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Introduction

Letﬁ)be some topological property defined on a suitable class of to-
pological spaces. (e.g. the class of completely regular spaces).

In category theory it is natural to ask, whether there exists a
functor ¥ from the category C of spaces in consideration, to the sub-
category D of spaces satisfyingﬁ7,'which is left-adjoined to the for-
get-full functor from D to C. In topology this means that we ask
whether it is possible to embed an arbitrary space X (of the class in
consideration) densely in a space YX satisfyinng: such that each con-
tinuous map of X into any space Y satisfying{P has a continuous exten-
sion which carries yX into Y. Now take for{P the compactnessproperty
and for C the class of completely regular spaces, then every space X
has indeed such a "maximal¥J’-fication" = maximal compactification. Its
name is BX, the Cech-Stone compactification of X and the functor in
consideration is B,

The question is: how can we characterize all the properties that
admit maximal ¥ -fications? Tt turns out (this is the main result of
section 1) that every space has a maximal ¥ ~fication if and only if
@ is closed-hereditary, productive and almost fitting. (for definitionms
cf. §1 of these notes),

In section 2 we define for each cardinal number m the property
m-ultracompactness which satisfies this maximility condition. If m is
a finite cardinal number, then m-ultracompactness coincides with com-
pactness; for'.x_n_ = %it is closely related to realcompactness (cf. D:[
or §3 for the definition of realcompactness).

Section 4 is devoted to the study of a generalized notion of the
Lindeldfproperty: A space is calied a generalized LindelSfspace pro-
vided that there exists a subbase for its topology such that each open

cover of it by members of the subbase has a countable subcover.



1o Almost=fitting properties, maximal embedding,

Until explicitly stated, all spaces in consideration are comple-
tely regular. Bold face letters stand for cardinals. JS’; stands for the
cardinalnumber of a countable set, c denotes the cardinal of the con-
tinuum. If U is a family of subsets of a space X, then the symbol 'IIX,
or simply U will be used to denote the family of all ﬁX for vhich UEW,
The union and intersection of a family of sets W will be denoted by

UW or NU. respectively,

(1.1) Conventions. Let Y ve a topological property defined on the
class of completely regular spaces.
? is called productive or sometimes arbitrary productive if the product

of an arbitrary collection of spaces enjoy:i.ngﬂj , has property ?a, ’

6’ is called countable productive (respectively finite productive) if the

product of a countable (respectively finite) collection of spaces en-
joyingf\7 has property 9%

P is called hereditary (respectively closed-hereditary) if every sub-
space (respectively closed subspace) of a space satisfying%’, has pro-

P

o

perty '
1)

€Y is called almost-fitting property, if whenever f is a perfect map
of a space X onto a space Y, then X has property?if Y has property?e

(j) is called a fitting property, if whenever f is a perfect map of a
space X onto a space Y, then X has property 9> if and only if Y has

property ? .

2)

almost fitting; closed-hereditary and productive.

Compactness and realcompactness are examples of properties that are

1)

A mapping f of a space X into a space Y will be called perfect if
f is continuous, closed (the images of closed sets are closed) and
tle inverses of points are compact.

2) For the definition of realcompactness cf DJ or section 3 of these

qnotes.



Local compactness, U=compactness, countable compactness, paracom=
pactness, countable paracompactness, Eéchscompleteness are examples
of properties that are fitting and closed-hereditary. (but not pro=
ductive)., Each of these properties at infiaity is also a fitting
property which is closed=hereditary . For further information we
refer to [2]o

If a topological space X is densely embedded in a space YX with
propert;;rﬁD then we call YX aP-fication of Xo

Sometimes YX is of the type that to each continuous mapping f of X

into any space Y with property ﬁbﬂ, we can find a continuous extension

of f which carries YX into Y, YX is then said to be a maximal $-fication
of X

If to every space X it is possible to find a maximalfFLfication ¥X of

X, then ¥X is uniquely determined to X.

Indeed, if YX and 68X are two maximal P-fications of X, then the identity
mappings i:X + vX and j:X + 86X have continuous extensions E and 3

to all of 8X and ¥YX respectively. 3 o E ;3 86X + 8X takes the dense sub-
set X fixed and is consequently the identity map of ¢X onto X

(recall that two continuous mappings f and g defined on a Hausdorff-
space X with range Y coincide, if they coincide on a dense subset of X).
Similarly we show that E o 5 is the identity map of yX onto vX.
Consequently yX and 68X are topologically equivalent.,

Compactness and realcompactness are indisputable the most interesting
properties having the property that every (completely regular) space
admits a maximalJP-fication (respectively called Cech~Stone compacti-
fication and Hewitt realcompactification).

With this in mind it seems to be of minor importance to look for all
the other properties possessing this feature.

But the following theorem which is the main result of this section

actually shows that these properties are most familiar to us,



Main result of §1,
If Pis a topological property which is possessed by some non-empty

space, then the following statements are equivalent.
{a) Every space has a maximal.@tficationo

() P is almost=fitting, closed=hereditary and productive.

Before we attack the proof, we give some preliminary results which

are of interest in itself,

(1.2) Lemma. If ¢ is a continuous map of a space Y into & space Z into
a space Z, whose restriction to a dense set X is a homeomorphism, then
¢ carries Y\XD into Z\¢(X)°

Proof. Suppose on the contrary ¢(p)E€¢X and p € Y \ X. Let X' = xWp}.
The restriction map ¢|X has an inverse ¥ : ¢X = X which is continuous.
Consequently ¥ o ¢|X' is a continuous mapping from X' into X* whose
restriction to the dense set X is the identity on X.

X* is a Hausdorffspace, hence it follows that ¥ o ¢|X' is the identity
map of X' onto X', In particular we have y(¢(p)) = p, contradicting

p € Y\Xo

(1.3) Iemma, Ift is a perfect map of a space X onto a space Y and 3
is the extension of 1 which carries SX1) onto BY, then %(BX\x‘ = BY\X
For the proof we refer to [?] po 87 Lemma 1.5,

(1,4) Lemma, Let 8 be a topological property which is productive and
closed=hereditary,

If Z is a space and {X |o€A} is a collection of subspaces with property
QPthen X = (\{Xa!aeA} satisfies propertyg)o

An analogous result is obtained for properties that are only countably

or even finite productive.

1)

BX denotes as usual the Uech-Stone compactification of X

&



Proof., Let Y = XalaEA},and AC Y given by A = {x=('xa)€Yl’xa = .Xm
Von1, 0‘26 A}e L

Tt is not hard to see that X is homeomorphic to the subspace A.Since 5)

2

is topological it remains to show that A has property g)o
Y has properfny since each Xa has property ,CP and @is productive.,

A is a closed subset of Y because each Xa is a Hausdorffspace. Hence A

has property fpsince 53 is closed-hereditary.

(1.5) Corollary. If a topological property {)) is closed-hereditary,

1

productive and an invariant for the taking of open subsets, then
hereditary.

Indeed, if Y is a space havingg)and X €Y then X =ﬂ{Y\{p}]p€Y\X} i.e.
X is intersection of open subsets of Y. By assumption each open subset

of ¥ hasg) and the preceding lemma yields that every intersection of

spaces enjoying {P has C‘Pe Consequently X has property P,

This corollary can serve as a test to decide whether some property is
inherited by open subsets, closed subsets or (arbitrary) topological
products. ’

For instance it is easy to see that the property k” is an invariant for
the taking of open and closed subsets. Since the property k is not here-
ditary the above result shows that the property k is not productive.

9

Next we observe that if Y’ is a property which is closed-hereditary,

almost-fitting and is possessed by some nonempty space, then P is

possessed by all compact spaces. For if Y is any nonempty space satis-
fyingg), and C 1s any compact space, then the image of the topological
sum X of C and Y under the perfect mapping f that coincides with the

identity on Y and sends C to some fixed point of Y is Y. f is almost-

fitting and closed~hereditary so X and hence C has propertyf?e

R A space X has property k provided that a subset is closed if it has

a compact intersection with each compact subspace of X.

£



Proof of the main result.

(a) =>(b). Let S)be a property such that every space has a maximalEFL
fication. We will show that 5)satisfies the desired invariance proper-
ties, E

Let {XalaeA} be a collection of spaces enjoying P and X = n{Xa|aeA}e
Each projection map L X »> Xa has a continuous extension vi: yX » Xao
Let i© : yX + X be defined by the conditions (i*(x))u = n:(x) (o € A),
i is the identity on X, so we have by (1.2) that yX\X =¢ i.e. yX = Xo
Consequently X has property {))c

Let X be a closed subset of a space Y satisfyinggxz The inclusion map
of X into Y has a continuous extension i~ of vX into Y. By (1.2) the
preimage of the closed set X under i~ is X3 hence X is closed in yX i.es
vyX¥ = Xo It follows that X has pr0perty5}>

©

Now let t be any perfect mapping of a space X onto a space Y satisfying
P, Consider the extension % of t which carries gX (zie 1) pag L4)) onto
8Y. Sine Y hasf}: there is an extension (%[XY* of %]X which carries yX
into Y.

The inclusion map i:X+gX has a continuous extension i’ which carries

YX in‘tO Y BX EXO

a0

We have T[X =% o1, so (?IX)* =% o it (by uniqueness of continuation).
By (1.2) i"(yX\X)CBX\X and by (1.3) (¥ o i™)(yAX)caT\Yo But (%],)°
(yXXX)(LY i.e, yX\X = ¢. Consequently X satisfiesTP.

(b) =>(a). Let{P possess the already cited invariances; let X be a space
and BX its Eéch-Stpne compactification.

Consider for each continuous mapping f which sends X onto a subset of

a space Y satisfying;j% the extension T
and set X(Y,f) = E‘_‘I(Y)° For each space X(Y,f) the restriction map

of f which carries X onto BY,

%IX(Y,f) is a perfect mapping from X(Y,f) onto Y. (remark that this
mapping is the restriction of a perfect mapping to a total inverse).
Consequently every space X(Y,f)saﬁst‘iesq)becalse gpzs an glmost-~-fitting proper-
ty. Now let yX =N{X(Y,£)|Y satisfiesf}k f:X + Y continuous; fX dense

in Y}a

X is clearly densely embedded in yX moreover (1.4) shows that yX is

even aﬁ?mfication of X,

&



We shall prove that yX is a ma:»cima.lg)m:f‘icatﬁ’.ono If g is any continuous
mapping from X into a space Z sa’c:’.si‘;)r:i.ng57’9 then let Z' be the closure
of gX in Z. Z° satisfiesg)) since {\)is closed=hereditary.

Now we have yX CX(Z2',g) (g considered a a mapping of X into Z') and

E!yX ¢ YX » Z'C Z is a continuous extension of g which carries yX into Z.

The following proposition gives us a simple criterium to decide whether

some property is closed-hereditary or not:

(1.7) Proposition. Let  ve a topological property which is possessed

by all compact spaces, If SPis inherited by intersections of two sub-
spaces one of which is compact and the other satisfyingg), then @ is
closed-~hereditary.

Proof. Let Y be a space satisfying@and X a closed subset of Y.

Let 8Y be a compact extension of Y. iGY and Y are 'subspaces of &Y both
satisfyingf? while }_{6Y is compact. Hence their intersection which equals
X has 5) o

There exists also a criterium to decide whether some property is pro-

ductive or not. It is a "generalisation” of the Tychonoff product theorem.

(1.8) Proposition. Let § be an almost-fitting property which is an in-
)

dinal < m of subspaces satisf’ying{)) has §*). Then every product of n
P

variant of m”’ intersections (i.e. each intersection of a family of car-

spaces enjoying @, has

Proof. Choose an indexset A with cardinal m. Let {XalaeA} be a collec~-

tion of spaces satis.fyingg) and X = “{Xa]aeA}o Fach projection map L

a2

of X onto 'Xa has a continuous extension T, which carries BX into BXua

= o . .
For oel set X(a) = N (Xa)o Each X(a) has property 3 since % ()

is a perfect mapping of X(a) onto X,

1)

m denoting a finite or an infinite cardinal number.



By assumption X' =N{X(a)|a€A} has property & But X is densely embedded
in X' and the mapping 1 : X' + X defined by the conditions (z(x))u =
= ﬁa(x) (0 € A) is a continuous mapping which is the identity on X.

Consequently it follows from (1.2) that X' = X 1i.e. X has propertyS§i

From (1.4), (1.7) and (1.8) we obtain:
(1.9) Theorem. For an almost-fitting property(F’the following conditions

are equivalent.
(I)ng is an invariant for the taking of arbitrary intersections and
¥

<

each compact space has
(11)5€Pis closed~hereditary and arbitrary productive.
The equivalence between (I) and (II) remains satisfied if we replace

"arbitrary” by "countable" or "finite",

§2, Examples; the notion m-ultracompact.

We are dealing with the following problem: are there "enough" almost-
fitting properties that are closed-hereditary and productive? The theory
above would obviously be not succesful if real-compactness and compact-

ness were the only candidates.

Definition. A family of subsets of a topological space X has the m~in-

tersection property (E;finite or infinite cardinal number) provided

that every subcollection of cardinal < m has a nonempty intersection.

Definition. An ultrafilterf}rin X is said to be an m-ultrafilter if
the closed sets of X that are members offF; satisfy the m-intersection

property.



Definition. A space X is called m-ultracompact provided that every

m~ultrafilter in X is covergent.

Obviously compact implies m-ultracompact for every m; if n < m then
n-ultracompact implies m-ultracompact.

It is also easy to see that if X has the .LindelSfproperty then X is
fj};—ultracompacte The connection between fgg-ultracompactness and real-

compactness is considered in the next section.

(2.1) Lemma, Let<F be an m~ultrafilter in a space X and f : X > Y a

continuous mapping. The collection g = {f(F)‘F‘&EF} constitutes a base

for an gfultrafilter in Y.

Proof, A well known argument shows that g is base for an ultrafilter g'
in X, Let {SulaeA} be a family of closed sets of %' with cardinal < m.
Clearly every 8 intersects every f(F) (F €F). Consequently every
f—1(Sa) (oeA) is a closed subset of X and meets every member of TF.
Hence, since is an m-ultrafilter, {f~1(Sa)laeA} is a subcollection of
fFfand.ﬂ{f-1(Sa)|aeA}¢ $. It follows that {Sa|“€A} has non-empty inter-

section.

(2.2) Theorem. The property m-ultracompact is closed-hereditary and

productive for every m. Moreover m-ultracompactness is an almost-fitting
property (we shall see in the next section that m-ultracompactness is

even a fitting property).

Proof. Let {XﬁlaéA} be a collection of m-ultracompact spaces and

X = w{XalaeA}o Take an grultrafilterQFSin X and let for a€A

‘33 = {TraF]FGZEF}° By the previous lemma, eachgfa is base for an m-ultra-
filter in Xa which is convergent to a point P, in Xao

Let p be the point of X whose a'th coordinate is Py A well known argu-
ment shows that p is limitpoint of ¥, i.e. ¥ is convergent (since F is

an ultrafilter).



Now let f be any perfect mapping of X into Y and suppose Y is m-ultra-
compact. We will show that X is necessarily m-ultracompactj hence it
follows that@ is almost-fitting and closed-hereditary. (recall that
if X is closed in Y, then the inclusion map f : X + Y is perfect).
Take any g-ultrafilter"ff in X. The preceding lemma shows that

(;= {£(F)|Fe} is base for an m-ultrafilter §' in Y vhich is conver-
gent, say to pe¥, f is a closed mapping, so we have pe r\{-f"(-fﬂ F@’} =
=n{f(F)|Fex®}. Clearly {fn1(p)f\§‘lF€9‘} satisfies the finite intersec-
tion property, and compactness of f_1(p) yields O{f—1(p)ﬂf‘|F€9—’} # ¢
Consequently N{F|FeEF} # ¢ i.e.F has a limit point in X.

(2.3)Lemma. If X is an m-ultracompact space and every open cover of it

of cardinal < m has a finite subcover, then X is compact.

Proof, Let % be an arbitrary ultrafilter in X. Clearly the family of
closed subsets of X that are members of ¥ satisfy the °r_n-—inwbersecticn
property (otherwise their complements would constitute at least one open
cover with cardinal < m that has no finite subcover).
m-ultracompactness of X now yields that F is convergent. Consequently

each ultrafilter in X is convergent i.e. X is compact.
In particular it follows that a topological space X is compact if X is
,\(f; ultracompact and countably compact. Actually a stronger result is

true: X is compact <=> X is pseudocompact and realcompact.

(2.4) Theorem. For each (infinite) cardinal number m there exists a

normal space X which is m-ultracompact but not n-ultracompact for n < m.

f_{'_gg_:g‘_u We may suppose m > sc_go

Let o be the smallest ordinal number of potency m. Let W = {E ordinal
|E<a} and W' = {g]|g<a} be supplied with the usual order topology.

W is m~ultracompact. For, since BW is homeomorphic to W%9 and ultrafilter
7 in W that has no limit point in W must contain the m sets F, =

B
= {gew|e>g} (B < o). Since (\{FB|6<a} = ¢ F cannot be an m-ultrafilter.
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If n < m, then W is not n-ultracompact. Indeed n-ultracompactness would

together with the fact that every open cover of W of cardinal < n has a

finite subcover, disprove (2.3).

§3. Relationship between 5&E-ultracompactness and realcompactness

Definition. A space X is called realcompact provided that every maximal

1)

tion property has non empty intersection.

centered family of zerosets ’' which satisfies the countable intersec~

It is well known (cfo[ﬁ]) that a space X is realcompact if and only if
X is homeomorphic to a closed subset of a product of real lines.
Consequently the, property realcompactness is closed-hereditary and

productive.
The notion, realcompact is closely related to the notion fgzrultracom-
pact. It appears that these concepts coincide for countably paracompact

normal spaces:

(3.1) Theorem. Every realcompact space is fﬂ;ﬂﬂtracompact 2)° Every

countably paracompact normal fh;ultracompact space 1s real-=compact 3)0

1)

ZCX is a zeroset in X if there exists a real-valued continuous func-
tion £ on X such that 2 = {xe&X|f(x) = o}.

2) The Tychonoffplank is an example of a space which is §§g~ultracompact

but not realcompact,.

3) Added in the proof: Using a result of Frolik (cfeEﬂ) I can prove that

(3.1) remains true for normal spaces. The same holds for (4.3).
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Proof. The Tirst statement is clear since we know that SS’;-ultracompact-
ness is closed-hereditary and productive whence it follows that a closed
subset of a product of real lines is gj‘o-ultracompactc

The second statement is settled in the following non trivial lemma.

Lemma. Let 8§ = {’ZL} be the family of all countable open covers of a space
X. For each€S and member U of U, set u = BX\XiU‘ X and U = {U*lUéLL}o

(1) If X is a countably paracompact normal é‘pace then
n{viiluest =nuld lues)
(2) If X is an Qo-ultracompact space then
X = N {ud fues}
If in particular X is S?o-ultracompact and countably paracompact nor=-
mal it follows that X, being intersection of o-compact subsets of BX,

is realcompact.

Proof(1). Let X' denotes the left-hand side of (1) and X" the right
side. It is obvious that X'CX" . To prove X" CX' let U.Dbe an arbitrary
fixed countable open cover of X, Choose a countable open cover %f such
that for each V in {J there exists UE€W such that V and X\U are comple-
tely separated.

Such a cover exists because X is countably paracompact and normal.
Clearly viIFE cul’ and we have proved X"CX',

Proof of (2). Let us suppose that there exists a point o€X'\X. Let ¥
be the collection of all open neighbourhoods of g in BX. Put g =

= {mx|FeF}.

It is easy to see that g is a filterbase in X and hence contained in
some ultrafilter ﬁ '. We will first show that g' is an Qo—ultrafilter
in X. Indeed, if gis a countable family of closed members of g' with
empty intersection then the collection {X\SISG S} is a countable open
cover of X and hence there exists seS such that qe(X\S)*o Consequent—

ly X\SégC 8! .
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But X\S and 5 are two members of the filter g' with empty intersection.
This is impossible and we conclude that g' is an fa;-ultrafilter in X,

Now the f?;—ultracompactness of X yields ﬁgrx # ¢. In particular it is

possible to choose & point reX such that rerfgx,

But {q} =l7§BX and clearly ﬂqx =(1§8Xf\X = ¢, This is a contradiction

and it completes the proof of (2).

(3.2) Theorem. For a countably paracompact normal space X, the Hewitt-

realcompactification vX satisfies:
(a) If a countable family of closed subsets of X has empty intersec—

tion in X then their closures in vX have empty intersection in vX.

Proof, Use the same notation as in the proof of the preceding lemma.
Take any countable collection S of closed subsets of X with empty inter-
section. {X\S!Seg} is a countable open cover of X and consequently
U{(X\S)ﬂSEﬁ-S}:)X'n By the very definition of the * operator we have
for SES (X\S)* = BX\'S"BX‘> Hence O-S-BXQX' =¢ iee.ﬂng = ¢,

The proof of the theorem is complete when we have shown that X' is the
Hewittrealcompactification of X,

Indeed, it is evident that X' is a realcompactification of X since by
(3.1) X' is the intersection of o-compact subspaces of BX and X is
densely embedded in X',

Moreover we have proved that X' is a realcompactification of X with
the following property.

(B) If a countable family of zerosets of X has empty intersection
then their closures in X' have empty intersection.

Hence by the characterization of the Hewitt-~realcompactification vX

(cf. [1]) we actually have vX = X',

(3.3) Theorem. The image under a perfect map of a countably paracom-

pact normal realcompact space is countably paracompact normal and real-

compact .
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Since the perfect image of a countably paracompact normal space is coun-—
tably paracompact normal this theorem is by virtue of (3.1) a direct

consequence of the following more general result,

Every space Y which is the perfect f-image of some jS’\o--ultracompac‘l:
space X is IS‘,‘)—ultracompacte

Proof. Let(y be an arbitrary ﬁ%—ultrafilter in Y and @ an ultrafilter
in X which contsins the family £~ &) = {£~(F)|reg}.

We shall first prove that g is an &—ultrafilter in X. Let us suppose
that there exists a countable familyg of closed members of gwith
empty intersection. Without lost of generality we may suppose that S
is closed under finite intersections. The members of f(S) = {f(S)lSég}
are closed subsets of Y and they intersect each member of ¢F. Consequent-
1y f(g)cf and we are able to choose peﬂf(g) sinece & is an _S‘o-ultra-—
filter in Y. Now {f_1(p)ﬂS|SGS} is a centered system in X and compact-
ness of fﬂ(p) yields n{f-1(p)ﬂS|S&S} £ ¢, Hence('g# ¢. The space X
being ;S‘o—ultracompact, we have (\?X # ¢, and in consequenceﬂ?y £ ¢,

Note. (3.3) is not a new result. Frolik proved this theorem in 5]
using the notion almost-realcompactness which is somewhat weaker than
‘)St ~ultracompactness.

Frolik showed that each almost realcompact normal space is realcompact.

(However there is an incorrect proof in [3]).

§b. Generalized Lindel8fspace.

Definition. A family 43 of subsets of a topological space satisfies the
Lindel8fproperty provided that every cover of it by members of R has

a countable subcover.



1%

A space X will be called a generalized Lindel8fspace if there exists

a subbase for its topology with the Lindel8fproperty.

‘Obviously a Lindeldfspace is a generalized Lindel&fspace.

The converse is false because every discrete space D of cardinal < c is
a generalized Lindel8fspace.

(One can suppose that D is a subset of the real line. Let 3 be the col-
lection of all subsets of D of the form {xeD|x<a} ,{xeDIxja} x| x>al,
{xeD|x>a} (ac|R) - B is a subbase for the discrete topology for D which
satisfies the Lindel8fproperty).

The following proposition is obvious. It is a dual formulation of the

notion of generalized Lindel&fspace.

(4,1) Proposition., A space X is a generalized Lindel8fspace if and only

if there exists a subbase S for the closed sets such that each subcol-
lection of g with the countable intersection property, has non empty

intersection.

(4.2) Theorem. Every topological product of generalized Lindel®8fspaces

is a generalized Lindeldfspace.

Proof. Let X = H{XalaeA} and Sa a subbase for the closed sets of Xa
with the property that each subcollection with the countable intersec-
tion property has nonempty intersection.

Let 8 be the subbase for the product topology consisting of all sets
of the form ﬂ;1(C) where T is the projection into the a'th cobrdinate-
space and C a member of gao

Let %' be a subcollection of g with the countable intersection proper-
ty,we will show that S has a nonempty intersection in X.

For aehA let g& be the subcollection of ga consisting of the sets “as
for which SE%'o For each a S&has the countable intersection proper-

ty and it is therefore possible to choose a polnt P, in ﬂ{na(S)ISGg'}o
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The point p of X whose o'th coordinate equals P, is in the intersec-
tion of S'

Note. The property "being a generalized Lindeldfspace" is not an inva-
riant for the taking of open subsets (this is immediate from the next

theorem and the examples given on page 9). |

I don't know whether it is true that every closed subset of a genera-

lized Lindeldfspace is a generalized Lindel®fspace or what comes to the

same (because of (hﬂ)) that every realcompact space is a generalized

Lindeldfspace.

(4.2) Theorem. Every generalized Lindel8fspace is B‘o-ult:m—:an.compacta

Proof. Choose a subbase Q) for the topology of X with the Lindeldfpro-
perty. Suppose on the contrary X not 53‘\0 -ultracompact and let & be an
SS’\ =ultrafilter which has no limitpoint in X. |
For each peX choose a subbasic neighbourhood U e@of p which is not a
member of F. % satisfies the Llndelofproperty, so the family {U lpeX}
contains a, countable subcollection {U .|i=1 »25000} Wwhich covers Xe
There exists a natural member 1 such that U e<5‘° For otherwise,
X\U [1 1 2,°oo} is a countable family of closed members of (S:wn:h
empty intersection which is impossible since J— 1s an Q-—ultrafllter
in X. However Uple? contradicts the fact that Up#‘)\" for peX,

(4.3) Theorem. Every countably paracompact normal generalized Linde-

18fspace is realcompact.

Proof. This follows at once from (3.1) and the foregoing theorem.
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