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§1, Introduction.

In this report a class of second order linear partial differential
equations in two independent varisbles will be treated,

(1.1) € L1<I> + L2<I> = h(x,y)

where L1 is a second order uniformly elliptic p.d.o., L2 a first order
p.d.o., h(x,y) a given function and ¢ a small positive parameter. The
function ¢ satisfies the differential equation in a bounded domain G
in R2 and takes prescribed values along the boundary of G. Under
certain conditions a uniform first order approximation of the solution
® of this singular perturbation problem will be given. This kind of
singular perturbations has been treated among others by Levinson Dﬂ,
Vishik & Lyusternik Eﬂ, Eckhaus & de Jager [1] and Frankena [2]. In
D] an iteration procedure is given to determine an approximation of
® up to a certain order of e depending on the differentiability proper-
ties of the coefficients of the operator and the differentiability of
the other parameters of the problem, This approximation is uniform in
a convex domain G from which small neighbourhoods of the "end"-points
A and B are excluded. The boundary points A and B are characterised
by the fact that the characteristics of L2 through these have no other
points in common with 9G. In their proof Eckhaus & de Jager assume that
the parametric representation of the boundary is C6 and that the other
parameters are C3 to get an approximation of order O(e).

In this report attention is paid especially to approximations of
solutions of the problem for which some part of the boundary and/or
the boundary value function is non-differentiable. It will appear that
by means of a regularization procedure a uniform first order approximation
can be given even in the case where a part of the boundary and the boundary

values are required to satisfy a HOlder condition only.



Definitions:
82 32 2
L, = a(x,y) — + b(x,y) + c(x,y)

! 3x2 0x 9y oy

9 )
+ d(X,Y) —a; + e(x,y) 5; + f(x,y)

with ac - b2 > 0 on G because of the ellipticity of L,; furthermore

1;
it is assumed that a(x,y) > 0 on G.

= _ o
L2 - = ay = g(X,Y)

with g(x,y) > 0 on G.

G is a domain in R2 bounded from above by

<x < x.}

{(x, v (x))] x 5

1

and from below by
(e, v_(x))] %y < x < x5} 3

v, end y_ are HOldercontinuous and piecewise continuously differentiable
on [§1,xél such that Y+(Xi) = y_(xi) and vy, (x) > y (x) if x # x,

for i = 1,2,

The prescribed boundary values of ¢ are

(]
-©-
—
»
~

(1.2a) o(x, v, (x))

[}
-©-
—~
»
~~

(1.2b) (x, v _(x))

In order that the problem may certainly be uniquely solvable, it is

assumed that the coefficients of L1 and L., h(x,y), ¢+ and ¢_ are at

2’
least HOldercontinuous.



Notation:

A real function f is called C™'® if it is m times differentisble and
the m-th derivative is uniformly Hdldercontinuous with exponent o
here m is a non-negative integer and o a positive real smaller than or
equal to 1; sometimes the domain D of the function will be specified
by writing: f & ¢ [D:l .

The Landau O-symbol will be used, but for typographical reasons we
will usually write O(e3;)\) instead of O(EA)g

The author is indebted to prof.dr. E.M. de Jager for stimulating
discussions about the subject and for carefull reading of the manus-

eript.



§2. The maximum principle and its consequences.

In this section some lemma's will be given, which are based on the
maximum principle for elliptic boundary value problems. These lemma's
will be used in §§4-5 in order to prove the validity of the asymptotic
approximations of the solution of the boundary value problem (1.1)-(1.2).
(ec.f. [1] s2).

The maximum principle may be formulated as follows:

"If a twice continuously differentiable function ¢ attains a positive
maximum in an interior point (xo,yo) of the domain G and if f(x ) <0
then L.¢ < 0 in (x,,y )" (c.f. [6]).

From this well-known principle one easily derives the following lemma:

090

Lemma 2.1

If & and ¥ are 02 functions on G, and if

f <0onG
® < ¥ on 3G

L1® > L1W in the interior of G

then also

¢ < ¥ in every point of G.

proof: If ¢-¥Y attains a positive maximum in the interior of G, then
L1[§—€I < 0 according to the maximum principle. This is in contradiction
with the assumption L1¢ > LTW and so ¢-Y¥ attains no positive maximum

in the interior of G. From ¢-¥Y < O on 3G it follows that ®-Y¥ cannot

attain positive values in G. Hence ¢ < ¥ in G.

remark: ¥ is called a barrier function (from above) for o.



Lemma 2.2 (c.T. [ﬂ theorem IIT)

If ®€ satisfies

(EL1 + L

2)¢€ = h(x,yse) for (x,y) e G

® = 0(eyv) uniformly on 3G
elye

with 0 < v < 1 and h(x,y,e) = 0(e3v) uniformly in G,
then

®€(x,y) = 0(e3v) uniformly in G.

proof: Let y, be the minimum of vy _(x), let M be a positive number
such that |h€| <M e’ on G and |®€|8GI <M e’ on 3G and let o be a
positive real number such that 1 - € e(x,y) > o on G if € is small
enough. Define w by w(x,y) = {% (y-yo) + 1}M €”, then w will be a
barrier function for @E.

It is easily seen that
|¢ | <won
E —

and

L(-w)>h =1L & >1L uw,
€ - € € € — €

So, according to lemma (2.1) we have

[©€| < w=0(ej3v)

uniformly on G.



§3. Regularization

From lemma 2.2 we see that an approximation of the solution of a
boundary value problem, as defined in §1, must satisfy the differential
equation and the boundary conditions at least approximately; moreover
we see that the approximation, which depends functionally on the
approximated parameters, must just like the solution itself be two
times differentiable at least. So first a device, called regularization,
will be given to approximate the boundary value functions by suitable
ones.

Define the function

2 2 2
¥(x) =—— (1 = = x )exp - x,
V1 3
then we have
T
(3.1) Y(x) dx = 1
2
(3.2) x“ ¥(x) dx = 0
J
(3.3) f k=T y(x) ax = 0 Vk € ¥

The regularization of a uniformly bounded continuous function f is now

defined by

(o]

(3.4) fs(P) = ( f(x) W(Eiﬁ) dx

2 €
where A is a positive parameter; this parameter will be chosen later on
to optimalize estimates of the difference between solutions and
approximations. The regularized function . is a C -function that converges
uniformly to f if e tends to zero (c.f. [3] theorem 1.2.1) and it is
easily seen by partial integration that

(3.5) (£ )" = (£")

€ €

if £ is differentiable.



Furthermore we have the following uniform estimates of fe and its

derivatives if £ e ™ [R]:
O(esa(k+a-1)) if 0 < k-1 < 3
0(e3kr) if k-1 > b

(3.7) |f£i)‘ = 0(e; min{0,k-i+a})

remark: It is possible to choose instead of ¥(x) a product of another
polynomial and exp—xe, such that integrals containing higher even

powers of x also vanish and such that the estimates analogous to (3.6)
become better if k-i z_hn For the present purpose however they are not
needed for we do not regularize boundary value functions that are more
than three times differentiable; singular perturbation problems with
boundary value functions of class (? can be treated without regularization,

as 1s done for instance in the approach of Eckhaus & de Jager.

The proof of formula (3.6) will be given for i = 0 and k = 1 and k = L;
formula (3.7) will be proved for k = 0 and i = 1. If k-i+a > 0, (3.7) is
obvious and the proofs of the other cases of (3.6) and (3.7) are

analogous to the proofs given.

proof of 3.6

+
If fe ¢t then

f(p+h) = f(p) + h £'(p+téh) (0 < 6 < 1)

and so
|£(p+h) - £(p) - h £'(p)| < |n| [£'(p+eh) - £'(p)| = O(hj1+a).
Hence . ®
£8) - 2(p) = & [ (£(0) - £(p) ¥ 5R) ax
(A
- f (£(t+p) - £(p) ¥(e t)at.



Because of (3.3)

(3.8)  £(p) - £e) =< [ (2lop) - £p) - 5 £1()) We

For a certain positive constant K we then have

Ifg(p) - f(p)] <x e |1+a]w(e*At)]at

|t

8§ —= 8

<K ek(1+a) f |s|1+u |¥(s)| ds

= 0(ejAa(1+a)).

Because of the fact that

o]

J g 2 (p) wiee)at 4 o,

-C0

the analogue of (3.8) is not true and we get

|f€<P) - f(p)| <K e~ J Ithl ]W(s—kt)ldt = 0(ejkn).

proof of (3.7).

By substitution of £ = 1 in 3.5 we get

)
f 51—) ¥(p-x)dx = 0.

Hence, if f & CaﬁR:[ s

£!(p)

n
™
1
>
8§ —— 8

had
®
IoJ
=
i
Jx
&

= ¢ J‘(f(pﬂ:) - £(p) & w(eTe) a

=0

and there exists a positive constant K, such that

|£'(p)| <K e~ J |+* e~ W'(E—Kt)| at = 0(ezr(a=1)).



We see that the derivatives of a regularized function need not
be bounded if e tends to zero; in the following sections however we
will get an additional multiplicative factor of order O(e), which

will give compensation, just when we need it.



10

§4, Asymptotic solutions for non-differentiable boundary values.

Let us return to the problem defined in (1.1-2) and assume that

the coefficients of the operator and h are C3(G)
(4,1a) Y_ G.CBEkT,xé]
(4. 1) Y, eCh[x1 ,xQ__l
(4.2) ¢, and ¢_e Ck+a[x1,x2]
with k = 0,1,2 and 0 < o < 1;

it is noted that the right and the left derivative of Y, and y_ in

X, and X, respectively must be finite.

In §3 of their paper ([ﬂ) Eckhaus & de Jager give an asymptotic
approximation of the solution & of the problem assuming much stronger
differentiability conditions. In this report their proof will be
simplified by using another local coordinate system in the boundary
layer. Moreover with the aid of approximations of the boundary value
functions by regularization a method for approximating ¢ will be given
in the case that ¢, and ¢_ are non-differentiable. Later on also the

differentiability conditions of the lower boundary will be weakened.

Without loss of generality we may assume from now on that the upper
boundary is a straight line; otherwise a coordinate transformation may

be performed, namely
(2,5) >(u,v) = (2,5 - v, (x)).

The functional determinant of this transformation equals 1, so the

elliptic character of the operator L., remains unchanged; all other

conditions also remain unchanged, ex;ept for the fact that the
coefficient of g; in L1 is 02 and no longer 03, but this will not
affect the proof.

It will appear that a boundary layer must be constructed along the
upper boundary. With this assumption about the upper boundary the
stretching of the coordinates in the boundary layer has become very

simple, namely y = en.
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In the boundary layer the operator e L1(x,en) + L (x,en), in which

2
the stretched coordinate is substituted, can be expanded into powers

of €.
The stretching y = en gives .12
oy € on
and expansion of coefficients of L, and L2 then yields

1

b(x,en) = bo(x) + en b1(x,an)
c(x,en) = co(x) + €n c1(x) + 52n2 ce(x,en)
e(x,en) = eo(x) + en e (x,en)
g(x,en) = go(x) + en g1(x,en) .
3

Here bo, o eO and g, are C [31,xé],

. 2 :
c, 1s C [§1xé]

b e1 and g, are Cz[a],

1’
¢, is C'Bﬂ.
The operator e L1 + L2, expressed in local coordinates, can be expanded

into powers of e:

1
€ L1 + L2 =< MO + M1 + € M2
where
E) 9
M (X,ﬂ) = cC (X) I - T
0 0 3n2 on
32 9 )
M, (x,n) = n c1(x);;§ + 2 bo(x)axan + eo(x)gg - go(x)
2 2 2
_ d ) 2 )
M2(x,n) = s:m(x,en)—----ax2 + 2n b1(x’€n>—8x3n +n (;2(;{,5,1)._._%2

(X,En)é— + f(x,en) - n g,(x,en).

9
+ d(x,sn)5§-+ ne Y

1 1

Because of the uniform ellipticity of L, and the positivity of a(x,y)

in G, we also have c(x,y) > O and so co(x) > 0 on E§1,xé].
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Theorem I.
Under the conditions (4.1) and (4.2) and, moreover, if yl(+x1) $0

and yl(—xz) % 0, a function ¢, can be constructed such, that for the

0
solution ¢ of (1,1-2) we have

Koy

¢ - ¢ = 0(ey min{1, 5

0

proof:

The proof is based on the construction of a function &. that approximately

0
fulfils the boundary conditions and for which (e L1+L2) (@—@O) is
uniformly small; with lemma 2.2 it then follows that @-@O is small

everywhere in G.

Extend ¢, and ¢_ to be functions on R by

?i(x) 1
¢, (x) 5

and define $;+ and _@E_ as their regularizations.

¢+(x1) if x < x

¢:(x2) if x > x
Next we define w(x,y) to be the solution of the reduced equation of (1.1)

- <—§-§ + glx,y))wix,y) = hlx,y)

which equals ¢€_ at the lower boundary of G.

If we define p and q by

v
p(x,y,t) = j h(x,n) exp{ - J v(x,z)dz} dan ,
% n

we have

(3.3)  wix,y) = ¢__(x) = p(x,y, v_(x)) - ¢__ alx,y,v_(x)).

(o

From this we see that w is linearly dependent on ¢€_, so there exists

a positive constant K for which
(bv)  fernw] <ek (lo |+ lol_| + oD,
and because of (3.7)

(4,5) € L1W = 0(ey 1 + min{0, A(k+a-2})

applies uniformly on G.
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In general the function w(x,y) does not fulfil the upper boundary
condition and an adaptation should be made in a neighbourhood of the
upper boundary.

If we define the function p(x) by

p(x) = ¢_, (x) - w(x,0),

£+
we have obtained a new boundary value problem, which must be fulfilled

by the correction function, namely

£ L1 vix,y) + 1, v(x,y) = 0

with boundary conditions

v(x,0) = p(x) (at the upper boundary)
v(x, y_(x)) =0 (at the lower boundary)-

To approximate the solution we stretch the ordinate y = en, we develop
v(x,en) = vy(x,n) + e v (x, n) + ...,

and solve the zeroth and first order reduced equations,

MovO =0
with vo(x,O) = p(x) and lim vo(x,n) =0
n—>—00
and
Movy = = My
with v1(x,0) = 0 and lim v1(x,n) =0 .
n—)...oo
The solutions are
(4.6) vo(x,n) = p(x) exp co(x)

(L.7) v



1k

It is obvious that p is linearly dependent on ¢€+ and ¢€_; hence
. . '
vy 1s linearly dependent on ¢s+ and ¢€_ and v1 on ¢€i-and ¢?i.

In the same way as in (4.4) and (4.5) we may conclude
(4.8a) M, vol <& (o |+ To__| + lol 1+ lol |+ Jolll + lol'])
= 0(e; min{0,x(k+a-2})

| + cooos +6!!) = 0(e; min{0,(k+a-2})

(L4.8p) |M1 v1[ <K (]¢

e+

(4.8c) M, vl <K (Jo_ |+ .ooov+ ]ol""]) = 0(e; min{0,A(k+a-3)1).

e+

If we define @O as

= L J
¢0(x,y) wix,y) + vo(x, €) + € v1(x, e)

then it is clear that

e L,w+ ¢ M2 v, +e M v, + 52 M2 v

(L4.9) (e L1+L2)[®—®O] , o e

1

O(es min{1,A(k+a=2) + 1, A(k+a=3) + 2}).

This estimate, necessary for the application of lemma 2.2, is wvalid

within the domain G.

Next we give an estimate for ¢ - &, at the boundary 9G.

0
At the upper boundary we have

¢ (x,0) = w(x,0) + v.(x,0) + ¢ v, (x,0) = ¢ . (x)

0 0

1 e+

and from (3.6) it follows that

(L.10) o(x,0) - ¢ (x,0) = ¢+(x) - ¢ (%) = 0o(e;n(k+a)).

0 et
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At the lower boundary we have the relation
1
2o(,v_(x)) = wlayy_(x)) + volmDy_(x) + € v, (x,2y_(x))

Here

w(x, % y (x)) = ¢_(x) = ¢ (x) + 0(e3n(k+a).

If o > 0 we have the estimate

(k.11) x> exp-f = 0(e3a) uniformly for x < O,
so the factor Y—(X) ex '-(x) contained in v is uniforml
el 1 y

bounded, for y_(x) < 0 and c.(x) is strictly positive. Furthermore,

0

as was already mentioned, v, is linearly dependent on ¢€+ and ¢'

1 ei;

hence we have the relation
vl < k(e I+ o | + ol |+ 1! ) =
= 0(e; min{r(k+a=1), 0}).
Finally we need an estimate of

(b.12) v (x,l-y.(x))= {¢

0 '’ '= a+(X) - ¢€_(x) + p(x,O,y_(x)) +

y
+ ¢ alx,0,y_(x))} exp ﬁ;z—x—y .

From the definition of p and q it is easily seen that there exists a

constant K1, such that
IP(X,O,Y_(X)) + ‘i’e_q(x,O’Y_(X))I _<_K1 lY_(x)'
and with (4.11) it then follows that

(p +¢__a) exp — "3y
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From assumption (4.2) and formula (3.6) it follows that

e (x) =0 _(x) = (o _ (x) =0, (x)) + (9,(x) - ¢ (x)) +
+ (o (x;) - o_(x)) + (¢_(x) - ¢_.(x))
= 0(e;a(k+a)) + O(x—xi; min{1,k+a})
for i = 1 and i = 23 because it was assumed that y'(x,) ¥ O

there exists a constant c, such that
- y_(xi) i_C|X'Xi] (1 =1,2)

and with (4.11) it then follows that

Y_(x)

€ co(x)

(6, (x) - ¢__(x) exp = O(esmin{1,k+a, A(k+a)}).

Combining these, we may conclude that
vo(xsdy_(x)) = 0(e; min(1,k+a, A(kra)).
Hence we have

(L.13) oy (x,y_(x)) = ¢_(x) + O(esmin{1,k+a, A(k+a), A(k+a-1) + 1}).

By application of lemma 2.2 to the formulae (4.9), (4.10) and (L.13)

we obtain

(b,1L) o - ¢ = O(eymin{1,k+a, A(k+a), A(k+a-2) + 1, A(k+a=3) + 2}).

1
1+a <A 1-a

The maximum of the exponent is 1 if k = 2 and and is
k+o

> , so finally we have

ol

ifk=0o0ork=1and =

. k+a
® - o = O(e3min{1, —-é—})

uniformly on G.
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Remarks:
1) For the proof of the estimate (L4.9) it is necessary that 2, contains
the term €V, but since

ev, = O(esmin{A(k+a=1) + 1,1})

1

w(x,y) + v (x,%) is as good an approximation of ¢ as 2,

0
2) In the proof of theorem I we had to use regularized boundary value

functions, but from (3.6) it is easily seen that if ¥ and V. are defined

0
by
W(x,y) = ¢_(x) - plx,y,v_(x)) - ¢_(x) alx,y,y_(x))
and
%o(x,n) = {¢+(x) - w(x,0)} exp " ?x) R
0

then ¥(x,y) + %B(x,%) is as good an approximation of ¢ as ¢, and
w(x,y) + vo(x,%ﬁ.
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§5. Non-differentiable lower boundary.

The method of proving asymptotic properties with use of regulari-
zation can also be applied, if the lower boundary is non-differentiable.

So we arrive at the following theorem:

Theorem II.
Under the same conditions as theorem I, except that we now assume

for v_,

l+6|x

a. y_€C (1=0,1,2,3and 0 < B < 1)

=
(5.1)1 b. Y_ is at least piecewise continuously differentiable.
¢. there exists a positive constant c, such that
y_(x) < —c|x - xi! in a neighbourhood of the points (x1,0)

and (xg,o),

a function @O can be constructed, such that we have for the solution
of (1.1-2).

. k+a 1+B
2 - oy = 0(e; min{1, == —2—-})

proof:

The proof goes along the same lines as the previous one and therefore
it will not be repeated completely. Differences arise in the estimates
(4.4), (4.8) and (4.13); only these will be reconsidered.

Apart from the boundary values ¢+ the lower boundary y_ has to be
regularized also now, which results in ¢€+ and Yoo The functions w,

Vo and v, are obtained by the same calculations as in §4, only Y_

has to be replaced by Yo This results in

v(x,y) = ¢o__(x) - p(x,y,y__(x)) - ¢__(x) alx,y,y, _(x))

E—

(Xaﬂ) = (¢‘€+(X) - W(X,O)) exp = p(X) exp c__?x_)._

e (x) 0

v
0 0

-1

= v _ 1 3 _
v1(x,n) {(boco 2 COCT)p cgn + (gocO + e, eo)p cq

=1 ' n_
- 2bye, o In exp .
. 0
and agaln

@dxq)=wuﬂ)+v&x%)+ev#x%)
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It is easily seen that p(x,y,t) and q(x,y,t) are ¢3 functions with
uniformly bounded third derivatives, hence by differentiation it

follows that

(5.2a) = =o0(]¢!_| + |y!_|)) = 0(e; A min{0,k+a-1,1+8-1})
; 82w . ' 2

(5.20) =% =0Clol |+ Ivi_| + lertl + Iyvitl + Iv:_[%+ lolveD)

9x

= 0(e3x min{0, k+a-2, 1+B-2})
3W 3

(5.2¢) % = O(|¢é_| o, + 'Yél'l + |¢é_yé-| Foiiees * ]yé_l ) =

ox

O(e3X min{0, k+a-3, 1+8-3}).

1}

Furthermore v0 is linearly dependent on ¢€+ and w(x,0) and v, on

beys OLp w(x,0) and %E-w(x,o); hence the analogue of (L4.9) is

(5.3) (e L1+L2) (@-@0) = 0(e; min{1, A (k+a=2) + 1, A(1+B=2) + 1,

Ak+a-3) + 2, A(1+B-3) + 2})

At the upper boundary we again have

(5.4) @O(x,O) = w(x,0) + vo(x,O) + € v1(x,0) = ¢E+(x)

= ¢, (x) + 0(e; A(k+a))
At the lower boundary we have .

(x,0) = wix,y_(x)) +v (%% v(x)) + ¢ V1(x,lfy (x)).

¢O 0 g - € -
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Because of (4.11), (5.2a) and the fact that v, depends linearly on

1

o> ¢é_, w and w', we have the relation

v, = 0(e; min{A(k+a=1), A(1+B=1), 0})

1

From the uniform boundedness of §§ and from (3.6) it follows that

wix,y_(x)) = w(x,y__(x)) + 0o(y_(x) - v__(x))

= ¢__(x) + O(e;n(1+8))

= ¢ (x) + O(e3x min{1+B, k+a}).

. Finally we need an estimate of

i
-~
-©-

oz () = (o (x)-e_

Il
—~
S

+ 0(y__(x) - v_(x)).

We see that the estimate of this is exactly the same as the estimate of
(4,12) except for the term O(yE -v_).

Hence we may conclude that

vo(x, Dy (x)) = O(es min{1,kva, A(k+a), A(148)3).

Combining these we have

(5.5)  e,(x,v_(x)) = O(e; min{1,k+a, A(k+a), A(1+8),

AMk+a=1) + 1, A(1+8=1) + 1}).
Application of lemma 2.2 to (5.3), (5.4) and (5.5) and the optimal
choice of A, namely X = 3, yields the result

. k+a 1B
© - 0, = O(e3 min{1, —5—,-75-}).

(x)-¢__(x) + p(x,O,y_(x))+¢€_ a(x,0,y_(x))} exp——:—(—y

(X)—¢ (X) + P(X9OsY€_(X))+¢€_ Q(anaYa_(x))} GXP—'—(—"‘
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example: Let G be bounded by y = 0 and y = —(1—|x|) p,‘with p>1,
and let the boundary conditions be

¢+(x) = 0 and ¢_(x) = x° sin %

then @O is a uniform approximation of the solution of the boundary

value problem with an error of order O(e; %E)C

§6, Conclusions.

In the preceding sections we have seen an application of mollifiers
to asymptotic theory. If the upper boundary (i.e. the boundary of
G before it is transformed to a straight line) is non-differentiable,
there is no point in regularizing it with this method. The original
boundary must remain within the boundary layer along its regularization,
for otherwise the difference between the approximation and the upper
boundary condition would be too large. Hence, if Y, is ¢¥ with
0 <acx<1,y, -y, mustbe of an order smaller than O(e) and so o
must be greater than 1. But then it is impossible to get a positive
order of € in the estimate of e.g. € L .w. The coefficient of the

1

term o of the operator L., after application of transformation

(k,y)iz§(x,y—ys+(x)), lin;arly contains the second derivative of

Yeqs SO if the upper boundary was regularized before its transformation,
this coefficient is of order O(ej; A(a-2)). Hence ¢ L,w is at least

of order O(e; A(a=2) + 1) and it is obvious that we cannot have both

X > 1 and A(a=2) + 1 >0 .
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