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A note on magic graphs

In [ 1] Stewart defined for a finite graph G not containing isolated
vertices the spaces S(G) and Z(G); S(G) is the space of all real-valued
functions f defined on the set of edges E(G) of G with the property
that Z{f(e) | e is incident with v} =: ov(f) is independent of the
vertex v in G, and Z(G) 1s the subspace of S(G) consisting of the func-
tions f with o(f) = ov(f) = 0.

He proved that if G is connected then
(1) E-n+ 1 <dm8(G) <E-n+2
(2) dim 2(G) < dim S(G) < i + dim Z(G)

where E 1s the number of edges and n the number of vertices of G, but
he was unable to determine the exact values of dim S(G) and dim Z(G).

In this note I shall prove:

Theorem 1. If G is connected then dim S(G) = E - n + 2 iff the vertices
of G can be coloured with blue and red in such a way that no
two vertices of the same colour are adjacent and, moreover,
the number of blue vertices equals the number of red vertices.

In other words: dim S(G)

E-n+2i1if G is bipartite in two
sets of equal cardinality
and dim S(G)

E - n + 1 otherwise.

Theorem 2. If G 1s connected then
dim Z(G)

i

dim S(G) = 1 = E - n if G contains a circuit
of odd length

and dim Z(G) E - n + 1 otherwise.

Corollary. Call a graph G semimagic if dim S(G) > dim Z(G); then we have:

Kn m is semimagic iff n = m; Kn is semimagic for all n > 2.
b .

Theorem 3. Let G comsist of the components G (1<i<1(G)), where t(G) is
the number of components of G.
Then dim Z(G) = ) dim z(G,), and if §, = dim S(G,) - dim 2(G,)
then dim S(6) = ] dim z(6;) + M8, =} dim 5(G,) - Zsi + T8, .
In particular if for all i S(Gi) # Z(Gi) then
dim 8(G) = ] dim 8(G;) - t(G) + 1 and if s(e,) = 2(6,) for



1'(G) > 0 components of G then
dim §(G) = ] dim 8(G,) - ©(G) + 7'(G).

(This is obvious, but Stewart gives the incorrect result
dim §(G) =1 - t(6) + | dim 8(G,) if for all i dim S(G,) > 0.
A counterexample to this is the graph

O Om

Let G be connected, dim S(G) = E - n + 8, dim Z(G) = E - n + ¢ and let
f e S(G).

The proof is with induction on E, the number of edges of G.

Proof.

We distinguish several cases:

(A) G contains a circuit of even length C = (v.,v

03 V1o Vo 1)
Let G' be the graph obtained from G by deleting the edge VoVop_1
G' is connected, and G' is bipartite in equal parts iff G is and
G' contains an odd circuit iff G does.

Define f' by f'(v. ) = f(viv. )+ (=1)F £(

iVi+1 541 ) (i=0,...,2k-2)

Vo or-1
and f'(e) = f(e) if e 4 .

Then f' € S(G') and o(f') = o(f).

Conversely if f' on G' is given, then f on G can be constructed by

£( ) = x

Vo or-1
) = £'(

fle) = £'(e) if e ¢ C.

£ ) - (=) x

V. V.
1 1+1

Since x is arbitrary this proves dim S(G') = dim S(G) - 1 and
dim Z(G') = dim 2(G) - 1. Since n' = n and E' = E - 1 it follows
that 6' = § and 7' = ¢, so the theorems are valid for G if and only

if they are valid for G'.

(B) G does not contain a circuit of even length, but contains two circuits
of odd length:

and C,. = (w

Ci = (VgaVysenesy) 2 CAEERRRRL P
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Since G does not contain a circuit of even length, C, and C2 do not

1
have common edges.
Since G is connected, C1 and C2 are connected by a way

W = (uo,ul,...,us) where

Wwanc, = {uo} and W n C2 = {us} and possibly s = 0.

Let uo = VO, us = WO, w21+1:= WO'
Let G' be the graph obtained from G by deleting the edge VoVor
As above an f' can be defined by
f'(e) = f(e) for e ¢ C1 U C2 uw
f'(vivi+1) = f(vivi+1) - (—1)i f(vovgk)
) f'(ujuj+1) = f(ujuj+1) + 2(—1)j f(vov2k)
BEACAREE R R G LN SR S
and again it follows that &' = § and ' = .
G contains one circuit of odd length: C = (VO,V1,...,V2k). Define
Vopei T Vioqe Here E = n, so we have to prove § = 1 and ¢ = 0.

Fix a 0 € R; then an f € S(G) with o(f) = 0 can be defined in one
and only one way:

Each \ is the root of a (possibly empty) tree on which f is com-
pletely determined.

To satisfy the conditions o, (f) = o we get 2k+1 equations
1

f(vi_1vi) + f(vivi+1) =8, (1<i<2k+1) with the unique solution
1 ] 2k -1 3
= = P~ - <is< =
f(vi_1vi) 58 1 +%3 jzo (=1) ai+j (1£i<2k+1) (where & yopat ai).

This proves both theorems for graphs which contain a circuit of odd

length.

G contains no circuit, i.e. is a tree.

Fix a root A of G and a ¢ € R, then there is a unique f such that

ov(f) = g for v # V-

Now if o, (f) = o then dim S(G) = 1 else dim S(G) = 0, and in either
0

case dim Z(G) 0.

Since E = n-1 and dim Z(G) = 0, we have £ = 1, which proves theorem 2.

[}



G is connected and does not contain a circuit of odd length, hence

G is bipartite in a unique way: G = G, u G,. Now if

2
dim S(G) = 1 and o(f) # 0 then |G1| = |G2| since
o-la,| = é f(e) = o-|a,].
Conversely, if |G1’ = |G2! and cv(f) =g for v # s then
ovo(f) = g f(e) - c-(|G1I—1) = g.
Therefore if |G1| = IG2| then § = 2 else § = 1. This proves every-
thing.
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