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§1, Introduction. 

In this report a class of second order linear partial differential 

equations in two independent variables will be treated, 

( 1. 1 ) 

where L1 is a second order uniformly elliptic p.d.o,, L2 a first order 

p,d,o,, h(x,y) a given function ands a small positive parameter, The 

function¢ satisfies the differential equation in a bounded domain G 

in i 2 and takes prescribed values along the boundary of G, Under 

certain conditions a uniform first order approximation of the solution 

¢ of this singular perturbation problem will be given. This kind of 

singular perturbations has been treated among others by Levinson [Li], 
Vishik & Lyusternik [5], Eckhaus & de Jager [1] and Frankena [2], In 

[1] an iteration procedure is given to determine an approximation of 

¢ up to a certain order of s depending on the differentiability proper­

ties of the coefficients of the operator and the differentiability of 

the other parameters of the problem, This approximation is uniform in 

a convex domain G from which small neighbourhoods of the "end"-points 

A and Bare excluded. The boundary points A and Bare characterised 

by the fact that the characteristics of 12 through these have no other 

points in common with 3G. In their proof Eckhaus & de Jager assume that 

the parametric representation of the boundary is c6 and that the other 

parameters are c3 to get an approximation of order O(s). 

In this report attention is paid especially to approximations of 

solutions of the problem for which some part of the boundary and/or 

the boundary value function is non-differentiable. It will appear that 

by means of a regularization procedure a uniform first order approximation 

can be given even in the case where a part of the boundary and the boundary 

values are required to satisfy a Holder condition only, 
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Definitions: 

a2 a2 a2 
L1 = a(x,y) 2 + b(x,y) -- + c(x,y) 

ax ax ay ay2 

a a 
+ d(x,y) ax+ e(x,y) ay + f(x,y) 

with ac - b2 > 0 on G because of the ellipticity of 11; furthermore 

it is assumed that a(x,y) > 0 on G. 

a 
L2 = - ay - g(x,y) 

with g{x,y) > 0 on G. 
G is a domain in :R2 bounded from above by 

and from below by 

Y+ and y_ are Holdercontinuous and piecewise continuously differentiable 

on [3c1,x;J such that y+(xi) = y_(xi) and y+(x) > y_(x) if x 4 xi 

for i = 1,2. 

The prescribed boundary values of IP are 

( 1 • 2a) 

(1.2b) 

In order that the problem may certainly be uniquely solvable, it is 

assumed that the coefficients of 1 1 and L2 , h(x,y), ~+and~- are at 

least Holdercontinuous. 
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Notation: 

A real function f is called Cm+a if it ism times differentiable and 

them-th derivative is uniformly Holdercontinuous with exponent a; 

here mis a non-negative integer and a a positive real smaller than or 

equal to 1; sometimes the domain D of the function will be specified 

by writing: f E. Cm+a [p]. 
The Landau 0-symbol will be used, but for typographical reasons we 

will usually write O(s;>,_) instead of O(sA), 

The author is indebted to prof.dr, E.M. de Jager for stimulating 

discussions about the subject and for carefull reading of the manus­

cript, 
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§2. The maximum principle and its consequences. 

In this section some lemma's will be given, which are based on the 

maximum principle for elliptic boundary value problems. These lemma's 

will be used in §§4-5 in order to prove the validity of the asymptotic 

approximations of the solution of the boundary value problem (1.1)-(1.2). 

(c,f, [1] §2). 

The maximum principle may be formulated as follows: 

"If a twice continuously differentiable function <I> attains a positive 

maximum in an interior point (x0 ,y0 ) of the domain G and if f(x0 ,y0 ) .::_ O 

then L 1 <I> .::_ 0 in ( x0 ,y O) 11 ( c • f. [6] ) . 
From this well-known principle one easily derives the following lemma: 

Lemma 2. 1 
2 If <I> and o/ are C functions on G, and if 

then also 

f < 0 on G 

<I> < o/ on aG 

L1<I> > L1o/ in the interior of G 

<I>.::_ o/ in every point of G. 

proof: If <I>-o/ attains a positive maximum in the interior of G, then 

L1[<t>-{[ .::_ 0 according to the maximum principle. This is in contradiction 

with the assumption L1<I> > L1o/ and so <I>-o/ attains no positive maximum 

in the interior of G. From <I>-o/ < 0 on aG it follows that <I>-o/ cannot 

attain positive values in G. Hence <I>< o/ in G. 

remark: o/ 1 s called a barrier function ( from above) for <I>. 
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Lemma 2.2 (c.f. [1] theorem III) 

If qi satisfies 
E: 

( £L 1 + 1 2) qi E: = h(x,y;E:) 

qi s I aG 
= O(s;v) 

for (x,y) e G 

uniformly on aG 

with O < v < 

then 

and h(x,y,s) = O(s;v) uniformly 1n G, 

qi (x,y) = O(s;v) uniformly in G. 
E: 

proof: Let y0 be the minimum of y_(x), let M be a positive number 

such that lh I < M E:v on G and lqi I I < M E:v on aG and let a be a 
£ - £ aG -

positive real number such that 1 - £ e(x,y) > a on G if£ is small 

enough. Define w by w(x,y) = {; (y-y0 ) + 1}M sv, then w will be a 

barrier function for qi • 
E: 

It is easily seen that 

lqi I <won G 
E: -

and 

L (-w) > h = L qi > L w. 
E: - E: E: E: E: 

So, according to lemma (2,1) we have 

lqi I < w = O(s;v) 
E: 

uniformly on G. 
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§3, Regularization 

From lemma 2.2 we see that an approximation of the solution of a 

boundary value problem, as defined in §1, must satisfy the differential 

equation and the boundary conditions at least approximately; moreover 

we see that the approximation, which depends functionally on the 

approximated parameters, must just like the solution itself be two 

times differentiable at least. So first a device, called regularization, 

will be given to approximate the boundary value functions by suitable 

ones. 

Define the function 

2 2 2 2 
'i'(x) = 3Vrr ( 1 - 3 x )exp - x , 

then we have 
00 

( 3. 1 ) I 'i'(x) dx = 1 

-00 

00 

(3,2) I 2 'i'(x) dx 0 X = 

-00 

00 

(3,3) I 2k-1 'i'(x) dx = O ·X 

-00 

The regularization of a uniformly bounded continuous function f is now 

defined by 

(3,4) f (p) = 
£ 

->.. 
£ j f(x) •(7) dx 

-00 

where>.. is a positive parameter; this parameter will be chosen later on 

to optimalize estimates of the difference between solutions and 
00 

approximations. The regularized function f is a C -function that converges 
£ 

uniformly to f if e: tends to zero ( c. f. [3] theorem 1. 2. 1) and it is 

easily seen by partial integration that 

(3,5) (f )' = (f') 
e: £ 

if f is differentiable, 
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Furthermore we have the following uniform estimates off and its E: 
derivatives if f €- Ck+a[R]: 

O(E:;1>.(k+a-i)) if O < k-i < 3 

( 3,6) 

if k-i > 4 

(3,7) jf(i)I = O(E:; min{O,k-i+a}) 
E: 

remark: It is possible to choose instead of ~(x) a product of another 
2 polynomial and exp-x, such that integrals containing higher even 

powers of x also vanish and such that the estimates analogous to (3.6) 

become better if k-i .::_ 4, For the present purpose however they are not 

needed for we do not regularize boundary value functions that are more 

than three times differentiable; singular perturbation problems with 

boundary value functions of class c3 can be treated without regularization, 

as is done for instance in the approach of Eckhaus & de Jager, 

The proof of formula (3.6) will be given for i = 0 and k = 1 and k = 4; 

formula (3,7) will be proved fork= 0 and i = 1. If k-i+a .::_ O, (3,7) is 

obvious and the proofs of the other cases of (3,6) and (3,7) are 

analogous to the proofs given, 

proof_ o:f_3.6 

If f £ C 1 +a, then 

f(p+h) = f(p) + h f 1 (p+0h) (o < e < 1) 

and so 

lf(p+h) - f(p) - h f'(p)I < jhl jf'(p+0h) - f'(p)j = O(h;l+a). 

Hence 00 

·~) dx 
f (p) - f(p) -A f ( f(x) - f(p) = E: E: 

-00 

00 

-A I (f(t+p) - f(p) ~(E:-At)dt. = E: 

-co 
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Because of (3,3) 
00 

(3.8) fE:(p) - f(p) = E:-A I (f(t+p) - f(p) - t f'(p)) IJl(c:-At)dt. 

For a certain positive constant K we then have 
00 

00 

..:.. K s ;\ ( 1 +a) I I s 11 +a I '¥ ( s) I ds 

= 0 ( c: ; A ( 1+a ) ) . 

Because of the fact that 
00 

the analogue of (3,8) is not true and we get 

00 

-oo 

proof_of (3,7) 

By substitution off= 1 in 3,5 we get 

00 

I ~ IJl(p-x)dx = 0. 
3p 

Hence, if f e:. Ca~], 

00 

00 

and there exists a positive constant K, such that 

00 
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We see that the derivatives of a regularized function need not 

be bounded if e tends to zero; in the following sections however we 

will get an additional multiplicative factor of order O(e), which 

will give compensation, just when we need it. 
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§4. Asymptotic solutions for non-differentiable boundary values. 

Let us return to the problem defined in (1,1-2) and assume that 

the coefficients of the operator and hare c3 (G) 

(4, 1a) 

( 4. 1b) 

(4.2) 

y _ E- c3 [x 1 ,x2] 

4 
Y+ G'.- C [x1 ,x;J 

k+a r. ] 
q> + and ¢ _ e C Lx 1 , x2 

with k = 0,1,2 and 0 <a::_ 1; 

it is noted that the right and the left derivative of Y+ and y in 

x 1 and x2 respectively must be finite. 

In § 3 of their paper ( [1]) Eckhaus & de Jager give an asymptotic 

approximation of the solution~ of the problem assuming much stronger 

differentiability conditions. In this report their proof will be 

simplified by using another local coordinate system in the boundary 

layer. Moreover with the aid of approximations of the boundary value 

functions by regularization a method for approximating~ will be given 

in the case that¢+ and¢_ are non-differentiable, Later on also the 

differentiability conditions of the lower boundary will be weakened, 

Without loss of gen~rality we may assume from now on that the upper 

boundary is a straight line; otherwise a coordinate transformation may 

be performed., namely 

(x,y)~(u,v) = (x,y - y+(x)). 

The functional determinant of this transformation equals 1, so the 

elliptic character of the operator 1 1 remains unchanged; all other 

conditions also remain unchanged, except for the fact that the 

coefficient of !yin 1 1 is c2 and no longer c3 , but this will not 

affect the proof. 

It will appear that a boundary layer must be constructed along the 

upper boundary. With this assumption about the upper boundary the 

stretching of the coordinates in the boundary layer has become very 

simple, namely y = En, 
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In the boundary layer the operator e L 1(x,en) + L2 (x,en), in which 

the stretched coordinate is substituted, can be expanded into powers 

of e. 
. . a 1 a The stretching y = en gives - = --ay e an 

and expansion of coe~ficients of L1 and L2 then yields 

b(x,en) = b0 (x) + en b,(x,en) 

c(x,en) c0 (x) 2 2 c2 (x,en) = + en C ,(x) + € Tl 

e(x,en) = e0 (x) + €fl e 1 (x ,en) 

g(x,en) = go(x) + en g 1(x,en) 

Here b0 , c0 , e0 and g0 are c3 8C1 ,x;J , 
2 . 

c 1 is C [x1x2] 

b d C2 r;:;-,G ' 1 , e 1 an s1 are L\.iJ 

c2 is C' [GJ. 

The operator e L1 + L2 , expressed in local coordinates, can be expanded 

into powers of e: 

where 

Because of the uniform ellipticity of L1 and the positivity of a(x,y) 

in G, we also have c(x,y) > 0 and so c0 (x) > 0 on ~ 1,x;J. 
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Theorem I. 

Under the conditions (4.1) and (4.2) and, moreover, if y~(+x1) f 0 
and y~(-x2 ) f 0, a function 4> 0 can be constructed such, that for the 

solution 4> of (1,1-2) we have 

0 ( . { k+a}) 4> - 4> 0 = E; min 1, 2 

proof: 

The proof JLS based on the construction of a function 4> 0 that approximately 

fulfils the boundary conditions and for which (E 1 1+12 ) (4>-4>0 ) is 

uniformly small; with lemma 2.2 it then follows that 4>-4> 0 is small 

everywhere in G. 

Extend ¢ and¢ to be functions 
+ -

on IR by 

cp+(x) = cp+(x 1 ) if x < x 1 

cp:(x) = ¢:(x2 ) if x > x2 
and define¢+ and ¢ as their regularizations, 

E E-

Next we define w( x,y) to be the solution of the reduced equation of ( 1. 1) 

cl 
- (cly + g(x,y))w(x,y) = h(x,y) 

which equals¢ at the lower boundary of G. 
E-

lf we define p and q by 

p(x,y,t) = j h(x,n) exp{ - j y(x,s)ds} dn , 

t n 

we have 

(4.3) w(x,y) = <PE_(x) - p(x,y, y_(x)) - <PE_ q(x,y,y_(x)). 

From this we see that w is linearly dependent on¢ , so there exists 
E-

a positive constant K for which 

(4.4) 

and because of (3,7) 

( 4. 5) + min{0, A(k+a-2}) 

applies uniformly on G. 
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In general the function w(x,y) does not fulfil the upper boundary 

condition and an adaptation should be made in a neighbourhood of the 

upper boundary. 

If we define the function p (x) by 

p(x) = ~E+(x) - w(x,O), 

we have obtained a new boundary value problem, which must be fulfilled 

by the correction function, namely 

E 1 1 v(x,y) + 12 v(x,y) = 0 

with boundary conditions 

v(x,O) = p(x) 

v(x, y (x)) = 0 

(at the upper boundary) 

(at the lower boundary)-

To approximate the solution we stretch the ordinate y = En, we develop 

v(x,En) = v0(x,n) + E v 1(x, n) + ... , 

and solve the zeroth and first order reduced equations, 

and 

The solutions are 

(4.6) 

M0v0 = o 

with v0 (x,O) = p(x) and lim v0(x,n) = O 
n+-oo 

MOv1 = - M1v0 

with v1(x,O) = 0 and lim v 1(x,n) = 0 . 
n+-oo 

v0 (x,n) = p(x) exp co(x) 

(4.7) v1(x,n) = {(b0c~ - ! c0c 1)p c~3n + (g0c0 + c 1 
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It is obvious that pis linearly dependent on~+ and~ ; hence e: e:-
v o is linearly dependent on ~e:+ and ~e:- and v1 on ~e:+ and~:+• 

In the same way as in (4.4) and (4,5) we may conclude -

(4,8a) 

(4.8b) 

(4,8c) 

If we define ~Oas 

then it is clear that 

(4.9) 

= O(e:; min{O,A(k+a-2}) 

+ ••••• + ~••) = O(e:; min{O,A(k+a-2}) 
e:-

+ ..... + I~• 11 I) = O(e:; min{O,>..(k+a-3)}). e: 

= O(e:; min{1,>..(k+a-2) + 1, A(k+a-3) + 2}). 

This estimate, necessary for the application of lemma 2,2, is valid 

within the domain G. 

Next we give an estimate for~ - ~Oat the boundary aa. 
At the upper boundary we have 

and from (3,6) it follows that 

(4.10) 
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At the lower boundary we have the relation 

Here 

w(x,} y_(x)) = ¢E_(x) = ¢_(x) + O(E;A(k+a). 

If a> 0 we have the estimate 

(4.11) xa exp;= O(E;a) uniformly for x .:_ O, 

Y-(x) Y-(x) 
so the factor exp ( ) , contained in v 1, is uniformly 

E E c0 X 

bounded., for y (x) .:_ 0 and c0 (x) is strictly positive. Furthermore, 

as was already mentioned, v 1 is linearly dependent on ¢E+ and¢~+; 

hence we have the relation 

= 

= O(E; min{A(k+a-1), O}). 

Finally we need an estimate of 

(4.12) v0 (x,l y. (x)) = {rp +(x) - rp (x) + p(x,O,y_(x)) + 
E - E E-

Y_(x) 
+ ,1. n(x,O,y (x))} exp~-~ 

~E- ~ - E c0 (x) 

From the definition of p and q_ it is easily seen that there exists a 

constant K1, such that 

lp(x,O,y_(x)) + ¢E_q_(x,O,y_(x))i .:_ K1 !Y_(x)! 

and with (4.11) it then follows that 

O(d. 
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From assumption (4.2) and formula (3.6) it follows that 

+ (cp (x.) - <I> (x)) + (cp (x) - ¢ (x)) 
- l - - E-

= O(s;A(k+a)) + O(x-x.; min{1,k+a}) 
l 

for i = 1 and i = 2; because it was assumed that y'(xi) f 0 

there exists a constant c, such that 

- y (x.) > c I x-x. I 
- l - l 

(i = 1,2) 

and with (4.11) it then follows that 

( ,I, + ( X) - ,I, ( X) exp y - ( X () ) -- ( . { ( ) } ) ~ ~ 0 s;min 1,k+a, A k+a . 
E E- E CQ X 

Combining these, we may conclude that 

1 v0(x,;r_(x)) = O(s; min(1,k+a, A(k+a)). 

Hence we have 

(4.13) ~0(x,y_(x)) = cp_(x) + O(s;min{1,k+a, A(k+a), A(k+a-1) + 1}). 

By application of lemma 2.2 to the formulae (4.9), (4.10) and (4.13) 

we obtain 

(4.14) ~ - ~O = O(s;min{1,k+a, A(k+a), A(k+a-2) + 1, A(k+a-3) + 2}). 

The maximum of the exponent is 1 if k = 2 and - 1- <A< - and is 
1+a 1-a 

k;a if k = O or k = 1 and A=;, so finally we have 

~ - ~o = O(s;min{1, k~a}) 

uniformly on G. 
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Remarks: 

1) For the proof of the estimate (4.9) it is necessary that <I>0 contains 

the term sv 1, but since 

sv1 = O(s;min{\(k+a-1) + 1,1}) 

w(x,y) + v0 (x,;) is as good an approximation of~ as <I> 0 . 

2) In the proof of theorem I we had to use regularized boundary value 

functions, but from (3,6) it is easily seen that if wand v0 are defined 

by 

w(x,y) = ct> (x) 

and 

p(x,y,y_(x)) cp_(x) q(x,y,y_(x)) 

n 
exp ( ) 

XO X 

then ~(x,y) + v0(x,~) is as good an approximation of <I> as ~O and 

w(x,y) + v O (x,~-), 
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§5. Non-differentiable lower boundary. 

The method of proving asymptotic properties with use of regulari­

zation can also be applied, if the lower boundary is non-differentiable. 

So we arrive at the following theorem: 

Theorem II. 

Under the same conditions as theorem I, except that we now assume 

for y_ 1 

(5,1) { a. Y 

C • 

(1 = 0,1,2,3 and O < B ,:_ 1) 

b. y_ is at least piecewise continuously differentiable, 

there exists a positive constant c, such that 

y (x) < -cJx - xii in a neighbourhood of the points (x1 ,o) 

and (x2 ,o), 

a function ¢0 can be constructed, such that we have for the solution 

of ( 1. 1-2). 

¢ - ¢0 = O(E; min{1, k;a, l;B}). 

proof: 

The proof goes along the same lines as the previous one and therefore 

it will not be repeated completely. Differences arise in the estimates 

(4.4), (4.8) and (4.13); only these will be reconsidered, 

Apart from the boundary values¢+ the lower boundary y_ has to be 

regularized also now, which results-in¢ and y . The functions w, 
E:+ €-

Vo and v1 are obtained by the same calculations as in §4, only y_ 

has to be replaced by y • This results in 
E-

w(x,y) = ¢ (x) - p(x,y,y (x)) - ¢ (x) q(x,y,y (x)) 
€- E:- €- €-

v0 (x,n) = (¢s+(x) - w(x,O)) n = p(x) n exp c0 (x) exp ( ) COX 

v1 (x,n) {(bOcO -
1 

coc 1 )p 
3 

+ (goco + C -
) -1 = 2 c0n eo P co 1 

-1 p I }n .!L 2 b0c0 exp 
co 

and again 

¢o(x,y) = w(x,y) + v0(x,!) + s v1(x,;) 
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It is easily seen that p(x,y,t) and q(x,y,t) are c3 functions with 

uniformly bounded third derivatives, hence by differentiation it 

follows that 

(5,2a) aw -= ax O(s; A min{O,k+a-1,l+S-1}) 

( 5. 2b) 

= O(s;A min{O, k+a-2, l+S-2}) 

(5.2c) o( I¢' I + .... • + h"' I + I¢' Y' I + .. • .. + h' I 3) = 
E- E- E- E- E-

= O(s;A min{O, k+a-3, l+S-3}). 

Furthermore v0 is linearly dependent on¢ and w(x,O) and v1 on 
a s+ 

¢ , ¢'+' w(x,O) and -;-w(x,O); hence the analogue of (4,9) is s+ E oX 

( 5. 3) 

A(k+a-3) + 2, A(l+S-3) + 2}) 

At the upper boundary we again have 

(5.4) 

= ¢ (x) + O(s; A(k+a)) 
+ 

At the lower boundary we have .. 

<I:> 0 (x,O) = w(x,y_(x)) + v0 (x,; yjx)J + s v,(x,; y_(x)). 
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Because of (4.11), (5,2a) and the fact that v 1 depends linearly on 

,i. ,i.' w and w' , we have the relation 
'I' e:-' 'I' e:-' 

v 1 = O(e:; min{)..(k+a-1), 11.(l+S-1), O}) 

From the uniform boundedness of:; and from (3.6) it follows that 

w(x,y_(x)) = w(x,ye:_(x)) + O(y_(x) - ye:_(x)) 

= q, (x) + O(e:;11.(l+S)) 
e:-

= q, (x) + O(e:;11. min{l+S, k+a}). 

Finally we need an estimate of 

v0 (x,e:1 y_.(x)') = {q,e:+(x)-q,e:_(x) + p(x,O,ye:_(x) )+cj>e:- g_(x,O ,Y (x))} Y-(x) e:- expe: co(x) 

= {cj> +(x)-q, (x) + p(x,O,y (x))+q, g_(x,O,y (x))} exp Y_(x) 
e: e:- - e:- - e: c0 (x) 

+ 0( y (x) - y (x)). 
e:- -

We see that the estimate of this is exactly the same as the estimate of 

(4.12) except for the term O(ye: - y_). 

Hence we may conclude that 

v0 (x,~y_(x))= O(e:; min{1,k+a, 11.(k+a), 11.(l+S)}). 

Combining these we have 

(5,5) ~0 (x,y_(x)) = O(e:; min{1,k+a, 11.(k+a), 11.(l+B), 

11.(k+a-1) + 1, 11.(l+S-1) + 1}). 

Application of lemma 2.2 to (5,3), (5.4) and (5,5) and the optimal 

choice of 11., namely 11. =~'yields the result 

( . k+a l+S 
~ - ~ 0 = O E: ; min { 1 , 2 , 2 } ) . 
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example: Let G be bounded by y = 0 and y 

and let the boundary conditions be 

1/ 
= -(1-lxl) P, with p ~ 1, 

~+(x) = 0 and ~_(x) 
2 0 7T 

= x sin -. X 

then \l> 0 is a uniform. approximation o·f the solution of the boundary 

value problem with an error of order 0(£; ~p), 

§6. Conclusions, 

In the preceding sections we have seen an application of mollifiers 

to asymptotic theory. If the upper boundary (i.e. the boundary of 

G before it is transformed to a straight line) is non-differentiable, 

there is no point in regularizing it with this method. The original 

boundary must remain within the boundary layer along its regularization, 

for otherwise the difference between the approximation and the upper 

boundary condition would be too large, Hence, if Y+ is Ca with 

0 <a.:_ 1, Y+ - YE+ must be of an order smaller than 0(£) and so Aa 

must be greater than 1, But then it is impossible to get a positive 

order of E in the estimate of e.g. E L1w. The coefficient of the 

term¾- of the operator 1 1, after application of transformation 
. y 

(x,y)~(x,y-yE+(x)), linearly contains the second derivative of 

y ; so, if the upper boundary was regularized before its transformation, E+ 
this coefficient is of order 0(£; A(a-2)). Hence E L1w is at least 

of order O(E; A(a-2) + 1) and it is obvious that we cannot have both 

Aa > 1 and A(a-2) + 1 > 0 • 
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