary X not ft,o -ultracompact and let~ be an 

.&0 -ultrafilter which has no limitpoint in X. 

For each peX choose a subbasic neighbourhood U tSof p which is not a p 
member of ry'. ~ satisfies the Lindelofproperty, so the family {up! PEX} 

contains a, count~ble subcollection {upili=1,2,.oo} which covers X. 

There exists a natural member 1 such that U 
1
~~. For otherwise, 

{X\U .li=1,2.-oo} is a countable family of ~losed members of (.rwith pi 
empty int€lrsection which is impossible since g: is an ~

0
-ultrafilter 

in X. However up1~5" contradicts the fact that upt:fCj- for pEXo 

(4.3) Theorem. Every countably paracompact normal generalized Linde

lofspace is realcompact. 

Proof. This follows at once from (3.1) and the foregoing theorem. 
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