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§1. Introduction and notation 

This report deals with a problem related to some results of 

A. Scholz [3] concerning "addition chains". An addition chain for a 

natural number n is a finite ordered set of natural numbers n0, n1, ••• , 

~ such that n0 = 1, ~ = n and every number of the chain except n0 is 

the sum of two preceding members of the chain. Obviously for such a chain, 

n1 = 2 and n2 is either 3 or 4. 

The problem of constructing addition chains for a natural number 

n is related to the following problem [c.f.1]: 

If a is an arbitrary element of a semigroup, what is the minimal number 
n of multiplications necessary to compute a from a? If n0, •• ,, nk is 

n0 n1 an addition chain for n, then we can form the set a= a , a , ••• , 

ank =an.Each number of this set is the product of two preceding ones 

and the number k gives the member of multiplications which is necessary 

to compute an from a by means of this chain. In general kneed not be 

the smallest number of multiplications necessary to compute an from a. 

Let G be the collection of all addition chains for n. If. C€.~ , 
n n 

let A(C)re the number of elements in the chain minus one. We will also 

say that A(C) is the length of C and we note that A(C) is precisely 
. . n the number of multiplications which is necessary to compute a from a by 

means of the chain C. We also let 

and note that A(n) is the minimum number of multiplications which is 
n necessary to compute a from a, 

Some obvious consequenceof the above definitions are that A(1) = O, 

A(2) = 1, A(3) = 2, and A(4) = 2. 

A Brauer [2] and E.G. Strauss ~] have proved that 

lim A(n) = 1 
n-+oo log2 n 

and 

A(n) ln (n) 
{1 + O(ln ) } . < (2) ln - ln n 
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Moreover, Scholtz has stated in [3] that 

).. ( n) ~ log2 n. 

From these results, it is obvious that there exists a natural number 

n for which 1"-(n) is a maximum. One of the main purposes of this re
og2 n 

port is to prove that the function is a maximum for n = 71, where 

A(n) = 9 and )..(n) = 1,463 ••• • However, we also compute A(n) for log2 n 

several numbers n and techniques for computing upper bounds for A(n) 

are given. 

In the second 

A(n) and use these 

section we prove some elementary inequalities for 

inequalities to show that if n is a number for which 
A ( n) 

log2 n is a maximum, then there exists a prime p such that A(p) = 
log2 p 

)..(n) 
log2 n 

In the third section Brauer's techniques are modified in order to 

prove a theorem which yields a sharper result than Brauer's inequality 

(12)o Special cases of the theorem which are necessary for section 5 

are also discussed. 

The main content of section 4 is two tables which are needed for 

the proof of the main theorem. A proof for some of the entries in table 1 

is contained in the appendix. 
)..(n) 

The last section of the report contains a proof that ------- is a log2 n 
maximum for n = 71. 

We wish to express our gratitude to the members of the department 

of pure mathematics of the Mathematical Centre and to F. Gobel for 

their discussion and comments during the researc~ for this report. 

§2. Elementary inequalities. 

2.1. Proposition. For every natural number n, 

)..(n) > 1 
log2 n - • 

Proof. It is clear that max{nj)..(n) .:_ 1} = 2. Suppose now that 

for some natural number k we have shown that max{nj)..(n) ,:_k} = 2kc Let 

m be a natural number such that )..(m) < k+1 and let CE.b such that 
m 
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A(C) = A(rn). If we delete the last term from the chain C, we have a 

er.a.in whose length is at most k and by our induction assumption, all 

of these terms are less than or equal to 2k. Since the last term of C 

is the surn of two preceding terms, it follows that the last term of C 
k+1 . , 2k 

is less than or equal to 2 Moreover, equality holds only if 
k+1 

belongs to C. Thus max { n \ A ( n) 2.. k + 1 } = 2 holds for every integer 

k > O. It follows easily that \(n) .:::._ log2 n and so \(n) > 1. 
log2 n -

2,2. Proposition. Let r, s, n be natural numbers such that n = rs. 

Then 

A(n) < \(r) + \(s). 

Moreover, for any natural number n, 

A(n+1) < A(n) + 1 and A(n+2) < A(n) + 1. 

Proo:r. In order to prove the first assertion, let k = A(r), let 

1 = A(s), assume r 0 , ••• , rk is an addition chain for rand assume 

s 0 , .•• , s 1 is an addition chain for s. We define an addition chain for 

n as follows : 

n. = 
J. 

r. 
J J. 
l 

rsi-k 

i 2.. k, 

k < i < k+l. 

The length of this addition chain is k + 1 and so 

\(n) < k + 1 = \(r) + \(s). 

The second and third assertions are easy consequence5 of the fact 

that every addition chain starts with the numbers 1 and 2; hence any 

chain which ends with n can be extended to a chain ending with n + 1 

or n + 2 with only one extra addition. 

2.3. Corollary. If n = rs, then 

A(n) < maxJ A(r) A(s) } 
log2 n - •log2 r' log2 s • 

Proof. Since A(n) < A(r) + \(s), then 

_\_( n_)_ < _A __ ( r_.)_+_A __ ( __ s __ ) = A ( r) + A ( s) < max{ A ( r) A ( s) } 
log2 n - log2 n log2 r + log2 s - log2 r' log2 s • 
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2.4. Corollary. If n is a natural number such that 1A(n) is a og2 n 
A(p) __ A(n) . maximum, then there exists a prime p 2. n such that------

log2 p log2 n' 

in this case, n is a power of p. 

Proof. It follows from the preceding corollary that 

1A{n) < max{1A(p) IP is a prime divisor of n}. 
og2 n - og2 p 

On the other hand, 1A(n) > 1A(p) for every prime p so that there must 
og2 n - og2 p 

exist a prime divisor p of n for which A(n) = A(p) It follows log2 n log2 p• 

easily that nA(p) = pA(n) and hence n is a power of p. Clearly, this 

prime p must be unique. 

§3. Upper bounds for A(n). 

The proof of the following theorem essentially uses the techniques 

of Brauer [2]. One of its applications is to obtain a sharper result 

than Brauer's inequality (12). 

3.1. Theorem. Let n and k be two natural numbers such that n ~ 22k. 

Then 
- rlog2 nj k-1 

A ( n) 2- [l.og2 n] + t k :.I - k + 2 + 1 • 

Proof. Let 

£1£1_1 •·· e1e0 , (e1 = 1 and e e{o, 1}) 

be the binary representation of n and let t =[~].The method of proof 

for the theorem is as follows: We first construct an initial addition 

chain. By doubling previous terms and adding members of the initial chain 

to terms, we co:rµput e the maximum number of terms that are needed for an 

addition chain to contain the following numbers: 

To illustrate our method, we first consider the following example. 

Example. Let n be the natural number whose binary representation 

is 100 101 110 111 01 and let k = 3. It follows that 1 = 13 and 
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[!] = 4. We break the number up into 4 blocks of length 3 with a block 

of length 2 left over; i.e. 100, 101, 110, 111, and 01. Our initial 

chain (in binary notation) is 

n 1 = 10, n3 = 101, and n4 = 111. 

The next :number that we consider is 1000. It is sum of two members of 

the initial chain; namely n4 + n0 • We also note that the number 101 

is also in the initial addition chain. Thus,.the next 4 members of 

the addition chain are formed as follows: 

~ = n6 + n6 = 100000, and n8 = n7 + n3 = 100101. 

In the next step, we examine the number 11 O. It is not in the initial 

chain but 11 is. Hence the next 4 members of the chain are formed as 

follows: 

n 11 == n10 + n2 = 10010111, and n12 = n 11 + n 11 = 100101110. 

Continuing, we note that 111 is in the initial chain and so the next 

4 terms a:re defined by: 

n1 6 == n 15 + n4 = 1 001 0111 0111 • 

Finally, since 01 is in the initial chain, let n17 = n 16 + 

n18 = n17 + n17 , and n19 = n18 + n0 = 10010111011101. Thus 

addition chain of length 

19 = 23- 1 + (4-1)(3+1) + (13-12+2). 

Proof of the theorem. 

Step_1. Let the initial addition chain be 

~ 1, 10, 11,101,111, ••• , 111 ••• 1 

n16' 
we have an 
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. k-1 . . . . There are precisely 2 members of this chain since it contains all 

of the odd numbers between 1 and 2k. 

Step 2.The numbers E1E1_1 ••• El-k+1o can be written as the sum 

of two members of the initial chain, namely the last term plus some 

other term. Thus we let it be the next term of the addition chain. 

Next we consider the number 

Either El-k = El-k-1 = ••• = E1_2k+1 = 0 or there exists a least index 

i such that E, = 1 and 1-k > i > l-2k+1. In the former case by doubling 
i 

E1E1_1 ••• El-k+1o and then doubling the obtained number, etc., we can 

construct the number E1E1_1 ••• E1_2k+1 ink steps beyond the initial 

chain. In the latter case, the number El-kEl-k+1 ••• Ei+1Ei belongs 

to the initial addition chain (since it is the representation of an 

odd number less than 2k). In this case we double E1E1_1 ••• El-k+1o 

and then double the obtained number and repeat this procedure exactly 

1-k-i times. Then we add El-kEl-k-1 ••• Ei to the last number we obtained 

and repeat the doubling process exactly i - (l-2k+1) times in order to 

obtain the number E1E1_1 ••• E1_2k+1• Thus it takes 

1 + (1-k-i) + + i - (l-2k+1) = k+1 

additional terms to construct E1E1_1 ••• E1_2k+1 from the initial chain. 

Step 3. Suppose that we have constructed an addition chain for 

E1E1 ••· El-rk+1• We compute the maximum number of terms necessary to 

construct an addition chain for E1 E1_1 ••• El-(r+1)k+1 using the addi

tion chain for E1E1_1 ••• El-rk+1• As in step 2, either El-rk = 

El-rk-1 = •·• = El-(r+1)k+1 = 0 or there is a least index i such that 

Ei = 1 and 1-rk.::., i.::., l-(r+1)k+1. In the former case we use the doub-

ling process to obtain an addition chain for E1E1_1 ••• El-(r+1)k+1 
in just k steps from E1E1_1 ••• El-rk+1• In the second case we proceed 

as in step 2 by using the doubling process exactly l-rk+i+1 times, ad-

ding El-rkEl-rk+1 ••• Ei' and then doing the doubling process i-l+(r+1)k-1 

more times. In this case we obtain E1E1_1 ••• El-(r+1)k+1 in k+1 addi

tional steps from E1E1_1 •·• El-rk+l· 
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Step 4. Since we can construct an addition chain for E1 E1_ 1 o•• 

El-tk+1 by step 3, we need only compute the maximum number of steps 

necessary to construct an addition chain for E1E1_1 ••• E1E0 using the 

addition chain for E1 E1_ 1 ••• El-tk+1• We use the methods of steps 

2 and 3 and note that it will take l-tk+1 of the doubling steps plus 

at most one addition from the initial chain. Thus there are at most 

l-tk+2 additional terms necessary for the chain. 

Step 5. We can now add up the maximum number of terms from each 
k-1 step. There are 2 terms from step 1, at most k+1 terms from step 2, 

at most (t-2)(k+1) terms from step 3, and at most l-tk+2 terms from 

step 4. Thus the maximum number of terms that we have is 

2k-1 + (t-1)(k+1) + 1 - tk + 2 = 2k-1 + 1 + t - k + 1. 

If we observe that t = [{] and 1 = (Jog2 n] , then 

flog2 nj k-1 t kj+2 -k + 1. 

The theorem is also valid if k < 22n, however, such a result is 

not needed in this report and so a proof is not included. 

Using the theorem, we are able to find an upper bound for the 

order of A(n). For n sufficiently large, we put 

It follows that 

Thus 

k 1 2log2 n 
2 - < -------

A(n) 

2 (log2 log2 n) 
and 

1 2 k 1 + +1-log2 
< log2 n-2log2 log2 log2 n 

+ 
log2 n n- log2 (log2 log2 nl 

and hence 

A(n) < 1 + 1 + 0 ( 
1 

n) • log2 n - log 2 log2 n log2 log2 

This result is sharper than Brauer's inequality ( 12). 

For the proof in section 5, we consider upperbounds for \(n) in 
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case k = 2 or k = 3. For convenience, we denote the smallest integer 

which is not smaller than a by [a]+. 

The case for which k = 2. The initial chain in this case is 1, 10, 

11 (in binary notation). If n is any natural number which is larger 

than 3, then all possible first three digits for the binary represen

tation of n are 100, 101, 110, and 111. In case the first three digits 
I 

are 100, 101 or 110, then we can obtain the first three digits in three 

additions. If 1 is the number of digits needed to represent n in the 
. 1 3 . d [}.-:17 + · · binary system, then we need at most - doublings an [2J additions 

more to form a chain for n. Since 1 = l}og2 n] + if n is not a power of 

2, then it follows that in this case 

(3.2) 

In the case that the first three digits of the representation of n are 

111, then we have the first two digits in two additions and we see that 

(3.3) 
[log22n -27 + • 

" ( n) ~ Q..og2 aj + + I.: :J 

Clearly both (3.3) and (3.4) hold if n is a power of 2. 

The case for which k=3. The initial chain for this case is 1, 10, 

11, 101, 111 (in binary notation). Let n be a natural number which is 

larger than 7. If the first four digits of the binary representation 

of n are 1000, 1001, 1010, 1100 or 1110, then it is possible to make 
. . . . A b . • 11 d 4 l}-47 + these digits in five steps. s efore, we sti nee at most 1- +['"3""J 

more steps for an addition chain for n, where 1 is the number of digits 

needed to represent n in the binary system. Thus in this case 

( 3. 4) 
Ll- 4_7+ + fiog2n -17+ 

" ( n) ~ 5 + ( 1-4 ) + I_YJ = (!og2 n] + t" · 3 :.l • 

If the first four digits are 1011, 1101, or 1111, then we have the first 

three digits and an extra O in five steps. 

Hence 
f1- fl+ + fiog2 n] + 

" ( n) ~ 5 + ( 1-4 ) + [ 3 J = ~og2 n] + I.: 3 :J 
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m 

§4. Tables of;>.. (n) and (71 )q_ 

In order to illustrate the behavior of ;>._ ( n), we include a table 

of >,. ( n) for n < 100. For a discussion of this table, see the appendix. 

n ,:dn) n ;dn) n A ( n) n A ( n) 

1 0 26 6 51 7 76 8 
2 1 27 6 52 7 77 8 

3 2 28 6 53 8 78 8 
4 2 29 7 54 7 79 9 
5 3 30 6 55 8 80 7 
6 3 31 7 56 7 81 8 

7 4 32 5 57 8 82 8 
8 3 33 6 58 8 83 8 

9 4 34 6 59 8 84 8 
10 4 35 7 60 7 85 8 
11 5 36 6 61 8 86 8 
12 4 37 7 62 8 87 9 
13 5 38 7 63 8 88 8 
14 5 39 7 64 6 89 9 
1 5 5 40 6 65 7 90 8 
16 4 41 7 66 7 91 9 
17 5 42 7 67 8 92 8 
18 5 43 7 68 7 93 9 
19 6 44 7 69 8 94 9 
20 5 45 7 70 8 95 9 
21 6 46 7 71 9 96 7 
22 6 47 8 72 7 97 8 

23 6 48 6 73 8 98 8 
24 5 49 7 74 8 99 8 

25 6 50 7 75 8 100 8 ! 
' ' 
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;\(n) . . 
In order to prove that 1 is maxl.Illal for n = 71, then for each og2 n 

natural number n we must construct an addition chain C such that 

/ ( C) . < / ( 71 i1• From table 1 we see that A ( 71) = 9 and so the last og2 n og2 
inequality is possible if and only if n9 > (71)A(C), This holds if and 

A(C) m 

only if n > ( 71 )~. We include a t.abil.e of ( 71) 9 for 1 < m < 20. 

m ;I 
m (71)9 m 

1 1. 61 6 

2 2.58 7 

3 4. 14 8 

4 6.65 9 

5 1 o. 68 10 

m m 

( 71 )9 m (71 )9 

17.15 11 183.08 

27.53 12 294.oo 

44.21 13 472.11 

71.00 14 758.12 

114. 01 15 1217.39 

table 2. ======= 

§5. The maximum of /(n) 
og2 n 

Theorem. For every natural number n ~ 71, 

A(n) < A(71) • 
log2 n log2 71 

m 

m (71)9 

16 1954. 91 

17 3139.22 

18 5041.00 

19 8094. 91 

20 12998.93 

Proof. Throughout the proof we will say that A(n) 2,.m is permitted 
m 

for a natural number n in case n > (71)9: e.g. from table 2 we see that 

>-.(n) .::_ 10 is permitted for n ~ 115. >-.(n) 

Using tables 1 and 2, it is clear that if n < 71, then n > (71)-r-, 

and hence 1 A(n) < A( 71 ) for all n > 71. 
og2 n log2 71 

Suppose now that {1og2 ~i+ = 7, i.e., the binary representation of 

n consists of seven digits. It follows that 64 < n 2. 128. For 72 .::_ n .::_ 111, 

an application of (3.2) yields A(n) .::_ 9. From table 2 we see that A(n) .::_ 9 
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is permitted for all n > 71 so that A(n) < A( 71 ) for all n such 
log2 n log2 71 

that 72 .::_ n .::_ 111. If 112 .::_ n.::. 119, we apply (3.4) to obtain A(n) .::_ 9 

and hence it is permitted. If 120.::. n.::. 128, we apply (3.3) to find 

A(n) < 10. Table 2 implies that A(n) < 10 is permitted for all n > 114 

so th;t we have proved the validity of A(n) < A( 71 ) for all n such 
log2 n log2 71 

that 64 < n < 128. 

If ~og2 i:i:I + = 8, then 128 < n .::. 256. As in the preceding paragraph, 

applications of (3.2), (3.3), (3.4), and (3.5) yield A(n).::. 11. This 

is permitted for all n > 183 and so a special proof is necessary for 

all primes between 128 and 183. The construction of an addition chain 

of length less than 11 for each such prime is given in table 3 at the 

end of this section. 
+ If J}og2 Ii] = 9, then 256 < n.:. 512 and (3.4) and (3.5) imply 

that for every such n, A(n).::. 12. This is permitted for n ~ 294 and so 

addition chains which take less than 12 steps are given in table 3 for 

all primes between 256 and 294. 

If l}og2 zi] + = 1 0 (i.e. 512 < n .:. 1 024 ) , then we can apply ( 3. 4) 

for 512 < n.::. 703 to find >..(n) .::. 13. This is permitted for all n ~ 473. 

From (3.4) and (3.5) we see that for 703 < n.:. 1024, A(n) .:_ 14. This 

is permitted for n .:::_ 759. Hence special chains must be constructed for 

all primes between 703 and 758 and this is done in table 3. 

If [iog2 I!]+= 11 (i.e. 1024 < n.::. 2048), then (3.4) and (3.5) 

assert that every such number has a chain which has length at most 15. 

This is permitted for n > 1217. Chains ~or the primes between 1024 

and 1217 appear in table 3. 

If [1og2 n]+ = 12 (i.e. 2048 < n .:_ 4096), then (3.4) and (3.5) 

imply that A ( n) .::. 16, which is permitted for all n ~ 1955. 

If !1og2 !!]+ = 13 (i.e. 4096 <· n.:. 8192), then (3.4) implies that for 

n less than 5632 there is an addition chain of length at most 17. This 

is permitted for all n > 3139. If n ~ 5632, a chain can be constructed 

of length at most 18 and this is permitted for n > 5041. 

If {Jog2 n]+ = 14 (i.e. if 8192 < n.::. 16384), then (3.4) and (3.5) 

imply that A(n) < 19, which is permitted for n > 8094. 
- 4 16 

Using the fact that (71 )9 < 23 and (71 )9 211 
< ' it follows that for 
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every natural number m, 
16+4m 

211+3m > ( 71 ) 9 

Thus, if m is a natural numer and f1.og 2 ~ + = 12 + 3m, then the above 

inequality and (3.4) and (3.5) imply that lA(n) < lA( 71 +1• Similar og2 n og2 

techniques A(n) A(71) . Ll ~:i+ can be used to prove 1 < 1 71 in case log2 n = og2 n og2 
13 + 3m or l}og2 n] + = 14 + 3m, 

The proof will be completed by forming addition chains for those 

primes whieh were mentioned above. It is not known if the chains in 

this table are minimal, but they are sufficiently small for our pur-

poses. 

n 0 I II III IV V VI VII III IX X XI XII XIII XIV jA ( C ) 
' n 
I 

131 1 2 3 l} 8 16 32 64 128 131 I 9 

137 2 3 1-
) 10 15 30 45 90 135 137 10 

139 2 4 5 10 15 30 45 90 135 139 10 

149 1 2 4 5 9 18 36 72 144 149 9 
151 2 3 '.5 10 15 25 50 75 150 151 10 

157 2 4 '.5 9 13 18 36 72 144 157 10 

163 2 3 5 1 0 20 40 80 160 163 9 

167 1 2 3 5 7 10 20 40 80 160 167 ,j 10 

179 1 2 3 l!J. 8 11 22 44 88 176 179 10 

181 1 2 3 5 10 15 30 45 90 180 181 10 

257 1 2 4 a 16 32 64 128 256 257 9 
263 1 2 3 5 7 8 16 32 64 128 256 263 11 

269 2 3 6 7 13 16 32 64 128 256 269 11 

271 2 3 5 10 15 30 60 90 180 270 271 11 

277 1 ' 2 4 5 8 16 17 34 68 136 272 277 11 

281 1 2 3 5 7 14 28 35 70 140 280 281 11 

283 2 3 5 7 14 ! 28 35 70 140 I 280 2S3 11 
f ! 293 2: 4: 5 9 18, 36 72 I 144 ! 288 293 10 

< I 
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n l 0 I I III IV V VI VII III IX 
l 

709 1 2 3 5 6 11 22 44 88 176 

719 1 

727 1 

733 1 

739 1 

743 1 

2 3 5 7 14 28 

2 3 5 7 10 20 

2 3 5 10 13 20 

2 3 5 10 20 23 

2 3 6 9 18 36 

751 1 2 3 5 10 20 30 

757 1 2 3 6 . 9 18 27 

1 031 1 2 3 5 7 8 1 6 

1033 1 2 4 8 9 16 32 

1 039 1 2 3 5 1 O 15 16 

1049 1 2 3 4 8 16 32 

56 112 119 

40 80 90 

40 80 90 

46 92 184 

37 74 111 

50 100 200 

54 81 135 

32 64 128 

64 128 256 

32 64 128 

64 128 131 

X XI XII XIII XIV A(C ) n 

352 704 709 12 

238 357 714 719 13 

180 360 720 727 13 

180 360 720 733 13 

368 736 739 12 

185 370 740 743 13 

250 500 

189 378 

750 751 

756 757 

256 512 1 024 1 031 

512 1024 1033 

256 512 1024 1039 

262 524 1048 1049 

12 

13 

13 

1 051 1 2 3 4 8 1 6 32 64 1 28 1 31 262 524 1 048 1 051 13 

1061 1 2 3 5 6 11 22 44 88 132 264 528 1056 1061 13 

1063 1 2 3 4 7 11 22 44 66 132 264 528 1056 1063 13 

1 069 1 2 4 5 9 13 22 44 66 132 264 528 1 056 1069 13 

1087 1 2 3 5 7 9 18 27 54 81 135 270 540 1080 1087 14 

1091 1 · 2 3 4 8 16 32 64 128 256 512 1024 1088 1091 13 

1093 1 2 4 5 8 16 32 64 128 256 512 1024 1088 1093 13 

1097 1 2 4 8 9 16 32 64 128 256 512 1024 1088 1097 13 

1103 1 2 3 5 10 15 17 34 68 136 272 544 1088 1103 13 

1109 1 2 4 8 16 17 21 34 68 136 272 544 1088 11b9 13 

1117 1 2 4 8 9 18 36 72 108 180 360 540 1 080 1116 1117 14 

1123 1 2 3 5 7 14 28 35 70 140 280 560 1120 1123 13 

1129 1 2 4 5 6 9 15 30 35 70 140 280 560 1120 1129 14 

1151 1 2 4 8 16 17 21 42 63 126 189 378 756 1134 1151 14 

1153 1 2 4 8 16 32 64 128 256 512 1024 1152 1153 12 

1163 1 2 3 5 6 11 16 32 64 128 256 512 1024 1152 1163 14 

1171 1 2 3 6 9 18 36 72 73 146 292 584 1168 1171 13 

1181 1 2 3 5 7 14 21 35 49 98 147 294 588 1176 1181 14 

1187 1 2 3 6 9 18 36 37 74 148 296 592 1184 1187 13 

1193 1 2 3 6 9 18 36 37 74 148 296 592 1184 1193 13 

1201 1 2 3 5 1 0 15 30 60 

1213 1 2 3 5 10 13 15 30 

1217 1 2 3 5 10 15 17 30 

75 150 300 

60 75 . 150 

60 75 150 

table 3 

600 1200 1201 13 

300 600 1200 1213 14 

300 600 1200 1217 14 

This table completes the proof of the theorem 
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Appendix 

We only comment on the entries in table 1 for n .::_ 71. 

1. We recall first that every addition chain is ordered by the 

relation<. 

2. An obvious inequali~y is 

In case equality occurs for some n, no comment is made about that entry 

for n in the table. 

3o If min{max{A(p), A(q)}lp+q = n} = A(po) = A(qo) and if p ¥ q, 

then it is easy to see that we cannot have an addition chain for n in 

A(p0) + 1 steps in which both p and q occur. In case this occurs, no 

further remark will be made about it. 

4. It is obvious that -fD- can be constructed only along powers of 

2 in m steps. Moreover, 3.2m can be constructed only along powers of 

2 and 3 times a power of 2 in m+2 steps. If n is the sum of -fD- or 3.2m 

and another number, no comment is necessary if n cannot be made in m+1 

or m+3 steps. 

5. In commenting on the remaining numbers, we denote the possible 

place of a number in a chain with a Roman numeral. The remaining com

ments concern the elimination of a number min making a chain for a 

number n; i.e. m cannot l:e at a certain place in a minimal chain for n in 

case some other thing must occur. 

For n = 11: If 8 is at III, then 3 cannot be at II. 

For n = 19: If 16 is at IV, then 3 cannot be at II. 

For n = 21: If 16 is at IV, then 5 cannot be at III. 

For n = 29: If 20 is at V, then 9 cannot be at IV. 

Since 17 cannot be made in 5 steps along 12 and 

if 12 is at IV, then 17 cannot be at V. 

For n = 31: If 24 is at V, then 7 is not in the chain. 

If 15 is at V, then 16 is at least at VI. 

For n = 47: If 7 is at IV, then 40 cannot be at VI. 

If 11 is at V, then 36 cannot be at VI. 

If 13 is at V, then 34 cannot be at VI. 
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If 14 is at v, then 33 cannot be at VI. 

If 15 is at v, then 32 cannot be even at VI. 

If 17 l.S at V, then 30 cannot be at VI. 

If 20 is at v, then 27 cannot be at VI. 

For n = 53: If 13 l.S at v, then 40 cannot be at VI. 

If 17 l.S at v, then 36 cannot be at VI. 

If 20 l.S at v, then 33 cannot be at VI. 

For n = 55: If 40 l.S at VI, then 15 cannot be at v. 
For n = 57: If 40 is at VI, then 17 cannot be at v. 

If 24 l.S at ¥ then 33 cannot be at VI. 

For n = 58: If 40 is at VI, then 18 cannot be at V. 

If 24 l.S at V, then 34 cannot be at VI. 

For n = 71 : If 68 is at VII, then 8 must be at III and 3 cannot be at II. 

If 66 l.S at VII, then 16 must be at IV and 5 cannot be at III. 

If 65 l.S at VII, then 32 must be at V and 6 cannot be at III. 

If 7 is at VI, then 64 cannot even be at VII. 

If 11 is at v, then 60 cannot be at VII. 

If 15 l.S at v, then 56 cannot be at VII. 

If 17 l.S at v, then 54 cannot be at VII. 

If 19 l.S at VI, then 52 cannot be at VII. 

If 20 l.S at V, then there is an even number at IV, 

and we have to add an odd number in order to get 51. 

Therefore 51 cannot be at VII. 

If 21 is at VI, then 50 cannot be at VII. 

If 22 is at VI, then 49 cannot be at VII. 

If 23 l.S at VI, then 48 cannot even be at VII. 

If 25 l.S at VI, then 21 and 23 cannot be at VI , and 

hence 46 cannot be at VII. 

If 26 is at VI, then 19 cannot be at VI, and hence 45 cannot 

be at VII. 

If 27 is at VI, then 17 cannot be at V, and hence 44 cannot 

be at VII. 

If 28 is at VI, then 15 cannot be at V, and hence 43 cannot 

be at VII. 

If 30 is at VI, then 11 cannot be at V, and hence 41 cannot 

be at VII. 
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If 39 is at VII, then 32 cannot be at V or VI. 

If 33 is at VI, then 38 cannot be at VII. 

If 34 is at VI, then 37 cannot be at VII. 

These remarks together indicate that the entries in table 1 are correct 

for n 2. 71. 
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Addendum 

It might seem from the report that we have ignored some problems 

concerning ;\(n) since we have only discussed upper bounds for >..(n). 

In fact, the actual computation of ;..(n) appears to be very difficult 

and even trying to find a non-trivial lower bound for >..(n) seems to be 

as difficiut as trying to compute 11.(n). In any case, we wish to include 

a few conjectures and a brief discussion of them. 

We have seen from section 2 that 

( 1 ) 

( 2) 

11.(n) < 11.(r) + >..(s) 

>..(p) ..:_ ;..(p-1) + 1 

We define a new function e by 

e(1)=o, 

e(n) = e(r) + e(s) 

e ( p ) = e ( p-1 ) + 1 

for n = rs, 

for pis a prime. 

for n = rs, 

for pis a prime. 

It was conjectured that a study of this function e would help in the 

study of A. We will show that the behavior of e is different from the 

behavior of . . e(n) - >..(n) A by showing lim sup 1 n-+oo og2 n 
> o. 

~£• Let n = 23. We know that 11.(23) = 6 and it is easily seen 

that e ( 23) = 7. Moreover, if n and k are natural numbers, then e ( n) .::._ A ( n), 
k . k ;\(n ) ..:_ k.:dn), and e(n ) = ke(n). Therefore, 

.::._ lim sup k8(23) - kA(23) 8(23) - A(23) 1 o. = > - > 
k-+oo k log2 23 log2 23 -5 

It follows that e does not help. 

From table 1, one might conjecture that 

(3) A ( 2n+ 1 ) > A ( 2n) for all n. 

However, one can show that \(255) < 10 and (254) = 11. 

In fact, >-(255) < 10 follows from (1) and A(254) = 11 can be shown by 
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a technig_ue similar to that which appeared in the appendix. 

Also from table 1, it appears that 

(4) ;\ ( 2n ) = ;\ ( n ) + for all n. 

Indeed, if for example n is of the form g_.2m for g_ = 1, 3, 5, 7, 9, 11, 

then (4) holds. Nevertheless, for the number 2n whose binary represen

tation is 

1010101010101010101010101010110, 

we have constructed an addition chain which takes 35 steps, but we have 

not succeeded in constructing a chain for n with length less than 35. 
Another conjecture was that for each n there exists a minimal 

chain n0 , ••• ,~such that one can always use nj to construct nj+ 1; 

e.g. nj+ 1 -- nj + nj or nj+1 = nj 

examples to this conjecture, but 

+ n, s < j. There exist counter-
s 

the numbers involved are rather large. 


