A NOTE ON MAGIC GRAPHS
A.E. BROUWER
A NOTE ON MAGIC GRAPHS

2e boerhaavestraat 49 amsterdam
The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.
A note on magic graphs

In [1] Stewart defined for a finite graph G not containing isolated vertices the spaces $S(G)$ and $Z(G)$; $S(G)$ is the space of all real-valued functions f defined on the set of edges $E(G)$ of G with the property that $\sum \{f(e) \mid e \text{ is incident with } v\} = c_v(f)$ is independent of the vertex v in G, and $Z(G)$ is the subspace of $S(G)$ consisting of the functions f with $c(f) = c_v(f) = 0$.

He proved that if G is connected then

1. $E - n + 1 \leq \dim S(G) \leq E - n + 2$
2. $\dim Z(G) \leq \dim S(G) \leq 1 + \dim Z(G)$

where E is the number of edges and n the number of vertices of G, but he was unable to determine the exact values of $\dim S(G)$ and $\dim Z(G)$.

In this note I shall prove:

Theorem 1. If G is connected then $\dim S(G) = E - n + 2$ iff the vertices of G can be coloured with blue and red in such a way that no two vertices of the same colour are adjacent and, moreover, the number of blue vertices equals the number of red vertices.

In other words: $\dim S(G) = E - n + 2$ if G is bipartite in two sets of equal cardinality

and $\dim S(G) = E - n + 1$ otherwise.

Theorem 2. If G is connected then

$$\dim Z(G) = \dim S(G) - 1 = E - n$$

if G contains a circuit of odd length

and $\dim Z(G) = E - n + 1$ otherwise.

Corollary. Call a graph G semimagic if $\dim S(G) > \dim Z(G)$; then we have:

$K_{n,m}$ is semimagic iff $n = m$; K_n is semimagic for all $n \geq 2$.

Theorem 3. Let G consist of the components $G_i \ (1 \leq i \leq \tau(G))$, where $\tau(G)$ is the number of components of G.

Then $\dim Z(G) = \sum \dim Z(G_i)$, and if $\delta_i = \dim S(G_i) - \dim Z(G_i)$

then $\dim S(G) = \sum \dim Z(G_i) + n\delta_i = \sum \dim S(G_i) - \sum \delta_i + n\delta_i$.

In particular if for all $i \ S(G_i) \neq Z(G_i)$ then

$$\dim S(G) = \sum \dim S(G_i) - \tau(G) + 1$$

and if $S(G_i) = Z(G_i)$ for
\(\tau'(G) > 0 \) components of \(G \) then
\[
\dim S(G) = \sum \dim S(G_i) - \tau(G) + \tau'(G).
\]
(This is obvious, but Stewart gives the incorrect result
\[
\dim S(G) = 1 - \tau(G) + \sum \dim S(G_i) \text{ if for all } i \text{ dim } S(G_i) > 0.
\]
A counterexample to this is the graph
\[
\begin{array}{c}
\square \\
\rightarrow \\
\square
\end{array}
\]

Proof.

Let \(G \) be connected, \(\dim S(G) = E - n + \delta \), \(\dim Z(G) = E - n + \zeta \) and let \(f \in S(G) \).

The proof is with induction on \(E \), the number of edges of \(G \).

We distinguish several cases:

(A) \(G \) contains a circuit of even length \(C = (v_0, v_1, \ldots, v_{2k-1}) \).

Let \(G' \) be the graph obtained from \(G \) by deleting the edge \(v_0 v_{2k-1} \).

\(G' \) is connected, and \(G' \) is bipartite in equal parts if \(G \) is and
\(G' \) contains an odd circuit if \(G \) does.

Define \(f' \) by \(f'(v_i v_{i+1}) = f(v_i v_{i+1}) + (-1)^i f(v_0 v_{2k-1}) \) \((i=0, \ldots, 2k-2) \)
and \(f'(e) = f(e) \) if \(e \notin C \).

Then \(f' \in S(G') \) and \(\sigma(f') = \sigma(f) \).

Conversely if \(f' \) on \(G' \) is given, then \(f \) on \(G \) can be constructed by
\[
\begin{cases}
 f(v_0 v_{2k-1}) = x \\
 f(v_i v_{i+1}) = f'(v_i v_{i+1}) - (-1)^i x \\
 f(e) = f'(e) & \text{if } e \notin C.
\end{cases}
\]

Since \(x \) is arbitrary this proves \(\dim S(G') = \dim S(G) - 1 \) and
\(\dim Z(G') = \dim Z(G) - 1 \). Since \(n' = n \) and \(E' = E - 1 \) it follows
that \(\delta' = \delta \) and \(\zeta' = \zeta \), so the theorems are valid for \(G \) if and only
if they are valid for \(G' \).

(B) \(G \) does not contain a circuit of even length, but contains two circuits of odd length:
\(C_1 = (v_0, v_1, \ldots, v_{2k}) \) and \(C_2 = (w_0, w_1, \ldots, w_{2l}) \).
Since G does not contain a circuit of even length, C_1 and C_2 do not have common edges.

Since G is connected, C_1 and C_2 are connected by a way
\[W = (u_0, u_1, \ldots, u_s) \]
where
\[W \cap C_1 = \{u_0\} \text{ and } W \cap C_2 = \{u_s\} \]
and possibly $s = 0$.

Let $u_0 = v_0$, $u_s = w_0$, $w_{2k+1} := w_0$.

Let G' be the graph obtained from G by deleting the edge $v_0 v_{2k}$.

As above an f' can be defined by
\[
\begin{align*}
 f'(e) &= f(e) \quad \text{for } e \notin C_1 \cup C_2 \cup W \\
 f'(v_i v_{i+1}) &= f(v_i v_{i+1}) - (-1)^i f(v_0 v_{2k}) \\
 f'(u_j u_{j+1}) &= f(u_j u_{j+1}) + 2(-1)^j f(v_0 v_{2k}) \\
 f'(w_j w_{j+1}) &= f(w_j w_{j+1}) + (-1)^j (-1)^s f(v_0 v_{2k})
\end{align*}
\]

and again it follows that $\delta' = \delta$ and $\zeta' = \zeta$.

(C) G contains one circuit of odd length: $C = (v_0, v_1, \ldots, v_{2k})$. Define
\[v_{2k+i} := v_{i-1}. \]

Here $E = n$, so we have to prove $\delta = 1$ and $\zeta = 0$.

Fix a $\sigma \in S(G)$; then an $f \in S(G)$ with $\sigma(f) = \sigma$ can be defined in one and only one way:

Each v_i is the root of a (possibly empty) tree on which f is completely determined.

To satisfy the conditions $\sigma_{v_i}(f) = \sigma$ we get $2k+1$ equations
\[
f(v_{i-1} v_i) + f(v_i v_{i+1}) = a_i \quad (1 \leq i \leq 2k+1) \]
with the unique solution
\[
f(v_{i-1} v_i) = \frac{1}{2} a_{i-1} + \frac{1}{2} \sum_{j=0}^{2k-1} (-1)^j a_{i+j} \quad (1 \leq i \leq 2k+1) \]
(where $a_{i+2k+1} = a_i$).

This proves both theorems for graphs which contain a circuit of odd length.

(D) G contains no circuit, i.e. is a tree.

Fix a root v_0 of G and a $\sigma \in S$, then there is a unique f such that
$\sigma_{v_0}(f) = \sigma$ for $v \neq v_0$.

Now if $\sigma_{v_0}(f) = \sigma$ then $\dim S(G) = 1$ else $\dim S(G) = 0$, and in either case $\dim Z(G) = 0$.

Since $E = n-1$ and $\dim Z(G) = 0$, we have $\zeta = 1$, which proves theorem 2.
G is connected and does not contain a circuit of odd length, hence
G is bipartite in a unique way: $G = G_1 \cup G_2$. Now if
dim S(G) = 1 and $\sigma(f) \neq 0$ then $|G_1| = |G_2|$ since
$\sigma \cdot |G_1| = \sum_{e} f(e) = \sigma \cdot |G_2|$.
Conversely, if $|G_1| = |G_2|$ and $\sigma_v(f) = \sigma$ for $v \neq v_0$ then
$\sigma_{v_0}(f) = \sum_{v} f(e) - \sigma \cdot (|G_1|-1) = \sigma$.
Therefore if $|G_1| = |G_2|$ then $\delta = 2$ else $\delta = 1$. This proves everything.

Reference