

amsterdam
 1973

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam. The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.0), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

Abstract

A question of Entringer and Erdös concerning the number of unique subgraphs of a graph is answered.

Entringer and Erdös [1] call a subgraph H of a graph G unique if H is not isomorphic to any other subgraph of G. If $f(n)$ is the largest number of unique subgraphs a graph on n vertices can have, they prove

$$
f(n)>2^{\frac{1}{2} n^{2}-c n^{3 / 2}} \text { for } c>3 / \sqrt{2} \text { and } n \text { sufficiently large }
$$

It will be proved below that

$$
{ }^{2} \log f(n)=\frac{1}{2} n^{2}-n \cdot{ }^{2} \log n+O(n)
$$

Since the number of nonisomorphic graphs on n vertices is

$$
\frac{2^{\binom{n}{2}}}{n!}\left(1+\frac{n^{2}-n}{2^{n}-1}+0\left(\frac{n^{3}}{2^{3 n / 2}}\right)\right)
$$

(see e.g. [2], p.196), we have

$$
{ }^{2} \log f(n) \leq \frac{1}{2} n^{2}-n \cdot{ }^{2} \log n+O(n)
$$

On the other hand, given n we construct a graph G_{n} on n vertices with $2^{\frac{1}{2} n^{2}-n \cdot 2 \log n+0(n)}$ unique subgraphs as follows: Let $m=\Gamma_{2} \log n$ and $N=n-m-2$. Then $N \leq 2^{m}-m-1$. Let $G_{n}=A \cup B \cup C$ where
$\mathrm{A}=\mathrm{K}_{\mathrm{N}}$, the complete graph on N points,
B is a rigid tree with m vertices (such a tree exists for each $m \geq 7$),
$C=K_{2}$, a single edge connecting points c_{0} and c_{1}, connected as follows:
G_{n} contains $a l l$ edges $\left(c_{1}, b\right)$ for $b \in B$ and no other edges between C and $A \cup B$; furthermore, if we view A as a set of subsets of B each containing at least two points (which is possible since $N \leq 2^{m}-m-1$), then G_{n} contains the edge (a, b) where $a \in A$ and $b \in B$ if and only if $b \in a$.

Now define the subgraph H_{n} of G_{n} as follows:
$H_{n}=A^{\prime} \cup B \cup C$ where A^{\prime} is the vertex graph on N vertices
(that is, A^{\prime} is totally disconnected) and A^{\prime}, B, C are interconnected like A, B, C in G_{n}. That is, H_{n} contains the same n points as G_{n} but has $\binom{N}{2}$ edges less.

If H is a subgraph of G_{n} such that $H_{n} \subset H \subset G_{n}$ then H is unique: First, c_{0} is the only point of H with degree one, and therefore if we imbed H in G_{n} the point c_{0} of H must go to the point c_{0} of G_{n}. Next it follows that c_{1} must go to c_{1} and therefore that $B \subset H$ must map onto $B \subset G$. Since B is rigid the imbedding restricted to B must be the identity on B. Finally, since each point of A is coded by a subset of B, A too cannot be imbedded in any other way. Therefore H is unique.

The number of subgraphs H between H and $G n$
$=2^{\frac{1}{2} n^{2}-n \cdot 2} \log n+O(n)$, this proves our assertion.

References

[1] R.C. Entringer and Paul Erdös, On the number of unique subgraphs of a graph, JCT (B) 13, 112-115 (1972).
[2] Frank Harary \& Edgar Palmer, Graphical Enumeration, Academic Press, New York, 1973.

