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A NOTE ON THE FUNDAMENTAL THEOREM 

FOR RIEMANN-INTEGRALS*) 

by 

Jan van. de Lune 

Usually the fundamental theorem for R-integrals 

fb f'(x)dx = f(b) - f(a) 
a 

is proved under the assumption that f' is R-integrable over [a,bJ. Compare, 

for example, [2, pg.115]. 

It appears that there is no answer in the literature to the question 

under what conditions the derivative f' of a differentiable function f is 

R-integrable (without making use of specific measure theoretic notions). 

Compare, for example, [I, pg.47]. 

In this note we prove the following 

THEOREM. If f : [a,b] +JR is differentiable then the derivative f' is 

R-integrable over [a,b] if and only if there exists an R-integrable function 

¢ : [a,b] + JR such that 

f(x) = f(a) + Ix ¢(t)dt. 
a 

In order to prove this theorem we need two lemmas. 

Lemma 1. Let¢ [a,b] +JR be R-integrable such that 

Define 

m < ¢(x) ~ M, 

~(x) = Jx ¢(t)dt, 
a 

vx E [a,bJ. 

vx E [a,bJ, 

*) This paper 1s not for review; it is meant for publication 1n a journal. 
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and assume that <P is differentiable on [ a,b]. 

Then we have 

m < <P' (x) ~ M, vx E [ a, b]. 

Proof. Define K(x) = <P(x) - m. (x-a). 

Then K(x) is differentiable such that 

K'(x) = <P'(x) - m. 

We also have 

K(x) = fx ~(t)dt - m. (x-a) = Ix (~(t) - m)dt. 
a a 

Since ~(t) > m we see that K is monotonically non-decreasing. Hence 

K'(x) > O, 

or 

<P' (x) > m, vx E [a,b]. 

In a similar fashion one proves 

<P' (x) < M, vx E [a, b]. 

Lemma 2. Under the same conditions as in Lemma 1 we have that <P' is 

R-integrable over [a,b]. 

Proof. Lemma 1 is applicable on every closed subinterval of [a,bJ. From 

this it follows that the fluctuation of <P' is not larger than the fluctu

ation of~-

According to a well known criterion for R-integrability [2, pg.107] we may 

conclude that <P' is R-integrable over [a,b]. 
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Proof of the theorem. It is clear that the given condition is necessary; 

take~= f'. 

To prove the sufficiency we write 

f(x) - f(a) = Jx ~(t)dt. 
a 

Then it is clear that f' is the derivative of a function of the form 

Jx ~(t)dt. 
a 

According to Lemma 2 we obtain that f' is R-integrable over [a,b], com

pleting the proof. 
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