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Usually in algebra systems are considered which are closed with 
respeot to their defining operations. For the solution of some pro­
blems in algebra it may be useful to consider systems for which this 
is not the case. Especially embedding problems may be treated in this 
way. We take as an example the embedding of a sem.igroup in a group. 
If we take multiplication and forming of the inverse as basic opera­
tions of a group 9 and (xy)z = x(yz) 7 xx- 1 = yy- 1

1 x(xx- 1 ) = x as 

axioms 1 we may consider a s..e:migroup as a system with the same basic 
operations an~ satisfying the same axioms as a group, but not closed 
with respect to the basic operations. In this case the second basic 
operation is defined for no element at all. If we say that a system, 
which is not closed, satisfies an axiom 9 we mean that it needs only 
to satisfy it if the occurring operations are defined. So this embed­
ding problem may be ;:ul)3ume d under a general embedding problem of al­
gebraic systems into closed algebraic systems of the same type. 

Following B .. H.Neumann [2J we call algebraic systems which are (reEJr, 

are not )·c:k:sed wi.fu respect iD their operations ft2d1. p,~p~ (resp, pa.rt~;!. 

.~JJ-i;ebr~) • 
Still another feature of the use of partial algebras may be 

mentioned., It is often possible to prove general statements about 
algebraic 'Structures :provided ~hey are defined by axiom systems of a 
relatively' simple logical structure. So e.g. it may be that existen­
tial statements in the axioms are not allowed. Now it may be that a 
certain algebraic structure cannot be defined by such axioms if the 
algebras of the structures are considered as full algebras, but that 
it is possible to do so if they are· uonsidered as partial algebras. 
As an example we take fields. If we take addition, subtraction and 
multiplication as basic operations fields are full algebras, but the 
axioms expressing the existence of an operation of division involve 
existential statements and it is not difficult to prove that fields 
as full algebras cannot be defined by an axiom system of a certain 



sufficiently simple nature, not to oe described at this 1nomento If 
we add the operation of division to the list of basic operations it 
is easy to determine an axiom system for fields without existential 
statements, but fields no longer are full algebras, division not 
being defined if the divisor is equal to zero. 

He discuss a general embedding theorem, due to B .. H.Neumanno To 
be able to formulate this theorem we state that by an algebra A we 
mean a set on which finitary operations are defined belonging to a 
set V of operations of an arbitrary cardinal number. The set A is 
called the carrier of the algebra A. The domain, on which such an 
n-ary operation is defined is a, possibly empty, subset of the set of 
all n-tuples of elements of A. If for all operations this domain is 
the whole set of all n-tuples of elements of A, we call the algebra 
a full algebra. If it is desirable to express that an algebra needs 
not to be a full algebra 9 we call it a partial algebra. If we wish 
to denote the operations 9 we call A a V-algebra. A subalgebra of A 
is a subset B of A with the same operations as Ai the dornain of an 
n-ary operation is some subset of the intersection of the domain of 
that operation in A and the set of all n-tuples of elements of ]3. '.·'le 

noto that every subset of A ma;;,r be the carrier of a subalgebra of 
A, e.g. with empty domain for all operations.To every operation of 
V we associate an operation symbol with the sm-11e number of variable­
places as the number of variables in the corresponding operation of 
v. VTi th these operation symbols and a set of symbols, called variables, 
we form V-polynomials of order n recursively by substituting polyno­
mials of order < n, at least one of which is of order n-1, on the 
variable-places of an o:peration symbol. The variables are :polynomials 
of order zero. \Te define substitution of elements and operations of 
a V-algebra for the variables and operation symbols occurring in a 
V-polynomial in the obvious way. By an axiom-system Q we mean a set 
of statements 1 called axioms 1 each of which is a statement of pro­
positional calculus in which identities of polynomials are substitu­
ted for the :propositional variabless An algebra A is said to satisfy 
an axiom if every substitution of elements of A for the variables 
occurring in the axiom and of the operations of A for the correspon­
ding operation syiilbols yields a correct statement about elements of 
A. If A satisfies all axioms of an axiom system Q we call A a Q-V-al­
gebra .. For a more detailed exposition of the notion.a of this paragraph 
compare Peremans [3] i in that paper only full algebras are discussed. 

Concerning the subalgebras of an algebra A we rem.ark that given 
a subset :B of A there exists a maxim.al subalgebra of A with carrier 
B; i.e, the algebra with carrier] in which the domain of every(n-ary) 



operation is the set of all those n-tuples of elements of B, for 
v1hich the operation is defined and has its image in J3. If this domain 
is the intersection of tho set of all n-tuples of Band the domain of 
the operation in A, the subalgebra is called closed in A. Clearly a 

closed subalgebra of a full algebra is itself a full algebra. We 
~emark 1 that strictly speaking there is an ambig.uity in calling Ba 

$Ubalgebra of A, for in general there are several subalgebras of A 
with the same carrier. iforeover ii closed :r is used here in a sense 
somewhat different from the sense in which it was used in the intro­
duction of this :paper.Now Neumann ls theorem reads as follows. 

The part·ial Q-V-algebra A is isomorphic to a subalgel:)ra of 

a full Q-V- algebra if (and trivially only if) every finite 
subalgebra of A is isomorphic to a subalgebra of a full Q-V-algebra,, 

· If A is isomorphic to a subalgebra of B we aay that A is em­
beddable in B .. 

The proof of this theorem uses a technique analogous to that 
used for the construction of free algebras. We take a set of variables 
which stands in a one-to-one correspondence with the elements of A 
and form the set P of the polynomials in those variables. In Pan 
equivalence relation has to be constructed& For a finite subset U of 
P we consider the variables, finite in nu_,nber;. which occur in the 

polynomials of P, and the finite subset E of A corresponding to those 
variables. Now the maximal subalgebra of .A vvi th carrier E is embedda:--J.e 
!~1. a full Q-V-algebra E 1 • Such an embedding induces an equivalence 
in U, tw~ polynomials of U being equivalent if and only if substitu­
tion of the corresponding elements of E for the variables occurring 
in the polynomials and of·the operations of E1 _for the operation 
symbo.1£ yields the same element of E 1 • The main problem of the proof 
is the construction of an equivalQnce in P such that this equivalence 
induces in every finite subset U of Pan equivalence of the type just 
described. It is a curious fact that if we formulate this problem in 
a suitable way we get a well-known topological theorem. 

To every finite subset U of P we associate the set R(U) consis­
ting of the equivalence relations on U induced by all the above-men­
tioned embeddings of E in full Q-V-algebras. The set R(U) is obvious­
ly finite, U being finite, and not empty, because there exists at 
least one embedding of E into a full Q-V-algebra. Furthermore if U 

and V are finite subsets of P and Uc V? and if E and F are the subsets 
of A associated with U (resp.V)~ clearly EcF and every embedding of 
F into a full Q-V-algebra F I induces an embedding o:f E in F 1 • Obvious­
ly the equivalence relation on U induced by the embedding of E in F' 
is the restriction to U of the equivalence relation on V induced by 



the embedding of F in F 1 • So vve get a mapping of R( V) in R( U), which 
Y . W V W 

we denote by fu• If Uc V c 1 ! are subsets of Pt we have fu= fufv .These 
facts are closely related to the concept of an inverse mapping syste:n 
in topology. 

Let L be a directed set, i.e. a partially ordered set, such that 

to all elements p,,--;, e L there exists at least one A e L such that 

/..l.. ~ 'A and P ~ A • Let H = {u~} be a class of topological 
spaces indexed by the directed set L. If to every pair A 1 f'- of L 

with >.. ~ ;_;:, , there exists a continuous mapping f" of U)-,. into Uu. 
A /J- r· 

such that for A ~ I-'- ~ v we have f; = f~ f µ ~ we call the class 
M together with the mappings f~ an inverse mapping system. By the 

limit space of an inverse mapping system we mean the subset of the 

Cartesian product TTUvof all Uv consisting of all points x=(X~) ~uch 
V 

that. for every pair >--,;-r- E L with >-.. E: ;-r- we have f~ x,._ = xi-'- • A 

theorem of Steenrod [4] asserts that if all U~ are compact and not 
empty, the limit space is not empty. 

To apply the theorem of Steenrod to our problem we take for L the 

set of all finito subsets of P partially orde~ed by inclusion. Obvious­

ly Lis a directed set, it being a lattice.For M we take the class 

{R(U)} indexed by u, and for the mappings we take the mappings fJ 
defined above. This gives us an inverse mapping system, if we topolo­

gize the finite non-empty sets R(U) by the discrete topology. The sets 
R(U) then are compact and not empty and we can apply the theorem of 

Steenrod. This means that we can choose in R(U) for every finite subset 

U of P nn element ru (i.e. an equivalence relation in U of the type 

described above) such that Uc V implies that ru is the restriction to 

U of rv• We now define an equivalence relation r on P by stating that 
two elements p and q of Pare equivalent if and only if in the set 'N 

consisting of the two elements p and q the elements p and q are 

eq_ui val en t in r,1r It is not difficult to show that r is an eq,ui valence 
relation on P and that for every finite subset U of P we have that 

ru is the restriction of r to U. 
We now give a :proof of the theorem of Steenrod for the case that 

all UY are finite. In this case it is not a topological theorem, but 
the :proof makes use of concepts used in to~ology (see Lefschetz [1]). 

We call R the Cartesian product of all u.., and we form for all 

)\ , ft-- E L with A ~ µ t~1e sets S;;., corei.tsting of those elements 

x = (x))) e- R for which f;;, x:>c = xfl • 1.Je first prove that the intersection 
of a finite number of sets s;. is not empty. Let these sets be 

S ~~ ~. H, S ~~ with Ai ;;; fli ( i= 1 1 ••• , n). Because L is a directed 
set we may choose a A 0 e L such that A0 ;; .\i for i = 1, ••• ,n and 

a point ZA E: UA ~ We define Z.x,. = f '-0 z/\. and Zu_,l, =fAo z},,, 
0 0 l AL O ,--- ft-"c 0 



for i= 1 ..... n. Yve then havo f "-t z =f:\i. f Ao z~ ::::f i\.o 
. r µ... A.i., }J-c l'l.i. "'o }-Li, 

for i = 1, .... , n. Every point x = (x~ ) with x"-i. == z;.~ 
(i~1, ••. , n) is an element of tho intersection of SA1 

/J-1 
which proves our assertion. 

A Wo call S the collection of all SP- and H the family of all 
those collections C of subsets of R such that Sc Cana such that 
every finite subcolloction of Chas a non-empty intersection. ~e 
have proved Se H. 

If A1A2,. a. is an infinite ~equence of elemientl:l of H and if 
A c ·A_ 1 for all n, we have A = U A € H, because a finite sub-n ·"Tl+ n: 1 n 
collection of A is a subcollection of one cf the An and therefore 
has a. non-0mpty intersection. Furthermore Sc.A .• 

We now can apply Zorn's theorem, which asserts that there exists 
a maximal eler,.1en t G E H. For G we have: 
1~~ The intersection I of a finite subcollection of G is an element 
of G. 

If this is not the case, we take the collection G1 consi~ting of 
the elements of G and of I. If a finite subcollection of G1 does not 
contain I it is a subcollection of Gana. therefore has a non-empty 
intersection. If a finite subcollection C of G1 contains I, its inter­
section is the same as tho intorsoction of the given finite number 
of elements of G with intersection I and the elements of C different 
from I, which are elements ot G too. Therefore Chas a non-empty in­
tersection. Furthermore Sc G1, so G1 E: H, which contradicts the maxi­
mality of' G. 

0 2. A subset T of R which has a non-empty intersection with every 
element of G is itself an element of G. 

If this is not the case 1 we take the collection G2 consisting of 
tho elements of G ard of T. If a finite subcollection of G2 does not 
contain Tit is a subcollection of G and therefore has a non-empty 
intersection. If a finite subcollection C of G2 contains T, its inter­
section is the same as the intersection of T and the intersection of 
the elements of C different from T1 the latter intersection being an 
element of G by 1°. This intersection is not empty by assumption. 
Furthermore Sc G2 , so G2 E: H, which contradicts the maximality of G. 

We now fix an element '}\ E- L. For every element of G we consider 
its projection in U~ .• The number of subsets of U~ is finite, U~ 
being finite; thus also the number of subsets of U"- which are pro­
jections of elements of G is finite. For every such subset we choose 
an element of G having this subset as projection; this yields a finite 
number of elements of G, which therefore have a non-empty intersection6 
Their projections also have a non-empty intersection. So there exists 



an element Yx e U i\ , which is an element of the projection of every 
element of G. We now take y =(y~) ~Rand assert that this point 
satisfies the requirements of Steenrod's theorem. 

To prove this, we take for a fixed A e R the set Qi\. of those 
points x = (x)) ) E: R for which x/1. = yl\. • Now Q/\. has a non-empty 
intersection with every element of G and so by 2° is an element of G., 

For :\. , µ- e: R with 'A.?: f-<- we consider Q.j\_ n o,.J' S'>,.p. • This set 
is not empty; we tal{e an element x = ( :x: -v ) out of it.. We then have 

x11. = yA , xp. == yf-<- and f ~ x;>,.. = xp.., so f~ y'),... = yf'- and Steenrod's 
theorem is proved. 

To. construct the full Q-V-algebra, in which A may be embedded, 
we take the set B, whose elements are the equivalence classes of P 
under the equivalence r. To make Ba V-algebra, we :proceed as follows" 
If cx.1, ••• , cx.n are elements of B and O an n-ary operator of V, we 
take representant s a 1, •• ,an out of the classes oc. 1, •• • > oc,n and the 
operation symbol o1 corresponding to the operator o. Now we define 
0( 0(. 1, ••• , cx. 11 ) to be the class containing the polynomial o1 ( a1' ••• , an) -
To justify this definition we have to prove that it is independent 
of the choice of the representants out of ex. 1, .••• , °"n. This amounts 
to the theorem that if ai rv bi ( i= 1, ••• , n; the symbol rv means "equ::j.­
valent with respect to r 11 ), then o1(a 1, ••• ,an) rv o1(b 1, .... bn). This 
is easily proved by restricting r to a finite subset of P, containing 
a 1, •• ,an' b 1 , •• ,bn' o1(a 1 , •• ,an) and o1(b 1, ••• ,bn) and interpreting 
this equivalence with use of an embedding of a finite subalgebra of 
A in a full Q-V-algebra. In an analogous way we prove that], which 
obviously is a full algebra, is a Q-V-algebra (in an axiom only a 
finite number of variables occur). Finally to prove that A is isomor­
phic with a subalgebra of B, we associate with an element a of A that 
class of B that contains the variable (polynomial of order zero) 
corresponding to a. It io not difficult to prove that this correspon­
dence is one-to-one and that it is an isomorphism. Here the fact is 
used that the embeddings of finite subalgebras are effected on the 
maximal subalgeb:ras with a given carrier. 

T-here are numerous applications of the embedding theorem. We 
mention one of the applications given by Neumann. The relation of to!al 
order may be defined by an operator which associates ~With two el0IIBnts 
th0ir maximum. It is easy to see that the concept of a totally ordered 
group satisfies the requirements of a Q-V-algebra. Now by Neumann's 
theorem we infer: 

A group can be totally ordered if and only if every finitely 
generated subgroup can be totally ordered. 

By using some tricks it is possible to apply the theorem to cases 



in which the algebras concerned are at first sight no Q-V-algebras. 
So by introducing a dumming element oo we can make division rings 
full Q-V-algebras and we get that a ring can be embedded in a divisiol\ 
ring if every finitely generated sub:ring can be embedded in a division 
ring., 

An important embedding problem in the literature is that for 
cardinal algebras ( see Tarski [ 5 ] ) , Unfortunately I do not see· :how 
to treat this problem in such a way that Neumann's theorem can be 
applied. A o·ardinal algebra i,s a full algebra. with two operations, o:ne 
binary (written+) and one denumerably infinitary (written Z.) satia­
fying a set of axioms; given in Tarski [5]. A generalized cardinal 
algebra is a corresponding partial algebra satis!ying some weak clCS'UJ."olrlll 

postulates. Now Tarski proves that every gene~aliz..ed oardinal algebra 
can be embedded in a cardinal algebra. His proof gives a construction 
of that cardinal algebra and is adapted to the special pr~per~ies of 
this type of algebra; moreover he proves more, namely that the em­
bedding may be effected in such a way, that every element a of the 
full algebra may be written as a= Lai with the ai in the partial 
algebra. The pricipal reason, why Neumann's theorem is not applicable 
1s the occurrence of an infinitary operation; the proof of his theorem, 
makes an essential use of the faotthat all operations are finitary 
( the "topological" lemma!). Now it is possible to express the operatk-n: 
~ in the operai'ii..on +, as Tarski shows, but this procedure involves 
such an es.sent.ial ~om~li0ation in the axiom system (existence of in­
finite sequenoas of elements), that if we restrict ourselves to the 
Q:peration +, the axiom system is such that Neumann's theorem cannot 
be applied. It may be hoped that it will appear possible to extend 
Neumann's theqrem such that infinitary operations are allowed and 
such that it covers the case of cardinal algebras. 
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