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The collection of all Z-sets in Q 1

&

dense G, in the hyperspace of Q.

In this note it is proved that for any closed subset A of the Hilbert
cube @, the collection of all closed subsets of A which are a Z-set in
Q, is a dense GG in the hyperspace of A. It is easily seen, as was
pointed out to me by Prof. R.D. Anderson, that this collection contains
a dense Gé’ e.g. the collection of all subsets of A which are disjoint
from the pseudoboundary of Q. Probably the main interest of the theorem

lies in the way property Z is approximated.

DEFINITIONS

oo

The HiZlbert cube Q is the countable product of intervals I [-1,1]
with the product topology. 1=1
A closed subset K of Q is a Z-set if for every open set O which is
non-empty and homotopically trivial, O\K is non-empty and homotopically
trivial *) (see [1]). Every finite subset of Q is a Z-set and for every
Z-set K c @ thgre exists a homeomorphism h: Q omto, Q such that

h(k) < {1} x I [-1,1].
i=2
The hyperspace 2 of a compact metric space X with metric d is the

collection of all closed subsets of X equipped with the metric
a(A,B) = max({d(x,B) | x ¢ A} v {d(A,y) | yeB}). The topology of o
does not depend on the metric chosen as long as different metrics are
topologically equivalent; furthermore 2X is compact. For every K c Q
and & > O there exists a finite set (hence a Z-set) K' c K such that
E(K,K') < ¢. As a consequence, for every closed set A ¢ Q the subsets

. . A
of A which are Z-sets with respect to @ form a dense subset of 2.

*)_We employ the definition: X is homotopically trivial if for every n

any map from the n-l-sphere Sn.1 to X can be extended to a map from
the n-cell D" to X. By results of Whitehead [5], for ANR's (e.g.
open subsets of Q), this is equivalent to contractibility. If we
define 87 = @ and p° = {0}, then homotopic triviality implies non-

emptiness.



Closure and interior of Y ¢ Q are denoted by Y and YO resp.. The set
{x | a(x,Y) < ¢} is denoted by UE(Y) and the set UE({p}) by Us(p)°

If B 1s an open subset of Q such that B is homotopically trivial, then
a closed set K is called a B-6-Z-set if K has an open neighborhood
0cOc US(K> such that B\O is non-empty and homotopically trivial.
Z(B,8) denotes the collection of all B-6-Z-sets.

LEMMA 1. If A c Q is closed, B is open and

A

B homotopically trivial then,
for every 6§ > 0, Z(B,8) n 2 is a dense open subset of 2

Proof: Suppose K is a B-8-Z-set. There exists an open set O with
KcOcOc US(K) such that B\O is homotopically trivial. Now for some
§' < § and ¢ > 0, UE(K) c0c0c Ugi (K). If K' is closed and

a(K,K') < min(e,6-8') then XK' « 0 c 0 ¢ US(K')’ hence K' is a B-6-Z-set

by virtue of the same set 0. [

Let C be the collection of open subsets B of Q such that B = Q and for
every Z-set K in Q, K n B is a Z-set in B.

Let B € Q be a product of open subintervals of [~1,1] with at most
finitely many factors different from [-1,1]. Observing that the topo-
logical boundary B\B is a Z-set in B, and writing K n B as a countable
union of closed sets, one can prove from results on Z-sets that K n B
is a Z-set in B. Hence all such B are elements of C, and therefore C

contains a (countable) base for the topology of Q.

LEMMA 2. For B € C and § > O every Z-set is a B-8-Z-set.

Proof: Let B € C and K be a Z-set in Q. Because B = Q and K n B is a

Z-set in B, there exists a homeomorphism h: B onto, Q mapping K into

W= {1} x 'HZ [-1,1]. We construct an embedding ¢: Q -+ Q\h(X\B) which
i= _ i
is the identity outsic2 an e-neighbourhood of h(KnB), where e is such

that d(x,x') < ¢ = d(h_1(x),h-1(x')) < §' for a fixed &' < 6.
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For every x € h(KnB), let ¢x be a motion "to the left" which is the
1dentity outside Ug(x) and maps a neighborhood Vx c Ue(x) of x disjoint
from W and changes only the first coordinate of any point. Cover h(KnB)
by finitely many sets Vx and let ¢ be the composition (in any order)

of the corresponding homeomorphism L

Now ¢ is the identity outside Ue(h(KnE))g Furthermore, h_1¢h(§) is

homeomorphlc to B and hence homotopically trivial. By choice of ¢,
(h(B)\¢h B)) = ﬁ\h_]¢h(§) is contained in UG,(K), hence
B)

(K)\h™ '¢n(B) is the desired neighborhood of K. [

US'
For K closed, B open and B homotopically trivial, we call K a B-Z-get
if B\K is non-empty and homotopically trivial. Z(B) is the collection
of all B-Z-sets, and, for B a collection of open sets with homotopically
trivial closures, Z(B) denotes the collection of the closed sets K which

are a B-Z-set for all B ¢ B.

LEMMA 3. If K is & B-8-Z-set for arbitrarily small &, then K is a

B-Z-set.

- - . -1
Proof: Let f: S° . B\K be given. Then for some §, d(f(Sn )

,K) > 8
(the usual distance; not E). Because K is a B-8-~Z-set, there exists a
neighborhood O c US(K) of K such that B\O is homotopically trivial.
Because f(Sn-T) c B\0, this provides for an extension f: p" > B\0 ¢ B\K. O

LEMMA 4. If B is a base for Q such that for all B ¢ B, B is homotopically

trivial, then Z(B) consists of Z-sets.




Proof: Let K ¢ Z(B) and let O be open and homotopically trivial. Let

ne1 . -
also f: S ~ O\K be given. We want an extension F: D" + O\K of f

whereas we have an extension g: D" - 0.
n . =
Cover g(D”) by a finite cover B1 < B such that ¥B ¢ B1, B c 0. There

exists a closed neighborhood V] of g(Dn) which is also covered by 81.
Let €, be a Lebesgue-number for B1 as covering of V] (i.e. each subset

of V1 with diameter less than £, is contained in some element of 81).

Define the mesh m(A) of a collection A as sup{diameter(4) | A e A}.

Let 52 c B be a covering of g(D") with u82 <V, and with m(BE) < %la
There exists a closed neighborhood V2 of g(Dn) which is also covered
by 82. Again let €5 be a Lebesque-number for 52 as a covering of V2:
In this way, construct inductively a sequence B1 c B, 82 c B, ..., Bn c B
with Lebesgue-numbers ¢

3

<€ with respect to closed neighborhoods

13"
n ) 1353
1’°'°’Vn of g(D7) and such that UBi+1 c Vi and m(Bi+1) <73

Because g is uniformly continuous, there exists a § > 0 such that for x,

x' € D" and d(x,x') < &, d(g(x),g(x')) < %Q.

Let P be a cell complex, consisting of a

subdivision of D" in equal subcells of

diameter smaller than &8. Let Pi be the

i-skeleton of P. Because for every B ¢ B, [N

B\K is non-empty, it follows that K is

nowhere dense. Hence there exists a mapping ?O: P
€

) < == and F

=f
0 3 0] n-1 ] n-
0 POnS Pons

o HE (p)sF (a)) < d(F(p).e(p)) + d(g(p),elq)) +

+ d(fo(q),g(q)) < e . Because e is a Lebesgue-number for Bn’ fo maps

0~ (uBn)\K with

with d(gi Now for adjacent

P 1°

vertices p,q € P

adjacent vertices into a common element of Bn. Now {B\K | B ¢ Bn}
consists of homotopically trivial sets; therefore we have an extension
f1: P1 -+ O\K of TO, such that all T-cells are mapped into an element of
{B\K | B ¢ Bn}. Moreover we may suppose that f1lP an = fIP nsn_].
1 1
Furthermore it is easily seen that, if a mapping ¢ maps each face of an

n-cell onto a set of diameter smaller than n, then ¢ maps the total

boundary of the n-cell onto a set of diameter less than 3n. Observing

£
that m({B\K | B € B_}) < m(Bn) < 52, one sees that the boundary of
n’ =

*) ¢|Y denotes the restriction of ¢ to the set Y.



every 2-cell of P2 is mapped onto a set of diameter less than €
which is a Lebesgue-number of Bn 1 with respect to Vn 1 Since
f1(P1) c UBn c Vn—1’ it follows that the image of the boundary of a

2~cell of P2 is contained in an element of Bn . Using homotopic

1

triviality of the sets B\K with B ¢ Bn | one finds an extension

f: P> O\K F F =
5 \K of such that f2| fl 0

2 1 n-1 -
Pan P2nS

2-cell of P2 is mapped into an element of {B\K | B « Bn 1}. Repeating

and such that every

this procedure, we find eventually the desired extension T = fn of £. [0

THEOREM. For every closed subset A of Q the collection of all Z-sets in

Q intersects 2A in a dense G

5
Proof: Choose in lemma 4 B < C countable. Then, according to lemma 1,

n nB Z(B,-ﬁ) is a dense G, subset of 2A and, according to lemma

n Be $
2, 3 and L4 this collection contains exactly all closed subsets of A

which are Z-sets in Q. [

PROBLEM. Suppose A = Q and A ¢ Q. Is the set of all mappings from Q to
*)

A onto a Z-set in Q (and hence the set of all homeomorphisms
onto a Z-set in Q) a dense GG ig.AQ (the space of all mappings

from Q into A, with uniform convergence topology)?

A positive answer might lead to a proof of the existence of apparent

boundaries in A which consists of Z-sets relative to Q.

*)

see Hurewicz-Wallman [2], page 64, theorem Vh. It follows as in

theorem V2, page 56, that for compact X the homeomorphisms form

actually a dense Gd'
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