MATHEMATISCH CENTRUM, 2de Boerhaavestr. 49, A m s t e r d a m - O.

Reduced sequences of integers and pseudo-random numbers

bу

H.J.A. Duparc, C.G. Lekkerkerker and W. Peremans.

Introduction.

In this report the following two sequences of non-negative integers u_0,u_1,\dots are considered:

I. The sequences defined by

$$u_0 = b$$
, $u_{n+1} = au_n$ $(n = 0, 1, ...)$

where a and b are positive integers.

II. The sequence of Fibonacci, defined by

$$u_0 = 0$$
, $u_1 = 1$; $u_{n+2} = u_{n+1} + u_n$ (n=0,1,...).

These sequences have the property that if m is a positive integer (where in case I the number m is supposed prime to a) the least non-negative residues mod m of the elements form a periodic sequence. The length of the period of this sequence will be denoted by C(m). In the case of sequence I with a=23, b=47594118 and m=10⁸+1, Lehmer 1) used the least non-negative residues of $u_0, \ldots, u_{C(m)-1}$ to construct a set of pseudorandom numbers.

Our purpose is to investigate properties of the number C(m). In case I we consider primes p with (a,p)=(b,p)=1. Then for p=2 there exists a positive integer k=k(2), such that

$$2^{k} \mid a^{C(4)} - 1, 2^{k+1} \nmid a^{C(4)} - 1$$

and for odd p there exists a positive integer k=k(p) such that

$$p^{k} \mid a^{C(p)} - 1, p^{k+1} \nmid a^{C(p)} - 1.$$

In case I the following relations hold:

$$C(2)=1;$$

$$C(p) \mid p-1;$$

$$C(2^{h}) = \begin{cases} C(4) & \text{if } 2 \leq h < k(2); \\ 2^{h-k(2)}C(4) & \text{if } h \geqslant k(2); \end{cases}$$

$$C(p^{h}) = \begin{cases} C(p) & \text{if } 1 \leq h < k(p); \\ p^{h-k(p)}C(p) & \text{if } h \geqslant k(p). \end{cases}$$

¹⁾ D.H. Lehmer, Mathematical methods in large scale computing units, Proc. Sec. Symp. on large-scale digital calculating machinery, Q 51, Harvard 141-6.

In case II for odd primes p there exists a positive integer k=k(p) such that

$$p^{k} \mid u_{C(p)}, p^{k} \mid u_{C(p)-1} -1,$$

but p^{k+1} does not divide both numbers $u_{C(p)}$ and $u_{C(p)-1}$ -1. Then for sequence II we prove the following results

$$C(p) \mid p-1 \text{ if } p \equiv \pm 1 \pmod{10};$$

$$C(p) \mid \frac{1}{2}(p-1) \text{ if } p \equiv 11 \text{ or } 19 \pmod{20};$$

$$C(p) \mid 2(p+1) \text{ and } C(p) \mid p+1 \text{ if } p \equiv \pm 3 \pmod{10};$$

$$C(2) = 3; C(5) = 20;$$

$$C(2^{h}) = 3 \cdot 2^{h-1} \text{ if } h \geqslant 1;$$

$$C(p^{h}) = \begin{cases} C(p) \text{ if } 1 \leqslant h \leqslant k(p); \\ p^{h-k(p)}C(p) \text{ if } h \geqslant k(p). \end{cases}$$
In both cases I and II if $m = p_{1} \dots p_{s}^{s}$, where p_{1}, \dots, p_{s}^{s} are different and the value $C(p)$ is the least correspond with the value $C(p)$ is the least correspond with the set the values.

primes, the value C(m) is the least common multiple of the values $C(p_{i}^{r_{i}})$ (i=1,...,s).

Special attention is given to the cases

$$m=2^h$$
, 2^h-1 , 2^h+1 , 10^h , 10^h-1 and 10^h+1 .

Apart from the number C(m) we also define the number c(m). This number c(m) is the least positive integer n with $m \mid u_n$. The set of indices n with m $\mid u_n$ consists of the non-negative multiples of the number c(m). In case II c(m) is not necessarily equal to c(m). We also deduce properties of c(m) and $v(m) = \frac{C(m)}{c(m)}$.

In another report²) similar properties are deduced for sequences

satisfying

$$u_{n+2} = au_{n+1} + bu_n$$
 (n=0,1,...)

with arbitrary a,b,u, and u1.

 \S 1. The sequences I.

Let a and b be positive integers and let p be a prime with $p \nmid ab$. Then there exists a positive integer n such that $a^n \equiv 1 \pmod{p}$; in fact, on account of Fermat's theorem, n=p-1 has this property.

Let C(p) be the smallest positive integer with this property. Then, if $m \equiv n \pmod{C(p)}$, we have $ba^m \equiv ba^n \pmod{p}$ and conversely. This proves that the sequence of numbers $u_n = ba^n$ (n=0,1,...) is periodic mod p with period

From Fermat's theorem it follows further (1,1) $C(p) \mid p-1.$

In view of the application of the sequences I to the construction of pseudo-random numbers it is required that C(p) be large.

²⁾ Mathematisch Centrum, Rapport ZW 1952 - 013.

If p is an odd prime and if $a^t \equiv 1 \pmod{p^j}$, $a^t \not\equiv 1 \pmod{p^{j+1}}$, where t and j are positive integers, then $a^{pt} \equiv 1 \pmod{p^{j+1}}$, $a^{pt} \not\equiv 1 \pmod{p^{j+2}}$. This property remains valid if p=2 supposed $j \geqslant 2$. Herefrom follow the relations (1) and (2).

From Euler's theorem $a^{\varphi(m)} \equiv 1 \pmod{m}$ it follows $C(p^s) \neq (p^s)$. The value of C(m) for arbitrary $m = p_1 \dots p_s$, where p_1, \dots, p_s are different primes, is obviously a common multiple of the numbers $C(p_i^i)$ (i=1,...,s), hence the least common multiple. Hence for all a with (a,m)=1 the number C(m) divides the least common multiple L(m) of the numbers $\varphi(p_i^i)$ (i=1,...,s).

We give a table of the value of L(m) for $m=10^{n}-1$ (n=1,2,...).

n	m=10 ⁿ -1	$\varphi(p_i^{r_i})$	I(m)
1	32	6	6
2	3 ² .11	6;10	30
3	3 ³ .37	18;36	36
4	3 ² .101	6;100	300
5	3 ² .41.271	6;40;270	1080
6	3 ³ .7.11.13.37	18;6;10;12;36	180
7	3 ² .239.4649	6;238;4648	711144
8	3 ² .73.11.101.137	6;72;10;100;136	30600
9	3 ⁴ .37.333667	54;36;333666	667332
10	3 ² .11.41.271.9091	6;10;40;270;9090	109080

From the table we learn that L(m) is much smaller than m, if the number of prime factors in n is not too small. In fact the numbers p_i-1 (i=1,...,s) have at least a factor 2 in common, so

$$L(m) < \frac{\mathcal{G}(m)}{2^{s-1}} < \frac{m}{2^{s-1}}.$$

We give a similar table for $m=10^{n}+1$.

n	$m=10^{m}+1$	$\varphi^{(p_i^{r_i})}$	L(m)
1	11	10	10
2	101	100	100
3	7.11.13	6;10;12	60
4	73.137	72.136	1224
5	11,9091	10;9090	9090
6	101.9901	100;9900	9900
7	11.909091	10;909090	909090

The prime factors which occur in the first table in the 2nth row and not earlier, are the same as the prime factors which occur in the second table in the nth row and not earlier. This follows from the following considerations

1°. Let p be a prime with p 10^{2n} -1, p 10^{h} -1 for 0 < h < 2n. From $p \mid (10^{n}+1)(10^{n}-1)$ and $p \nmid 10^{n}-1$ it follows $p \mid 10^{n}+1$. If 0 < k < n,

then from $p \nmid 10^{2k}-1$ it follows $p \nmid 10^k+1$.

2°. Let p be a prime with $p \mid 10^n + 1$, $p \nmid 10^k + 1$ with 0 < k < n. Then p $\mid 10^{n}+1 \mid 10^{2n}-1$. Should a number h exist such that 0 < h < 2n and p 10^{h} -1, then it would follow $10^{h-n} \equiv -1 \pmod{p}$ and $10^{n-h} \equiv -1 \pmod{p}$ hence $10^{|n-h|} \equiv -1 \pmod{p}$, where 0 < |n-h| < n, contrary to the assumption on k. Hence $p \nmid 10^{h}-1$ if 0 < h < 2n.

It is well known that there exists a primitive root mod pr, where p is a prime and r a positive integer, i.e. there exists an integer a

with

 $a^{\varphi(p^r)} \equiv 1 \pmod{p^r}; \ a^h \neq 1 \pmod{p^r} \ \text{if } 0 < h < \varphi(p^r).$ Now suppose $m = p_1^{\gamma_1} \dots p_s^{\gamma_s}$, where p_1, \dots, p_s are different primes. Let a_i be a primitive root mod $p_i^{\gamma_i}$ (i=1,...,s). On account of the chinese r_i remainder theorem there exists a number which that a $\equiv_{r,i} \pmod{p_i}$ (i=1,...,s). Each common multiple h of the numbers φ (p_i) (i=1,...,s) satisfies $a^h = 1 \pmod{m}$ and conversely. Hence for this choice of a the number C(m) is equal to the least common multiple L(m) of the numbers $\varphi(p_i^{i})$ (i=1,...,s).

Since above we found $C(m) \mid L(m)$, we now have the following result. If m is fixed and a is variable, the greatest value attained by C(m) is L(m). For instance C(m)=L(m) if we take for a the above constructed

number.

Example. If $m=10^5-1$ and a=7, then $C(m)=L(m)=1080=2^33^35$. For $C(m) \nmid \frac{1}{2}.1080 \text{ since } 7^{540} \equiv -1 \pmod{41}$; $C(m) \neq \frac{1}{3}.1080 \text{ since } 7^{360} = -29 \pmod{271};$ $C(m) \neq \frac{1}{5}.1080 \text{ since } 7^{215} \equiv 16 \pmod{41}.$

Although for a=7 we have $C(3^2) \neq \psi(3^2)$, still C(m)=L(m). The number a=7 is the smallest number for which C(m)=L(m), for if a=2 we have $2^{20}=1 \pmod{41}$ hence $C(m) \mid \frac{1}{2}L(m)$; if a=4 we then also have $C(m) \mid \frac{1}{2}L(m)$; if a=5 we have $5^{20} \equiv 1 \pmod{41}$, hence $C(m) \mid \frac{1}{2}L(m)$. The values a=3 and a=6 are excluded since $(3,m)=(6,m)=3\neq 1$.

For computing machines working in the binary scale the reduction mod m of integers is simple in the cases $m=2^n-1$, $m=2^n+1$, $m=2^n$. We therefore give also tables of L(m) for $m=2^{n-1}$ and $m=2^{n}+1$.

n	m=2 ⁿ -1	$\varphi_{(p_i^s)}$	L(m)
2	3	2	2
3	7	. 6	6
4	3.5	. 2;4	4
5	31	30	30
6	3 ² .7	6;6	6
7	127	126	126
7 8	3.5.17	2;4;16	16
9	7.73	6;72	72
10	3.11.31	2;10;30	30
11	23.89	22;88	88
12	3 ² .5.7.13	6;4;6;12	12
13	8191	8190	8190
14	3.43.127	2;42;126	126
15	7.31.151	6;30;150	150
16	3.5.17.257	2;4;16;256	256
• 29	233.1103.2089	232;1102;2088	39672
30	3 ² .7.11.31.151.331	6;6;10;30;150;330	1650
·			
n	m=2 ⁿ +1	φ (p _i ^s i)	L(m)
1	m=2 ⁿ +1	$\varphi^{(p_i^{s_i})}$	L(m)
-	3 5		
1	3	2	2
1 2	3 5	2 4	2
1 2 3	3 5 2 3	2 4 6	2 4 6
1 2 3 4	3 5 3 ² 17	2 4 6 16	2 4 6 16
1 2 3 4 5	3 5 3 ² 17 3.11	2 4 6 16 2;10	2 4 6 16 10
1 2 3 4 5 6	3 5 3 ² 17 3.11 5.13 3.43 257	2 4 6 16 2;10 4;12 2;42 256	2 4 6 16 10 12 42 256
1 2 3 4 5 6 7	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19	2 4 6 16 2;10 4;12 2;42	2 4 6 16 10 12 42
1 2 3 4 5 6 7 8	3 5 3 ² 17 3.11 5.13 3.43 257	2 4 6 16 2;10 4;12 2;42 256 18;18 20;40	2 4 6 16 10 12 42 256 18 40
1 2 3 4 5 6 7 8	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19	2 4 6 16 2;10 4;12 2;42 256	2 4 6 16 10 12 42 256 18
1 2 3 4 5 6 7 8 9	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19 5 ² .41	2 4 6 16 2;10 4;12 2;42 256 18;18 20;40	2 4 6 16 10 12 42 256 18 40
1 2 3 4 5 6 7 8 9 10	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19 5 ² .41 3.683	2 4 6 16 2;10 4;12 2;42 256 18;18 20;40 2;682	2 4 6 16 10 12 42 256 18 40 682
1 2 3 4 5 6 7 8 9 10 11	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19 5 ² .41 3.683 17.241 3.2731 5.29.113	2 4 6 16 2;10 4;12 2;42 256 18;18 20;40 2;682 16;240 2;2730 4;28;112	2 4 6 16 10 12 42 256 18 40 682 240
1 2 3 4 5 6 7 8 9 10 11 12	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19 5 ² .41 3.683 17.241 3.2731	2 4 6 16 2;10 4;12 2;42 256 18;18 20;40 2;682 16;240 2;2730	2 4 6 16 10 12 42 256 18 40 682 240 2730
1 2 3 4 5 6 7 8 9 10 11 12 13	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19 5 ² .41 3.683 17.241 3.2731 5.29.113	2 4 6 16 2;10 4;12 2;42 256 18;18 20;40 2;682 16;240 2;2730 4;28;112	2 4 6 16 10 12 42 256 18 40 682 240 2730 112
1 2 3 4 5 6 7 8 9 10 11 12 13 14	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19 5 ² .41 3.683 17.241 3.2731 5.29.113 3 ² .11.331	2 4 6 16 2;10 4;12 2;42 256 18;18 20;40 2;682 16;240 2;2730 4;28;112 6;10;330 65536	2 4 6 16 10 12 42 256 18 40 682 240 2730 112 330 65536
1 2 3 4 5 6 7 8 9 10 11 12 13 14	3 5 3 17 3.11 5.13 3.43 257 3 ³ .19 5 ² .41 3.683 17.241 3.2731 5.29.113 3 ² .11.331	2 4 6 16 2;10 4;12 2;42 256 18;18 20;40 2;682 16;240 2;2730 4;28;112 6;10;330	2 4 6 16 10 12 42 256 18 40 682 240 2730 112 330

For the ARRA³) especially reduction mod m where $m=2^{30}\pm1$ is simple. In these cases however the value of L(m) is not large. Now L(m) has a greater value if $m=2^{29}\pm1$, whereas the reduction mod $2^{29}\pm1$ is still relatively simple.

If $m=2^{29}-1=233.1103.2089$, then L(m) is the least common multiple $2^{3}.3^{2}.19.29$ of $232=2^{3}.29$, 1102=2.19.29, $2088=2^{3}.3^{2}.29$. If we take a=3, then $C(m)=L(m)=2^3.3^2.19.29=39672$. For

C(m) $\nmid \frac{1}{8}$.39672 since $3^{116} = -1 \pmod{233}$; C(m) $\nmid \frac{1}{3}$.39672, since if $3^{13224} = 1 \pmod{2089}$ we would get from $3^{2088} = 1 \pmod{2089}$ that $3^{696} = 1 \pmod{2089}$ which contradicts $3^{696} = 826 \pmod{2089}$;

 $C(m) \nmid \frac{1}{19}.39672$, since if $3^{2088} \equiv 1 \pmod{1103}$ we would get from $3^{1102} = 1 \pmod{1103}$ that $3^{58} = 1 \pmod{1103}$, which contradicts $3^{58} = 620 \pmod{1103}$;

 $C(m) \neq \frac{1}{29}.39672$, since if $3^{1368} = 1 \pmod{233}$ we would get from $3^{232} = 1 \pmod{233}$ that $3^8 = 1 \pmod{233}$, which contradicts $3^8 = 37 \pmod{233}$.

If $m=2^{29}+1=3.59.3033169$, then L(m) is the least common multiple $2^4.3.29.2179$ of 2,58=2.29 and $3033168=2^4.3.29.2179$. Here a=2 has the period C(m)=58, so a=4 has the period 29, whereas a=3 and a=6 are excluded since $(3,m) = (6,m)=3 \neq 1$. Since $5^{\frac{1}{2}} \cdot 3033168 = 1(3033169)$ also for a=5 we have C(m) < L(m). For a=7 however C(m) = L(m) = 3033168, for $C(m) \neq \frac{1}{3} \cdot 3033168$, since $7^{1532584} \equiv -1 \pmod{3033169}$; $C(m) \neq \frac{1}{3} \cdot 3033168$, since $7^{1011056} \equiv 1554651 \pmod{3033169}$;

 $C(m) \neq \frac{1}{20}$, 3033168, since if $7^{14592} \equiv 1 \pmod{59}$ we would get from $7^{58} \equiv 1 \pmod{59}$ that $7^2 \equiv 1 \pmod{59}$ contrary to $7^2 \equiv 49 \pmod{59}$; $C(m) \nmid \frac{1}{2179}$. 3033168, since $7^{1292} \equiv 1511637 \pmod{3033169}$.

In order to find C(m) if $m=2^n$, we remark that C(4)=1 if $a \equiv 1 \pmod{4}$ and C(4)=2 if $a \equiv 3 \pmod{4}$; in the latter case the integer k defined in the introduction is \geqslant 3. We also give a table of the values of $C(2^h)$ (h $\geq k$) for the odd integers a.

a	C(4)	k	c(2 ^h)
3	2	3	2 ^{h-2}
5	1	2	2 ^{h-2}
7	2	4	2 ^{h-3}
9	1	3	2 ^{h-3}
11	1	3	2 ^{h-3}
13	1	2	2 ^{h-2}
15	2	5	2 ^{h-4}
17	1	4	2 ^{h-4}
19	2	3	2 ^{h-2}
21	11_	2	2 ^{h-2}

³⁾ ARRA = Automatische Relais Rekenmachine Amsterdam (←Automatic Relay Computer Amsterdam)

\S 2. The sequence II.

We now investigate the sequence of Fibonacci defined by

$$u_0 = 0, u_1 = 1; u_{n+2} = u_{n+1} + u_n$$
 (n=0,1,...).

Let ω and $\overline{\omega}$ be the roots of the equation .

$$x^2 - x - 1 = 0$$
,

with $\omega > \overline{\omega}$. Then we have

(1)
$$\sqrt{5}=2\omega-1$$
; $\omega^2=\omega+1$; $\frac{1}{\omega}=\omega-1$; $\omega+\overline{\omega}=1$; $\omega\overline{\omega}=-1$;

(2)
$$\omega^{n} = u_{n} \omega + u_{n-1}; \ \overline{\omega}^{n} = u_{n} \overline{\omega} + u_{n-1} \ (n=1,2,...);$$

(3)
$$u_{n} = \frac{\omega^{n} - \overline{\omega}^{n}}{\omega - \overline{\omega}} \quad (n=0,1,...);$$

(4)
$$u_{2n-1} = u_n^2 + u_{n-1}^2$$
; $u_{2n} = u_n (u_{n+1} + u_{n-1})$ (n=1,2,...);

(5)
$$u_n | u_m \text{ if } n | m.$$

Formulae (1) are obvious; formulae (2) are proved by mathematical induction, while (3) follows from (2). Further from (1) and (2) follows

$$u_{2n}\omega + u_{2n-1} = \omega^{2n} = (u_n\omega + u_{n-1})^2 = (u_n^2 + 2u_nu_{n-1})\omega + u_n^2 + u_{n-1}^2$$

whence follows (4) by the irrationality of ω .

From n/m and (3) it follows that $\frac{u_m}{u_n}$ is a polynomial in ω^n and $\overline{\omega}^n$ with integral coefficients which using the formulae (2) and (1), can be written in the form $a\omega + b$ where a and b are integral. Since $\frac{u_m}{u_n}$ is rational and ω is irrational we get a=0, whence follows (5).

We define $a\omega+b \ge c\omega+d \pmod m$ by $a \ne c \pmod m$ and $b \ne d \pmod m$. If $a\omega+b = 0 \pmod m$ we also write $m \mid a\omega+b$.

Theorem 1. Let m be an arbitrary positive integer and let c=c(m) be the smallest positive integer with $u_c \equiv 0 \pmod{m}$. Then $u_d \equiv 0 \pmod{m}$ if and only if $d \ge 0$, $c \mid d$.

<u>Proof.</u> Let d be a non negative integer. If $c \mid d$ from (5) follows $u_c \mid u_d$. If conversely $u_d \equiv 0 \pmod{m}$, put d=qc+r where $0 \leqslant r \leqslant c-1$. Then

$$\omega^{d_{=u_d}^u}\omega + u_{d-1} \equiv u_{d-1} \pmod{m}$$

and

$$\overline{\omega}^{qc} = (u_c \overline{\omega} + u_{c-1})^q \equiv u_{c-1}^q \pmod{m}$$
,

hence

$$\omega^{r} = \omega^{d-qc} = \omega^{d}(-\overline{\omega})^{qc} \equiv (-)^{qc} u_{d-1} u_{c-1}^{q} \pmod{m},$$

whence follows $u_r \equiv 0 \pmod{m}$, so r=0 and $c \mid d$.

Corollary. If m | n, then we have $u_{c(n)} \equiv 0 \pmod{m}$, hence by the last theorem $c(m) \mid c(n)$.

Theorem 2. Let m be an arbitrary positive integer and let C=C(m) be the smallest positive integer with

$$\omega^{C} \equiv 1 \pmod{m}$$
, i.e. $u_{C} \equiv 0 \pmod{m}$, $u_{C-1} \equiv 1 \pmod{m}$.

Then for d non negative $\omega^d \equiv 1 \pmod{m}$ if and only if $C \mid d$. Proof. Let d be a non negative integer. If $C \mid d$ from $\omega^C \equiv 1 \pmod{m}$ follows $\omega^d \equiv 1 \pmod{m}$. If conversely $\omega^d \equiv 1 \pmod{m}$, put d = qC + r, where $0 \leqslant r \leqslant C-1$. Then $1 \equiv \omega^d = \omega^{qC} \omega^r \equiv \omega^r \pmod{m}$, whence follows r=0 and $C \mid d$. Corollary. If $m \mid n$, then we have $\omega^{C(n)} \equiv 1 \pmod{m}$, hence by the last theorem $C(m) \mid C(n)$.

We put $v = v(m) = \frac{C(m)}{c(m)}$. For this number we prove Theorem 3. For every m the number v(m) is integral and v(m) is the smallest exponent satisfying

 $u_{c-1}^{V} \equiv 1 \pmod{m}$.

<u>Proof.</u> From theorem 1 it follows $c(m) \mid C(m)$, hence v is integral. Since $\omega = u_{c-1} \pmod{m}$, we have

 $1 \equiv \omega^{C} = (\omega^{C})^{V} \equiv u_{C-1}^{V} \pmod{m}$.

Further there does not exist a number w with $u_{c-1}^{w} \equiv 1 \pmod{m}$ and 0 < w < v, for otherwise we would have

 $\omega^{cw} \equiv u_{c-1}^w \equiv 1 \pmod{m}$,

with 0 < cw < C, contrary to the definition of C.

Theorem 4. If c(m) is even then v=1 or 2; if c(m) is odd then v=4.

<u>Proof.</u> From $\omega^c \equiv u_{c-1} \pmod{m}$ and $\overline{\omega}^c \equiv u_{c-1} \pmod{m}$, it follows

 $(-)^{c} \equiv (\omega \overline{\omega})^{c} \equiv u_{c-1}^{2} \pmod{m}$.

If c is even the preceding theorem learns $v \mid 2$. If c is odd we have $u_{c-1}^2 \equiv -1 \pmod{m}$ and $u_{c-1}^4 \equiv 1 \pmod{m}$, hence v=4.

Theorem 5. If p is a prime we have

c(p) |p-1| if $p = \pm 1 \pmod{10}$; c(p) $|\frac{1}{2}(p-1)|$ if p = 1 or $9 \pmod{20}$; c(p) $|\frac{1}{2}(p-1)|$ if p = 11 or $19 \pmod{20}$; c(p) $|\frac{1}{2}(p+1)|$ if $p = \pm 3 \pmod{10}$; c(p) $|\frac{1}{2}(p+1)|$ if p = 3 or $7 \pmod{20}$; c(p) $|\frac{1}{2}(p+1)|$ if p = 13 or $17 \pmod{20}$; c(2) = 3; c(5) = 5; C(p) |p-1| if $p = \pm 1 \pmod{10}$; C(p) $|\frac{1}{2}(p-1)|$ if $p = \pm 1 \pmod{10}$; C(p) |2(p+1)|, C(p) |p+1| if $p = \pm 3 \pmod{10}$; C(2) = 3; C(5) = 20.

<u>Proof.</u> We shall treat the cases $p = \pm 1 \pmod{10}$ and $p = \pm 3 \pmod{10}$ separately.

 $\underline{\underline{A}}_{\frac{1}{5}}(p-1) = \pm 1 \pmod{10}$. By the theory of quadratic residues we have

 $(2\omega - 1)^{p-1} \equiv 1 \pmod{p}, (2\omega - 1)^p \equiv 2\omega - 1 \pmod{p},$

 $2^{p}\omega^{p}-1 = 2\omega-1 \pmod{p}$, $2\omega^{p}=2\omega \pmod{p}$,

whence after multiplication by $\frac{1}{2}(p-1)\overline{\omega}$ we get $\omega^{p-1}\equiv 1 \pmod{p}$, so $c \mid C \mid p-1$ by theorem 2 and 3.

p≡1 or 9(mod 20). Since in this case -1 is a quadratic residue mod p, there exists an integer k with $k^2 \equiv -1 \pmod{p}$. We have $k \neq 2 \pmod{p}$ for otherwise we should have p 5.

From ω^2 -1= ω it follows

$$\omega^{2}+k^{2} = \omega \pmod{p}, \qquad (\omega+k)^{2} = \omega (1+2k) \pmod{p},$$

$$(\omega+k)^{p-1} = \omega^{\frac{1}{2}(p-1)} (1+2k)^{\frac{1}{2}(p-1)} \pmod{p},$$

$$(\omega+k)^{p} = \omega^{\frac{1}{2}(p-1)} (1+2k)^{\frac{1}{2}(p-1)} (\omega+k) \pmod{p}.$$

For the left hand member we have

 $(\omega + k)^p = \omega^p + k^p = \omega + k \pmod{p}$,

hence after multiplication by $(\overline{\omega}+k)(k-2)^{-1}$, on account of $(\omega+k)(\overline{\omega}+k)=$ = $k^2+k-1 \equiv k-2 \pmod{p}$, we get $1 \equiv \omega^{\frac{1}{2}(p-1)} (1+2k)^{\frac{1}{2}(p-1)} \pmod{p}$,

hence $\omega^{\frac{1}{2}(p-1)} = (1+2k)^{\frac{1}{2}(p-1)} \pmod{p}$.

So we have proved $c(p) = \frac{1}{2}(p-1)$.

 $p \equiv 11$ or 19(mod 20). Suppose $c = \frac{1}{2}(p-1)$. Then a rational integer exists with $\omega^{\frac{1}{2}(p-1)} \equiv r \pmod{p}$, hence also $\overline{\omega}^{\frac{1}{2}(p-1)} \equiv r \pmod{p}$. After multiplication we obtain in view of (1) and of $p \equiv 3 \pmod{4}$

$$r^2 \equiv \omega^{\frac{1}{2}(p-1)} \overline{\omega}^{\frac{1}{2}(p-1)} = -1 \pmod{p}$$
.

Hence -1 is a quadratic residue mod p, contrary to $p\equiv 3 \pmod{4}$ So we proved $c \nmid \frac{1}{2}(p-1)$, hence a fortiori $C \nmid \frac{1}{2}(p-1)$.

 $\frac{B}{5^{\frac{1}{2}}(p-1)} = \frac{+3 \pmod{10}}{-1 \pmod{p}}$, hence

$$(2\omega - 1)^{p-1} \equiv -1 \pmod{p}$$
, $(2\omega - 1)^p \equiv 1 - 2\omega \pmod{p}$, $2^p \omega^p - 1 \equiv 1 - 2\omega \pmod{p}$, $\omega^p \equiv 1 - \omega \pmod{p}$.

After multiplication by ω we get

$$\omega^{p+1} = \omega - \omega^2 = -1 \pmod{p},$$

so $c(p)|_{p+1}$, $C(p)|_{p+1}$. Finally by squaring the last congruence we find $\omega^{2(p+1)} \equiv 1 \pmod{p}$,

hence

C(p) | 2(p+1).

B1. $p \equiv 3$ or $7 \pmod{20}$. Suppose $c \mid \frac{1}{2}(p+1)$. Then a rational integer $p \equiv 2$ exists with $\omega^{\frac{1}{2}(p+1)} \equiv r \pmod{p}$, hence also $\omega^{\frac{1}{2}(p+1)} \equiv r \pmod{p}$. So $\omega^{\frac{1}{2}(p+1)} \equiv \omega^{\frac{1}{2}(p+1)} \pmod{p}$. After multiplication by $\omega^{\frac{1}{2}(p+1)}$ we get

$$\omega^{p+1} = (\omega \overline{\omega})^{\frac{1}{2}(p+1)} = 1 \pmod{p},$$

contrary to $C(p) \nmid p+1$. Hence $c \nmid \frac{1}{2}(p+1)$.

 $p\equiv 13$ or $17 \pmod{20}$. As in case A1 there exists an integer k with $k^2 \equiv -1 \pmod{p}$. Now from

 $(\omega + k)^2 \equiv \omega (1 + 2k) \pmod{p}$

we deduce

$$(\omega + k)^{p+1} = \omega^{\frac{1}{2}(p+1)} (1+2k)^{\frac{1}{2}(p+1)} \pmod{p}$$
.

Using the result $\omega^p \equiv 1 - \omega = \overline{\omega} \pmod{p}$ found in B, we have

$$(\omega + k)^{p+1} \equiv (\omega + k)(\omega^p + k) \equiv (\omega + k)(\overline{\omega} + k) \equiv k-2 \pmod{p}$$
.

We remark that $1+2k \neq 0 \pmod{p}$, for otherwise we would have

$$k-2 \equiv \omega^{\frac{1}{2}(p+1)} (1+2k)^{\frac{1}{2}(p+1)} \equiv 0 \pmod{p}$$
.

Hence

$$\omega^{\frac{1}{2}(p+1)} \equiv (k-2)(1+2k)^{\frac{1}{2}(p-3)} \pmod{p}$$
,

SO:

$$c(p) = \frac{1}{2}(p+1)$$
.

The values of c(2), c(5), c(2) and c(5) easily follow from the table of Fibonacci numbers. The relation C(5)=4c(5) is in accordance with theorem 4.

Theorem 6. If p is a prime > 2, and if k(p) is the greatest integer with $p^{k(p)} \mid \omega^{C(p)} = 1$

and if h is a positive integer, then

$$C(p^h) = \begin{cases} C(p) & \text{if } 1 \leqslant h \leqslant k(p); \\ p^{h-k(p)}C(p) & \text{if } h \geqslant k(p). \end{cases}$$
 Remark. By definition we have $\omega^{C(p)} \equiv 1 \pmod{p}$, hence $k(p)$ is a positive

integer.

<u>Proof.</u> Suppose $1 \le h \le k(p)$. Then we have $\omega^{C(p)} \equiv 1 \pmod{p^h}$. Further if t is a positive integer < C(p), then $\omega^t \neq 1 \pmod{p}$, hence $\omega^t \neq 1 \pmod{p^h}$. So in view of the definition of C(m) we have $C(p^h)=C(p)$.

Now suppose $h \geq k(p)$. By induction we simultaneously prove the following three relations

 $\omega^{C(p^h)} \equiv 1 \pmod{p^h}; \ \omega^{C(p^h)} \not\equiv 1 \pmod{p^{h+1}}; \ C(p^h) = p^{h-k(p)}C(p);$ the third relation is the required result. For h=k(p) these relations hold in view of the definition of k(p) and the first part of the theorem Now suppose the relations (6) hold for an integer $h \ge k(p)$. Then from the first and the second relation (6) follows

$$\omega^{C(p^h)}=1+p^ha$$
.

where $a=a_1\omega+a_2$ (a_1,a_2 integral) is not divisible by p. Hence

$$\omega^{pC(p^h)} = (1+p^h a)^p \equiv 1+p^{h+1} a \pmod{p^{h+2}},$$

so $\omega^{pC(p^h)} \equiv 1 \pmod{p^{h+1}}; \ \omega^{pC(p^h)} \not\equiv 1 \pmod{p^{h+2}}.$

Thus by theorem 2 we have $C(p^{h+1}) \not\mid pC(p^h)$. From the second relation (6) follows $C(p^{h+1}) \not\mid C(p^h) \text{ and by the corollary of theorem 2 we have}$ 2 we have $C(p^h) \not\mid C(p^{h+1}).$ These three relations involv

 $C(p^{h+1})=pC(p^h)$.

Hence the three relations (6) hold with h+1 instead of h, the first and second by (7) and (8), the third by (8) and the induction hypothesis.

Theorem 7. If p is a prime > 2, if k(p) is the integer defined in theorem 6 and if h is a positive integer, then

$$c(p^{h}) = \begin{cases} c(p) & \text{if } 1 \leq h \leq k(p); \\ p^{h-k(p)}c(p) & \text{if } h \geqslant k(p). \end{cases}$$

Proof. By theorem 6 there exists a non negative integer s, such that $C(p^h)=p^sC(p)$. A similar property holds for $c(p^h)$.

First by the corollary of theorem 1 we have $c(p) | c(p^h)$. Further we have $\omega^{c(p)} \equiv r \pmod{p}$, where r is a rational integer. So we can write $\omega^{c(p)}$ =r+ap, where a=a₁ ω +a₂ with integral a₁,a₂. Hence

$$\omega^{p^{h-1}} c(p) = (r+ap)^{p^{h-1}} \equiv r^{p^{h-1}} \pmod{p^h},$$

thus by theorem 1 we have $c(p^h)|p^{h-1}c(p)$. Hence we infer the existence of a non negative integer t with

$$c(p^h)=p^t c(p)$$
.

We then have

$$v(p^h) = \frac{C(p^h)}{c(p^h)} = \frac{p^sC(p)}{p^tc(p)} = p^{s-t} v(p).$$

Since by theorem 4 the quotient v(m) assumes the values 1,2 or 4 only we have $p^{s-t} = \frac{v(p^n)}{v(n)} = 1$, hence s=t. Then from theorem 6 follows the asser-

Theorem 8. For integers $h \geqslant 3$ we have

$$C(2^h) = 2c(2^h) = 3.2^{h-1}$$
.

Further

$$C(2)=c(2)=3$$
; $C(4)=c(4)=6$.

<u>Proof.</u> From the table it follows that C(2)=c(2)=3, C(4)=c(4)=6. For integers h≥2 we have

$$\omega^{C(2^h)} \equiv 1 \pmod{2^h}$$
; $\omega^{C(2^h)} \neq 1 \pmod{2^{h+1}}$; $C(2^h) = 3.2^{h-1}$.

These relations are proved by induction in entirely the same way as the relations (6) in theorem 6.

Now suppose h \geqslant 3 in theorem 6. By our last result we have $\omega^{\frac{1}{2}C(2^h)} = \omega^{C(2^{h-1})} \equiv 1 \pmod{2^{h-1}},$

$$\mu_{1}^{\frac{1}{2}}C(2^{h})_{-\mu_{1}}C(2^{h-1}) = 1 \pmod{2^{h-1}}$$

so we can write

$$(a)^{\frac{1}{2}C(2^h)} = 1 + (a+b\omega)2^{h-1}$$
.

where a and b are rational integers. Multiplying this relation by its conjugate we get on account of (1) and $2 | \frac{1}{2}C(2^h)$

$$1 = (\omega \bar{\omega})^{\frac{1}{2}C(2^{h})} = 1 + (2a+b)2^{h-1} + (a^{2}+ab-b^{2})^{2h-2} = 1+b.2^{h-1} \pmod{2^{h}}$$

Hence b is even, so we have

$$(a)^{\frac{1}{2}C(2^{h})} \equiv 1 + a \cdot 2^{h-1} \pmod{2^{h}}.$$

Since a is a rational integer by theorem 1 we conclude

$$c(2^h) \mid \frac{1}{2}C(2^h)$$
.

Since c(4) is even, by the corollary of theorem 1 also c(2h) is even, hence by theorem 4 we have $v(2^h)=1$ or 2. Combining this with the last

relation we conclude $v(2^h)=2$, $c(2^h)=\frac{1}{2}C(2^h)$.

Theorem 9. If $m=p_1^{r_1}\dots p_s^{r_s}$, where p_1,\dots,p_s are different primes, then c(m) is the least common multiple of the numbers $d(p_i^{r_i})$ and d(m) is the least common multiple of the numbers $C(p_i^r)$ (i=1,...,s).

Proof. By the corollary of theorem 1 we have

 $\begin{array}{c|c} c(p_i^{r_i}) & c(m) & (i=1,\ldots,s). \end{array}$ Further if g is the least common multiple of the s numbers $c(p_i^{i})$ (i=1,...,s) then by theorem 1

 $u_g \equiv O(\text{mod } p_i^{r_i})$ (i=1,...,s),

hence $u_g \equiv 0 \pmod{m}$. Again by theorem 1 we get $c(m) \mid g$. Hence c(m) = g.

Using the theorem 2 instead of theorem 1 we find in a similar way the result for C(m).

If p is prime and c(p) is even we have the following amelioration of theorem 4:

Theorem 10. If $c(p) \equiv O(\text{mod } 4)$ then v=2;

if $c(p) \equiv 2 \pmod{4}$ then v=1.

Proof. We put c(p)=2d. Then we have

 $\omega^{2d} \equiv u_{c-1} \pmod{p}$, hence after multiplication by $\overline{\omega}^d$ we get from (1)

 $(-)^d \omega^d \equiv u_{c-1} \overline{\omega}^d \pmod{p}$.

Since d < c(p) we have $u_d \neq 0 \pmod{p}$, hence $\omega^d \neq \overline{\omega}^d \pmod{p}$. Thus $u_{c-1} \neq (-)^d \pmod{p}$. From theorem 4 follows $u_{c-1}^2 \equiv 1 \pmod{p}$, hence $u_{c-1} \equiv \pm 1 \pmod{p}$. If $c(p) \equiv 0 \pmod{4}$, the integer d is even, hence $u_{c-1} \equiv -1 \pmod{p}$, and v=2. If $c(p) \equiv 2 \pmod{4}$, the integer d is odd, hence $u_{c-1} \equiv 1 \pmod{p}$ and

The results concerning v(p) can be listed as follows

Theorem 11. If m is an arbitrary positive integer, then v(m)=2 apart from the following cases:

- 1° . if m=2^tm, where t=0,1 or 2, where m₁ is odd and c(p) \equiv 2(mod 4) for each prime factor p of m_1 , then v(m)=1;
- 2° . if m=2^tm₁where t=0 or 1, where m₁ is odd and \neq 1, and if c(p)= \pm 1(mod 4) for each prime factor p of m_1 , then v(m)=4.
- <u>Proof.</u> From the values of $c(2^h)$ and $C(2^h)$ found in theorem 8 it follows that $v(2^h) = \begin{cases} 1 & \text{if } h=1,2; \\ 2 & \text{if } h=3,4,\dots \end{cases}$

Hence 1° is proved in the case $m_1=1$.

Now suppose $m=2^{t}m_{1}$, where m_{1} is odd and $\neq 1$.

From theorems 6 and 7 it follows that for odd primes p we have

$$v(p^h)=v(p)$$
.

Let d_1 and D_1 be zero if t=0 and let d_1 and D_1 denote the number of factors 2 in $c(2^t)$ and $C(2^t)$ respectively if $t \ge 1$; let d_2 and D_2 denote the number of factors 2 in $c(m_1)$ and $C(m_1)$ respectively. Further put $d=\max(d_1,d_2)$; $D=\max(D_1,D_2)$.

Then by theorem 9 the integers d and D are equal to the numbers of factors 2 in c(m) and C(m) respectively. Since by theorem 4 the number v(m) is a power of 2, we have the formula

$$v(m)=2^{D-d}$$
.

We now consider three cases:

A. $c(p_i) \equiv \pm 1 \pmod{4}$ for each prime factor p_i of m_1 . Then by theorems 9, 7 and 4 we have $d_2=0$, $D_2=2$. Using theorem 8 we have

(10)
$$\begin{cases} d_1 = D_1 = 0 & \text{if } t = 0 \text{ or } 1; \\ d_1 = D_1 = 1 & \text{if } t = 2; \\ d_1 = 1, D_1 = 2 & \text{if } t = 3; \\ d_1 \ge 2, D_1 = d_1 + 1 & \text{if } t \ge 4. \end{cases}$$

Herefrom follows D-d=2, hence v(m)=4, if t=0 or 1; D-d=1, hence v(m)=2, if $t \ge 2$.

- B. $c(p_i) \equiv 2 \pmod{4}$ for each prime factor p_i of m_1 . Then by theorems 9, 7 and 10 we have $d_2=1$, $D_2=1$. Using the relations (10) we now find D-d=0, hence v(m)=1, if t=0, 1 or 2; D-d=1, hence v(m)=2, if $t \geqslant 3$.
- C. In all other cases by inspection of the table (9) we infer $d_2 \ge 1$, $D_2 d_2 = 1$. For instance $d_2 = 1$, $D_2 = 2$ if m_1 only contains prime factors p with $c(p) \equiv \pm 1 \pmod{4}$ and prime factors p with $c(p) \equiv 2 \pmod{4}$.

If $d_2 \ge d_1$, then by (10) we have $D_2 \ge D_1$, hence $D-d=D_2-d_2=1$, hence v(m)=2. If $d_2 < d_1$, then $d_1 \ge 2$, hence by (10) we get $D_1-d_1=1$, so D-d=1, v(m)=2. This proves the theorem.

It is not without interest to apply the above theorems the problem of factorizing the elements of the sequence II of Fibonacci treated by E. Lucas⁴), D. Jarden⁵) and A. Katz⁵).

From (5) it follows that u_n is divisible by all the numbers u_d where $d \mid n$. In view of this fact we call a prime factor of u_d with $d \mid n$

⁴⁾ E. Lucas. Théorie des fonctions numériques simplements périodiques, Amer. Journ. of Math. 1 (1878), 184-240, 289-321.

⁵⁾ D. Jarden and A. Katz wrote about ten papers on this subject in Riveon Lematematika 1-4(1946-1950).

and 1 \langle d \langle n a trivial prime factor of u_n . The largest divisor of u_n which only contains trivial prime factors of un will be called the trivial divisor of un.

Suppose $n=p_1 \dots p_s$, where p_1, \dots, p_s are different prime factors. Put $n_i = \frac{n}{p_i}$ (i=1,...,s). Then the set of trivial prime factors of u_n is the set of prime factors of n_i (i=1,...,s). Determining the highest powers of the trivial prime factors which divide un, we find that the trivial divisor of u_n is equal to the least common multiple of the s numbers

 $p_i^{\epsilon_i} u_{n_i}$ (i=1,...,s),

where $\mathcal{E}_{i}=1$ if $\mathbf{p}_{i} \not\mid \mathbf{u}_{n_{i}}$ and $\mathcal{E}_{i}=0$ if $\mathbf{p}_{i} \not\mid \mathbf{u}_{n_{i}}$ (i=1,...,s). The factorization of \mathbf{u}_{n} in practice reduces to the determination of the non trivial prime factors of un. In another report we shall prove that apart from the cases n=1,2,6 and 12 the number u_n contains non trivial prime factors.

Now if p is a non trivial prime factor of $\mathbf{u}_{\mathbf{n}}$ then in view of theorem 1, we have c(p)=n. So considering successively the cases $p \equiv 1,9,3,7 \pmod{10}$ by theorem 5, it is required for a prime p to be a non trivial prime factor of un, that there exists a positive integer x such that

p=xn+1, where $xn \equiv 0$ or $8 \pmod{10}$,

p=xn-1, where $xn \equiv 4$ or $8 \pmod{10}$.

If n is odd, still more can be said. In the case $p \equiv 11$ or $19 \pmod{20}$ by theorem 5 we have p-1=x.n for an integer x and p-1=2y.n for no integer y, which is impossible for odd primes p. Similarly we reach a contradiction if $p \equiv 3$ or $7 \pmod{20}$. So, if n is odd, then p=xn+1 where $xn \equiv 0$ or $8 \pmod{20}$, or p=xn-1 where $xn \equiv 14$ or $1-8 \pmod{20}$, hence in each case $p \equiv 1 \pmod{4}$. Remark 1. For odd n each prime factor p of u_n is a non trivial prime factor of u_m for some m|n, hence $\equiv 1 \pmod{4}$ (with the exception of p=2). Remark 2. If n is odd, by (4) u_n is a sum of two squares, a^2+b^2 say. If $p \equiv 3 \pmod{4}$ and $p \mid u_n$, then the number of factors p in u_n is even⁶). So if $p \equiv 3 \pmod{4}$ and c(p) is odd, then k(p) is even. We do not know prime numbers p for which k(p) > 1.

⁶⁾ Confer Hardy and Wright, An introduction to the theory of numbers, theorem 366.

We give a table 7) of the values of c(p), C(p) and v(p) for some primes p. In all these cases the value of k(p) is found to be = 1

p	C	C	v	p	С	C	v
37373737373737373737373737373737373737	487949463849469899483989474799698749 118992212838474799698749 11899221283989474799698749	86868286886826668888686266688888662668888690775712348945517568888662668886999777777	2244242424242424244224442244242424242424	11991 1991 1991 1111 1111 1111 1111 11	10 18 14 10 18 14 10 18 10 18 10 10 10 10 10 10 10 10 10 10 10 10 10	108400800840806808068080680808088088088088088088088	11112141141141111111112141211111422141

⁷⁾ Confer. D. Jarden, Table of the ranks of apparition in Fibonacci's sequence, Riveon Lemat. 1(1946), 54.