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A NOTE ON THE FUNDAMENTAL THEOREM
FOR RIEMANN-INTEGRALS *’

by

Jan van de Lune

Usually the fundamental theorem for R-integrals

Jb f'(x)dx = £(b) - f(a)
a
is proved under the assumption that f' is R-integrable over La,bl. Compare,
for example, [2, pg.115].

It appears that there is no answer in the literature to the question
under what conditions the derivative f' of a differentiable function f is
R~integ£able (without making use of specific measure theoretic notions).
Compare, for example, [1, pg.471].

In this note we prove the following

THEOREM, If f : [a,b] * R is differentiable then the derivative f' is
R-integrable over la,bl if and only if there exists an R-integrable function
¢ : [a,bl » R such that

X
f(x) = £f(a) + J é(t)dt.

a
In order to prove this theorem wé need two lemmas.
Lemma 1. Let ¢ : [a,b] >R be R-integrable such that
m < ¢(x) <M, vx € [a,bl.
Define

X
o(x) = I ¢(t)dt, vx € La,b],
a
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and assume that ¢ is differentiable on [a,bl].

Then we have
m<d'(x) <M, vx € [a,bl.

Proof. Define K(x) = ¢(x) - m . (x-a).
Then K(x) is differentiable such that

K'(x) = "(x) - m.

We also have
x X
K(x) = f ¢(t)dt = m . (x-a) = J (6 (t) - m)dt.

a a

Since ¢(t) > m we see that K is monotonically non-decreasing. Hence
K'(x) > 0,

or
' (x) > m, vx € [a,b].

In a similar fashion one proveéu
o' (x) < M, vx € [a,bl].

Lemma 2. Under the same conditions as in Lemma | we have that @' is

R-integrable over [a,bl].

Proof. Lemma 1 is applicable on every closed subinterval of [a,bl. From
this it follows that the fluctuation of ®' is not larger than the fluctu-
ation of ¢.

According to a well known criterion for R-integrability [2, pg.107] we may

conclude that ¢' is R-integrable over [a,bl.



Proof of the theorem. It is clear that the given condition is necessary;
take ¢ = £'.

To prove the sufficiency we write

p.<
f(x) - f(a) = J o (t)dt.
a
Then it is clear that f' is the derivative of a function of the form
x
J o (t)dt.

a

According to Lemma 2 we obtain that f' is R-integrable over [a,b], com-

pleting the proof.
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