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Algebraic systems, which are not closed with

respect to their gperations.

Usually in algebra systems are considered which are closed with
respect to their defining operations. For the solution of some pro-
blems in algebra it may be useful to congider systems for which this
is not the case. Especially embedding problems may be treated in this
way. We take as an example the embedding of a semigroup in a group.
IT we take multiplication and forming of the inverse as basic opera-
tions of a group, and (xy)z = x(yz), w2 yy”q
axioms, we may consider a gemigroup as a system with the same basic

. x(xx"1) = X as

operations and satisfying the same axioms as a group, but not closed
with respect to the basic operations. In this case the second basic
operation is defined for no element at all. If we say that a systen,
which 1s not closed, satisfies an axiom, we mean that it needs only
to satisfy it if the occuring operations are defined. So this embed-
ding problem may be subsumed under a general embedding problem of al-
gebraic systems into closed algebraic systems of the same type.
Following BeH.Neumann [2] we call algebraic systems which are (resp.
are not)closed with respect o their operations full algebras (resp partial
algebras).

Still another feature of the use of partial algebras may be
mentioned. It is often possible to prove general statements about
algebraic structures providzd they are defined by axiom systems of a
relatively simple logical structure. So e.g. it may be that existen-—
tial statements in the axioms are not allowed. Now it may be that a
certain algebraic structure cannot be defined by such axioms if the
algebras of the structures are considered as full algebras, but that
it is possible to do so if +they are- considered as partial algebras.
As an example we take fields. If we take addition, subtraction and
multiplication as basic operations fields are full algebras, but the
axloms expressing the existence of an operation of division involve
existential statements and it is not difficult to prove that fields
as full algebras cannot be defined by an axiom system of a certain



sufficiently simple nature, not to be deseribed at this moment. If
we add the operation of division to the list of basic operations it
is easy to determine an axiom system for fields without existential
statements, but fields no longer are full algebras, division not
being defined if the divisor is equal to zero.

Ve discuss a general embedding theorem, due to B.H.Neumann. To
be able to formulate this theorem we state that by an algebra A we
mean a set on which finitary operations are defined belonging to a
set V of operations of an arbitrary cardinal number. The set A is
called the carrier of the algebra A. The domain, on whiech such an
n—-ary operation is defined is a, possibly emnpty, subset of the set of
all n-tuples of elements of A. If f£er all operations this domain is
the whole set of all n-tuples of elements of A, we call the algebra
a full algebra. If it is desirable to express that an algebra needs
not to be a full algebra, we call it a partial algebra. If we wish
to denote the operations, we call A a V-algebra. A subalgebra of A
is a subset B of A with the same operations as A; the domain of an
n-ary operation is some subset of the intersection of the domain of
that operation in A and the get of all n-tuples of elements of B. Ve
note that every subset of A may be the carrier of a subalgebra of
A, e.ge with empty domain for all operations.To every operation of
V we associate an operation symbol with the same number of variable-
places as the number of variables in the corresponding operation of
Ve ith these operation symbols and a set of symbols, called variables
we form V-polynomials of order n recursively by substituting polyno-
mials of order «n, at least one of which is of order n-1, on the
variable-places of an operation symbol. The variables are polynomials
of order zero. ‘'e define substitution of elements and operations of
a V-algebra for the variables and operation symbols occurring in a
V-polynomial in the obvious way. By an axiom-system Q we mean a set
of statements, called axioms, each of which is a statement of pro-
positional calculus in which identities of polynomials are substitu-
ted for the propositional variables. An algebra A is said to satisfy
an axiom if every substitution of elements of A for the variables
occurring in the axiom and of the operations of A for the correspon-
ding operation symbols yields a correct statement about elements of
A. IT A satisfies all axioms of an axiom system Q we call A a Q-V-al-
gebra. For a more detailed exposition of the notionms of this paragraph
compare Peremans [3] s in that paper only full algebras are discussed.

Concerning the subalgebras of an algebra A we remark that given
a subset B of A there exists a maximal subalgebra of A with carrier
B; i.es, the algebra with carrier B in which the domain of every(n—arﬁ



operation is the set of all those n~tuples of elements of B, for
which the operation is defined and has its image in B. If this domain
s the intersection of the set of all n~tuples of B and the domain of
the operation in A, the subalgebra is called closed in A. Clearly a
closed subalgebra of a full algebra is itself a full algebra. Ve
remark, that strictly speaking there is an ambiguity in calling B a
subalgebra of A, for in general there are several subalgebras of A
with the same carrier. rioreover "cloged" is used here in a sense
somewhat different from the sense in which it was used in the intro-
duction of this paper.Now Neumann's theorem reads as follows.

The partial Q-V-algebra A is isomorphic to a subalgebra of
a full Q-V- algebra if (and trivially only if) every finite
subalgebra of A is isomorphic fto a subalgebra of a full J~-V-algebra.

" If A is isomorphic to a subalgebra of B we say that A is em-
beddable in B.

The proof of this theorem uses a technique analogous to that
used for the construction of free algebras. We take a set of variables
which stands in a one-to-one correspondence with the elements of A
and form the set P of the polynomials in those variables. In P an
equivalence relation has to be constructed. For a finite subset U of
P we consider the wvariables, finite in number, which occur in the
polynomials of P, and the finite subset E of A corresponding to those
variables. Now the maximal subalgebra of A with carrier T is embeddalle
in a full Q-V-algebra E'. Such an embedding induces an equivalence
in U, two polynomials of U being equivalent if and only if substitu-
tion of the corresponding elements of E for the variables oeccurring.
in the polynomials and of the operations of E' for the operation
symbals yields the same element of E'. The main problem of the proof
is the construction of an equivalence in P such that this equivalence
induces in every finite subset U of P an equivalence of the type just
desceribed. It is a curious fact that if we formulate this problem in
a sultable way we get a well-known topological theorem.

To every finite subset U of P we associate the set R(U) consis-
ting of the equivalence relations on U induced by all the above-men-
tioned embeddings of E in full Q-V-algebras. The set R(U) is obvious-
ly finite, U being finite, and not empty, because there exists at
least one embedding of E into a full Q-V-algebra. Furthermore if U
and V are finite subsets of P and UcV, and if E and F are the subsets
of A associated with U (resp.V), clearly EcF and every embedding of
F into a full Q-V~algebra F' induces an embedding of E in F'. Obvious-
ly the equivalence relation on U induced by the embedding of E in P!
is the restriction to U of the equivalence relation on V induced by



the embedding of F in F'. So we get a mapping of R(V) 1n R(U), which
we denote by fg. If Uc Vc '/ are subsets of P, we have fU~ fgf «These
facts are closely related to the concept of an inverse mapping systen
in topology.

Let L be a directed set, i.e. a partially ordered set, such that
to all elements w,» el there exists at least one A € L such that
Mmoo = A and  » = X. Let M = {U,} be a class of topological
spaces indexed by the directed set L.If to every pair Ay pm of L
with X z ¢ , there exists a continuous mapplng f of Uy, into QM )
such that for Az & 2= v  we have £ = f*‘f , Wwe call the class
M together with the mappings f;} an inverse mapplng system. By the
limit space of an inverse mapping system we mean the subset of the
Cartesian product Q'Ugof all U, consisting of all points x=(x,) such
that for every pair A el with Azp  we have £ X, = X, « 4
theorem of Steenrod [4] asserts that if all Uj are compact and not
empty, the limit space is not empty.

To apply the theorem of Steenrod to our problem we take for L the
set of all finitec subsets of P partially ordered by inclusion. Obvious--
ly L is a directed set, it being a lattice.For M we take the class
{R(U)} indexed by U, and for the mappings we take the mappings fg
defined above. This gives us an inverse mapping system, if we topolo-
gize the finite non-empty sets R(U) by the discrete topology. The sets
R(U) then are compact and not empty and we can apply the theorem of
Steenrod. This means that we can choose in R(U) for every finitc subset
U of P an element Ty (i.e. an equivalence relation in U of the type
described above) such that Uc V implies that Ty is the restriction to
U of Tyre We now define an equivalence relation r on P by stating that
two elements p and g of P are equivalent if and only if in the set
consisting of the two elements p and g the elements p and g are
equivalent in ry. It is not difficult to show that r is an equivalence
relation on P and that for every finite subset U of P we have that
'y is the restriction of r to U.

We now give a proof of the theorem of Steenrod for the case that
all U, are finite. In this case it is not a topological theorem, but
the proof makes use of concepts used in topology (see Lefschetz [11).

We call R the Cartesian product of all U, and we form for all

A, e L with Xz e  the sets S,ﬁ corgitsting of those elements
= (x,) e R for which £} x, = x, . We first prove that the interscction
of a finite number of sets Sﬁ. is not empty. Let thesc sets be
A . . . .

S;; powsy S5 with Ay 2z e, (i= 1y+0050)e Because L is a directed
set we may choose a AyS L such that Ao B ki for i = 1..0yn and

] - A\ ; — FX —F Xo
a point zy, € Uko » We define z>Li = fk; z}\o and Zyes, fﬁh Zy,



i = ry ° ° Tc—\f 2 ki’ = ?\"‘ AQ = 7\'° =
for i=1s.een e then have f#« Zy. _fP¢ fz¢ Z, f}% Za, Z ey
for i = 1,..., n. Every point x = (x, ) with x,, = z,, and X0 =P

(i=1,000, n) is an element of the intersection of S:: seoey O
which proves our assertion.

We call S the collection of all S; and H the family of all
those collections C of subsets of R such that Sc C and such that
every finite subcollection of C has a non-empty intersection. Ve
have proved Se H.

An
o

If AjAyyeee 1s an infinite sequence of elements of H and if
Ajc i g for all n, we have A = é% A, e H, because a finite sub-
collection of A is a subcollection of onc of the A, and therecfore
has & non-cmpty interscection. Furthermore Sci.

We now can apply Zorn's theorem, which asserts that therc exists
a maximal element G ¢ He For G we have:

1%. The intersection I of a finite subcollection of G is an element
of G

If this is not the case, we take the collection G1 consisting of
the elements of G and of I. If a finite subcollection of G1 does not
contain I it is a subcollection of G and therefore has a non-empty
intersection. If a finite subcollection C of G1 contains I, its inter-
section i1s the same as the intersecction of the given finite number
of elements of G with intersection I and the elements of C different
from I, which are elements of G too. Therefore C has a non-empty in-
tersection. Furthermore Sc:G1, S0 G1e H, which contradicts the maxi-
mality of G.

2%, A subset T of R which has a non~cnpty intersection with every
element of G is itself an element of G.

If this i1s not the case, we take the collection G2 consisting of
the elements of G ard of T. If a finite subcollection of G2 does not
contain T it is a subcollection of G and therefore has a non-empty
intersection. If a finite subcollection C of G2 contains T, its inter-
section is the same as the intersection of T and the intersection of
the elements of C different from T, the latter intersection being an
element of G by 1°. This intersection is not empty by assumption.
Furthermore Sc:GZ, so G2€-H, which contradicts the maximality of G

We now fix an element A e L. For every element of G we consilder
its projection in U, :« The number of subsets of U, is finite, Uy
being finite; thus also the number of subsets of U, which are pro-
jections of elements of G is finite. For every such subset we choose
an element of G having this subset as projection; this yields a finite
number of elements of G, which therefore have a non-empty intersection.
Their projections also have a non-empty intersection. So there exists



an element y, « U, , which is an element of the projection of every
element of G. We now take y =(y,) « R and assert that this point
satisfies the requirements of Stecnrod's theorem.

To prove this, we take for a fixed X e R the set Q, of those
points x = (xv ) € R for which x, = T + Now Q, has a non-empty
intersection with every element of G and so by 2° is an element of G.
For A, 0 € R with Az we consider Q, n Qﬂr\Shﬁc « This set
is not empty; we take an element x = (x, ) out of it. We then have
Xy = Tn o2 X = Vo and fz_ Xy = Xy SO f/": In = Y and Steenrod's
theorem is proved.

To construct the full Q-V-algebra, in which A may be embedded,
we take the set B, whose elements are the equivalence classes of P
under the equivalence r. To make B a V-algebra, we proceed as follows.
If Uggenny Oy are elements of B and 0 an n-ary operator of V, we
take representants CPERER - out of the classes O yges Oy and the
operation symbol O1 corresponding to the operator 0. Now we define
O(<x1,...3 «;,) to be the class containing the polynomial 01(a1,.",an)-
To justify this definition we have to prove that it is independent
of the choice of the representants out of O g pwoey O o This amounts
to the theorem that if a;~by (i=1,.0+,n; the symbol ~ means "equi-
valent with respect to r'), then 01(a1,...,an) ~ O.](b1,..-.bn). This
is easily proved by restricting r to a finite subset of P, containing
Byreesdyy byyeesb 01(a1,..,an) and 01(b1”°”bn) and interpreting
this equivalence with use of an embedding of a finite subalgebra of
A in a full Q-V-algebra. In an analogous way we prove that B, which
obviously is a full algebra, is a Q-V-algebra (in an axiom only a
finite number of variables occur). Finally to prove that A is isomor-
phic with a subalgebra of B, we associate with an element a of A that
class of B that contains the variable (polynomial of order zero)
corresponding to a. It igs not difficult to prove that this correspon--
dence is one-to-one and that it is an isomorphism. Here the fact is
used that the embeddings of finitc subalgebras are effected on the
maximal subalgebras with a given carrier.

There are numerous applications of the embedding theorem. ‘e
mention one of the applications given by Neumann. The relation of tdml
order may be defined by an operator which associates v With two elecments
their maximum. It is easy to see that the concept of a totally ordered
group satisfies the requirements of a Q-V-algebra. Now by Neumann's
theorem we infer:

A group can be totally ordered if and only if every finitely
generated subgroup can be totally ordered.

By using some tricks it is possible to apply the theorem to cases



in which the algebras concerned are at first sight no Q-V-algebras.
So by introducing a dumming element oo we can make division rings
full Q-V-algebras and we get that a ring can be embedded in a divisiop
ring if every finitely generated sibring can be embedded in a division
ring..

An important embedding problem in the literature is that for
cardinal algebras (sec Tarski [5] )¢ Unfortunately I do not see :how
to treat this problem in such a way that Neumann's theorem can be
applied. A cardinal algebra is a full algebra with two operations, one
binary (written +) and one denumerably infinitary (written = ) satisw
fying a set of axioms, given in Tarski [5] « A generalized cardinal
algebra is a corresponding partial algebra sa%isfying some weak closure
postulates. Now Tarski proves that every generalized ocardinal algebra
can be embedded in a ecardinal algebras His proof gives a construction
of that cardinal algebra and is adapted to the special properties of
this type of algebra; moreover he proves more, namely that the em—
bedding may be effected in such a way, that every element a of the
full algebra may be written as a = Z a4 with the 2y in the partial
algebra. The pricipal reason, why Neumann's theorem is not applicable
is the occurrence of an infinitary operation; the proof of his thewem
makes an essential use of the fact that all operations are finitary
{(the "topological" lemma!). Now it is possible to express the operatiorn
= in the operation +, as Tarski shows, dbut this procedure imvolves
such an essential complication in the axiom system (existence of in-
€inite sequences of elements), that if we restrict ourselves to the
Qperation +, the axiom system is such that Neumann's theorem cannot
be applied. It may be hoped that it will appear possible to extend
Neumann's theorem such that infinita¥y operations are allowed and
such that it covers the case of cardinal algebras.
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