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Abstract

A question of Entringer and Erdos concerning the number of unique

subgraphs of a graph is answered.

Entringer and Erdos [1) call a subgraph H of a graph G unique if H is

not isomorphic to any other subgraph of G. If f£(n) is the largest number

of unique subgraphs a graph on n vertices can have, they prove

2 _  3/2
£(n) > Zén cn

for ¢ > 3/VZ and n sufficiently large
It will be proved below that

21og f(n) = %nz - n -210g n + O(n).

Since the number of nonisomorphic graphs on n vertices is

2 ( nz—n n3
e o 37 )
' o0 23n/2

(see e.g. 127, p.196), we have

1

21og f(n) < %nz - n.-2log n + 0(n).

On the other hand, given n we construct a graph Gn on n vertices with
nZ-n ~210g n+0(n)

22 unique subgraphs as follows:

PR o
Let m = logn and N=n-m- 2. Then N2 ~-m~- 1.
Let Gn = A u B u C where

A = KN’ the complete graph on N points,

B is a rigid tree with m vertices (such a tree exists for each m27),
c = Kz, a single edge connecting points <y and ¢ connected as
follows:



Gn contains all edges (cl,b) for b € B and no other edges between

C and A u B; furthermore, if we view A as a set of subsets of B each
containing at least two points (which is possible since N < Zm—m—l),
then Gh contains the edge (a,b) where a ¢ A and b ¢ B if and only if

b e a.

Now define the subgraph Hn of Gn as follows:
Hn = A' U B u C where A' is the vertex graph on N vertices
(that is, A' is totally disconnected) and A', B, C are interconnected
like A, B, C in Gn' That is, Hn contains the same n points as Gn but

has (g) edges less.

If H is a subgraph of Gn such that Hn c Hc Gn then H is unique:
First, <5 is the only point of H with degree one, and therefore if we imbed

H in Gn the point ¢, of H must go to the point ¢, of Gn. Next it follows

0

that ) must go to °

B is rigid the imbedding restricted to B must be the identity on B. Finally,

0
and therefore that B ¢ H must map onto B < G. Since

since each point of A is coded by a subset of B, A too cannot be imbedded

in any other way. Therefore H is unique.

N

)

The number of subgraphs H between H and G_ being 2 2

- 2%nz—n - 210g n+0(n) n o

, this proves our assertion.
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