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Introduction.

In this report we will give an (affirmative) answer to the following

gquestions, raised by M.A. Maurice:

1. Is it true that the Sorgenfrey line S (the reals with the intervals

[a,b) for base) is not orderable?

2. Is the product of two separable ordered spaces LindelSf?

3. Does there exist & Lindeldf ordered space X, such that X x X is not

Lindeldf (or even: such that X x X is not normal)?

We prove 1 by means of 2, which comes down to showing:

Each separable ordered space is_a paracompact Arhangelskii p-space.

Another proof of 1 can be found in [4], where the following is proved

An ordered space X is metrizable iff the diagonal of X x X is a G .
j*J

The reader should use the first section for reference only. In the
second section,p.7 and 8,the two maintheorems are formulated. The
answer to questions 2 and 3 can be found in the third section, p.9.
Finally the fourth séction enumerates some properties of the Sorgen-
freyline S. Here special attention is paid to the cocompactness of S.

Another property of S can be found in [51.



1.

Cardinal functions on ordered spaces

In [2] I. Juhasz defines a.0. the following functions which assign

to each topological space & certain cardinal number. Let X be a

~ topological space.

1.1

1.2

Lindel8fdegree ¥ (X) = min{m | each open cover of X has a

subcover of power < m}

height = - n(x) = min{m | Vs ¢x Yo(8) < m}

heriditary Lindelofdegree

spread s(X) = sup{m | 3D «X |D|= m and D is discretel}

cellularity number = c(X) = sup{m |JOC |X| = m and X is a

= guslinnumber ‘ disjoint family of open subsets

) of X} ,

density d(X) = min{m |dDe X |D| = m anda D™ = X}

width = . 2(X) = min{m |Vsc x a(s) < m}

’;ﬁ?%zim ALy m(X) = min{m |3 |L| = n and % is a family
of non-empty open subsets, such
that each non-empty open O contains
a Belo} v

weight w(X) = min{m| 3% [%| = n and %o is a basis}

character x(X) = sup min{m |AY, [ =mand T is a

peX neighborhoodbase for p}l

sup min{m | A% |&| = mend X is &
peX

pseudocharacter  P(X)

family of open sets, such that
NX= {p}}.
Moreover we define for ordered spaces

the number of isolated points

i(X) = [{p | p€ X and p is isolated}|

the number of jumps
J(x)

|{p | p has an immediate successor}

In [2] 2.8 it is proved that for any (infinite) linearly ordered
topological space

Xo,i h=s=c < d=z=r1 < c+ and
e

‘ d=z=r < w < |x| <2

Also Y=y < c=h=s,



Moreover it is easily seen that

i<y o i

/c

wv=d+) — |X| — 2°

b=x

,I; ——— h=g=C e d=z=7

.~

1

1.3 Let us compute these cardinal functions for some of the well known
examples of ordered spaces. We write & =?fr, and ¢ ‘= |R|.
(a) [O,m] = the set of ordinals less than or equal to the’ initial
ordinal (of power) m A

(b) [O,gf) = the set of ordinals of power < m (i.e < gf)

(¢) The real line R.

(d) The long line [O,'Ki) x [0,1) (ordinals x real numbers!)
with the lexicographic order.

(e) The Urysohndouble of the unit interval: [0,1] x {0,1} with the
lexicographic. order.

(£) [0,11 x [0,1] with lexicographic order.

(g) [0,11 x [0,1) with lexicographic order. ,

(n) [0,1] x (0,1) with lexicographic order is homeomorphic to a
topological sum of c many copies of R.

(i) A Suslincontinuum.

(j) X x {0,1} for an arbitrary ordered space X.

(k) X x Y for ordered spaces X and Y, such that Y has a first but
no last element.

(1) X x Y for ordered spaces X -~and Y, such that Y has both a first
and a last element and IYi > 3.

(m) X x Y for ordered spaces X and Y such that Y has a first nor
last element.

In (3), (x), (1), (m) we take the lexicographic order again. Note

thet the space of (m) is homeomorphic to a topological sum of |X|

copies of Y.
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1.4 is the space

connected,loc
space conn, zerodim? comp J i x ); =s d W ]X]
(a) [O,m] O-dim yes m m m ?\7 m n m m
+ . +  + ? + + + +
(v) Lo,m’) 0-dim  -- momom om m m m m
(e¢) R conn - 0 0 =a XO ?(0. ?((‘) 0 c
(d) The long line conn - 0 0 =a ?{1 }{71 ?(.1 ﬁ(1 c
(e) [0,11 x {0,1} 0-dim yes 2 ¢ a KTO XO KO c e
(£) [0,1]1 x [0,1] conn  yes 0 0 =a ?{ro e e e c
(g) [0,11 x [0,1) - — 0 0 a W, =& c ¢ e
(n) [0,11 x (0,1) l.c. - 0O 0 a ¢ ¢ e ¢ c
(i) Suslin conn yes 0 0 a ?(0 )(0 K1 f(1 c

1.5 Before we compute the values for X x ¥ we have to make the\following
remark. If X is an ordered space, then letki,denote the set X with
the topology generated by the half open intervals [a,b). This "X’

is homeomorfic to the subset X x {1} of X x {0,1}. With the help

of this fact and the clarifying example ofr§$where X =[0,1] x {0,1},

it is easy to verify the following: (Note that, although 1.2 holds

for r}—(z this is not self evident).

i( X )’=‘j(X)

% (XY < n(x)

w(X) = | x|
—,



1.6

Moreover, T is of the second Baire category (resp. a Baire space)
iff X x {0,1} is of the second category (resp. a Baire space), if X is.
However T may. be not dech complete (and hence neither compact nor
locally compact). (ef. 4.1. for hints to the simple proofs). For each
X ind? = 0,

(J) (x) (1) (m)
zZ = . Xx {0,1}- Xx¥Y XxY XxY
Y has a first Y has both a Y has first
but no last first and last but no last
element element and element
Y| >3
When is .Z
connected never 1) iffboth X and Y never
are
loc connected never 2) iff Y is conn iff Y is
and X l.c.
O-dimensional  always iff Y is O0-dim iff Y is 0-8im iff Y is
compact iff X is never, as Y iff both X and never (if X
is not compact Y are infinite)
i(modulo a 3(x) Ix]. i(Y)3) x. i(p)3 |x].i(Y)
finite number) '
j(modulo a |x] lx]. 3(¥) J+x 5 %] 3(Y)
finite number)
L
X x(%) < x(X)#x(1) )h (%) + x(¥)  x(1)
L LH  <n@ +ROYV Y0 XD (x] + XO)
=g n(xX)+3(x) |x] + n(Y) |x| + h(Y) |X]-+ n(Y)
a a(x)+j(x)= |x| + a(y) |x| + a(y) |x] + a(y)
= w(X)
W | x| || + w(¥) |x| + w(¥) |x]| + w(Y)
|| | x| x| + [¥] |z| + |y | x| + |¥]

1) iff Y is connected and each element of X has an immediate
. €

successor (i.e., X » X ).

2) iff either (Y is locally connected and each element of X has an
immediate predecessor and Ay € ¥ {y'eY | y <¥'} is connected)
or (Y is connected andVx € X Ix' € X %' ¢ x and YVx'' &(x',x) x''
has an immediate successor). ’

3), Unless the initial point of Y is isolated, and is the only isolated

point. Then i(XxY) = j(X).

L) cf [0,m] x (0,1] = a topological sum of m copies of R(!) and one copy of (0,1



2.1

2.2

2.3

2.h

Perfeect mappings and densely ordered spaces. The operators TI',A,E,Z.

Let (X,<) be an infinite ordered space and I ¢ X the set of

isolated points of X. We denote the space obtained from X by replacing
each isolated point by & unit closed interval [b,f]‘by r(x)

Formally: TI(X) = (X\I) vI x [0,1]

with the linear order <. defined by A

for x,y e X \1I x <y iff x <y

for x,y &I, t,t'€ B),ﬂ (x,8) <* (y,t) iff x < y or (x=y and t < t).
for x e,X\I, vyel,tel0,1] x € (yot) iff x <y

Note that I'(X) has no isolated points anymore. All other cardinal-
functions defined in §1 however, assume the same values on X and
I'(X) with the possible exception of the local weight y: . '
¥ T(X) = p(x) +V,, and so ¥ T(X) =§?O # ¢ X iff X is discrete.
Moreover the natural function

o rx) - x

is perfect.

Now let (X,<) be a linearly ordered space without isolated points.
We define a relation » on X by

x y  1ff there is no z &X in between

x and y.

Because X has no isolated points, this relation is an equivalence
relation, and the equivalence classes consists of one or two
points.,
Let < be the natural order on X/&, and equip X/¢ with the corres-

ponding order topology. Now we have:

The identificationmap n,: X »+ X/~ is perfect.
Notatien. Put A(X) = X/_.



2.5 For a densely ordered space X Jj(X) = 0 and hence w(X) = 4a(X).

2.6 The following lemma is well known:
If ¢s : Xg - YS, s € S is & collection of perfect meppings then

also I ¢S : I XS‘+ I YS is perfect.
s &.8 se& S s &5

2.7 MAINTHEQOREM I

If {XS‘I s €8} is a family of linearly ordered spaces and m is

awﬁhﬂsmhﬂm:b]igmdﬂﬁ)igfwemhs&Symm

the Tychonoffproduct I XS is m-Lindeldf, i.e.
s 8

Yo T X)) <m

Proof. For each s €8 there exist perfect mappings

(1) T r<xé)——m(r(xs))

and
(ii) HA,s:

So by 2.6 the maps

X )—aX
S <]

T T 0 Mx)—» N a(r(x))
s &5 s eS8 se S

and :

m o T rx)—> T X

s es A,s s es s ses s

are also perfect.
From 2.2 it follows that each P(XS) is m-separable, and since this is
a continuous invarient also each X is m-separable. Because

d(AI‘XS) = W(AI‘XS) (see 2.5) we find that i (AI‘XS) has a weight
se S
< m, and hence is m-Lindeldf.
For, although I (APXS) cannot be ordered (in general),I;(Y) < w(Y)
s €8
holds for all topological spaces.

Now m-LindelSf is an inverse invariant for perfect mappings and an

invariant for continuous mappings. Hence also I TIX &and
se& B
I XS are m-Lindeldf, which completes the proof.
. S &8

2.8 We define a relation P' on topological spaces by
Xp'y iff there exists a perfect mep onto f: X > Y
or £f: ¥ > X.



2.9

We meke P! into an equivalence relation P, defined on a class t,of

topological spaces, called perfect equivalence by

XPY iff there exist finitely many X ,,...,X &€ t

such that X P' X, and X1 P' X, ... and Xn P' X,

1 2

In 2.4 we proved the following interesting

MAINTHEOREM II.
In the class of linearly ordered spaces each space X is perfectly

. 3¢ . .
equivalent to a space X satisfying

(i) X" has a dense ordertype
(ii) ¢X = ¢X for ¢ € { ¥a ,h,c,s,d,z,m,} and vX = aX = &X.

Theorem 2,7 can also be obtained by exploitation of the following

constructions. If X is linearly ordered then E(X) is obtained

from X by placing a copy of (0,1) in each jump. And Z(X) is obtained

from X by only placing a copy of (0,1) in each jump, which has an

isolated point for first or last point. Clearly

(1) E(X) is connected, % E(X) = L(X), c E(X) = c(X), a4 E(X) = a(X)+
+ §(%) = w(x) = v E(X).

E(X) contains X as & closed subset. (Example E(Urysohn interval) =

0,1 = [0,7]).

(ii) Z(X) has no isolated points, and contains X as a closed subset,

2 (z(X)) = L(X), c(z(X)) = e(x), a(z(x)) = a(x), w(z(x)) = w(X).

If we apply the operator A to Z(X) we obtain again a perfect image

of Z(X) with dense ordertype.



3. Products of separable or Lindeldf ordered spaces.

As a direct consequence of 2,7 we obtain the following

3.1 THEOREM.

The Tychonoffproduct of cduntably'many separable ordered spaces

is Lindeldf (and separable)

&

This theorem does not remain valid if we weaken separable ordered

to Lindeldf and ordered, as is shown by the following example:

3.2 Let X = E@,i] x (O,ﬁ] with the lexicographic order. Then the set
{(x,1) [ X ei[b,1]} is a closed subset and is homeomorphic to the
Sorgenfreyline 8. Hen¢e X x X contains a closed copy of S x S. As
8 x S is not normai$this implies that X x X is not normal. Moreover
S x S contains a closed discrete subspace of power c, which conse-
quently is also closed and discrete in X x X. Hence X x X is not
LindelSf too.

We indicate two closed discrete subspaces of power c:

Dy = {((e,1), (1-¢,1)) | + & [0,

D, = {((t,3), (1-t,1)) | t [0, .



L,2
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The Sorgenfreyline S.

Let S =R withAffé,b) | a,b &R} for open base. This space can be

considered as the following subspace of the Urysohn double

U= [0,1] x {0,1}:

(i) S ¢ (0,1) x {1} % (0,1) x {0} .
Using (i) it is éasily checked that S is R
zerodimensional
(hence) completely regular
heriditarily Lindeldf
(hence) heriditarily paracompact
(and) heriditarily normal

heriditarily separable
whilst V(S) = a and w(S) = c.

v
Moreover S is a Baire space, but is not Cech complete.

Proof. The Urysohn space U = (0,1) x {1}V (0,1) x {0} v {(0,0),(0,1),(1,0)
and (1,1)} is comb#cf Hausdorff, and hence of the second category.

Tts only isolated points are(0,0) and (1,1). So if S was of the first
category then by (i) so was U. Now each non empty open-subset of S
contains an open set which is homeomorfic to S and hence is also

of the second category. I.e, S is a Baire space., Moreover both

(0,1) x {1} and (0,1) x {0} are dense in U\ {(0,0), (1,1)}. So if

S was Cech complete then U contained two disjoint dense G.'s

)
contradicting Baire's category theorem.

It is well known that {(x,-x) | x € R} is a discrete closed subset
of S x 8. With this in mind it is easy to deduce the following
properties of S x 8:
zerodimensional
completely regular
not normal, not Lindeldf, not paracompact
separable, but not heriditary separable
¥(Sx8) = a, w(Sx8) = c.



4.3
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Because the product of two separable ordered spaces is Lindeldf
(2.6 or 3.1) this yields that S cannot be ordered.

A regular space X is called cocompact (in de Groot's sense) if it
has a family Lof closed subsets such that

(1) {Int B | B €%} constitutes an open (sub)base for X

(ii) Each subfamily of ;;;with the finite intersection property

has' a non-empty intersection.

It is easily seen that for the Sorgenfreyline Y, = {]:a,b] I a,b € R}
fulfils- - these conditions. So S is cocompact, which implies too that
S is a Baire space (ef. [1]).

A regular space X is called cocompact in ven der Slot's sense

if there exists a family of open sets Y, sa’cisfying
(i)' o is an open basis
(ii)' For each subfamily of 3o with the finite intersection property

the closures have a non empty intersection.

As van der Slot has shown, this property is invarient for perfect
irreducible maps, which is conjectured to be false for cocompactness.
The Sorgenfreyline is the first example of a space which is cocompact,

but not cocompact-in-van-der-Slot's-sense. We will prove this now.

Suppose o is any open basis of S. Let E = {sup B | Be&and sup
+ . 7
B < =}. Because VxéCR Ve e R ~ dABe e

x &B < [x, x+e)

we find that sup B & (x, x'i{l, i,e, E is dense in R (R denotes the
real line, with Euclidean topology).
Now put ,

A ={xeR | 3B e‘gé[x,x-l—:;) e B <x,2)} .

It is easily checked that

U A =R.
neNn



12
Hence by Baire's category theorem for R gn,aa, PER a < b and
A is dense in (a,b).
' B
I

\
/

® AN
o Q-

Moreover, as E is dense ds el = sup E «=(a,b). Now choose

for all
1

B

x €A o (a:,b) such that x, + b for k + =, and s-x, <

k. For each k we can find a B, € Ja such that b & Exk’

k
Now it is easily seen that

{B, B, By, Byy +uu0l

t

is a centered family, and () B; e [B,»), but b € B,
nelN :

Hence

1
Thus de cannot satisfy (ii)!. ~

B n3B (')Bzf')...

L}
-

x ) eB e [x ).
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