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1. Introduction. 

Very fecently we were told by VAN DER POL that the following propo

sition has been proved by BANG: 
If w J w are two rational integers, different in absolute value and 

not equal to zero, and if 

( 1 . 1) 
wn --n - l1,) u = n w w -

(n = O, 1, 2, ... ), 

then for each positive integer n, with a finite number of exceptions) 

there exists a prime q with 

q \ u , q J u for 'J = 1, 2, .•• , n-1 . I n I v 

Moreover BANG raised the question whether this result remains valid) 

if for W we take a real quadratic algebraic integer and for w its con
jugate. This has led us to the following theorem, a proof of which is 

the main object of this report. 

Theorem. Let a, b be two non-vanishing rational integers with 

a2 + 4b ) 0 

and let w , w be the roots of the equation 

2 (1.3) x - ax - b = 0. 

Then the sequence of rational integers 

( 1. 4) 
wn - wn 

..... 
w - (J.) 

has the property, that for each positive integer n, with a finite numb 

of exceptions) there exists a prime q with 

q fun' q f um form= 1, 2J .•• , n-1. 

In this theorem rationality of w J w is not required; it forms a 

generalization of the proposition of BANG. 
Preliminary r{8.mair'ks. In view of a I O and a2 + 4b .> 0, the numbers w 
and w evidently are real and different in absolute value. Since inter

changing w and w does not affect the assertion of the theorem, we may 

suppose without loss of genereality 

(1.5) lwl > I wl. 
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From ( 1. 3) it follows that w, W satisfy the relations 

(1.6) 2 -2· -W = aw+ b, LU = aw+ b. 
Using (1.6) we deduce from (1.1) that the integers un satisfy the 

following relations 

(1.7) u0 = O, u1 = 1, un+2 = aun+1 + bun (n = 0, 1, 2, .•• ). 

The sequence {un} is determined uniquely by (1.7), so by (1.1) and 
(1.7) the same sequence is defined. 

By means of the relations (1.7) the following formulae can easily 
be proved by induction 

(1.8) n -n· - ( ) w = unw + bun_ 1, w = unW + bun_ 1 n = 1, 2, .••. 

With the aid of the last relations a certain kind of addition formu• 
la can be deduced. Let /4 be a positive integer, )) a non-negative intege 
From wf'+)) = wP-.u./ it follows by repeated application of ( 1.8) for 

v> o 
up.+),I W + b~+v -1 = ( uµ W + bu,,i-1) ( UV W + bu\>-1) 

2 2 
= ~u)Jw + b(u_f'.Uv-1 + ~_1ul>) W + b ufl_ 1~_1, 

hence by (1.6) and (1.7) 

~+))W + bufLH'-1 = (au,.,_uv + buµuv_ 1 + bu_f-_ 1uv)W + 

+ b{uf-u~ + bu)-t-1UV-1) 

= (')+u)/+1 + buf-' __ 1u)I) W + b(u_µuv + buf-_1ut>_ 1). 

The same relation holds with w replaced byW. Hence by (1.5) we may 
conclude 

(1.9) uf-+~ = uf..u~+1 + b~-1UV. 

Since this relation also holds if )) = O, ( 1. 9) is valid for f'-) 0, )) ~ O 

2. Some lemma's. 

In another report1) periodicity properties, modulo an arbitrary po
sitive integer m, for the sequence defined by (1.7) are studied extensivE 
ly. Some of the results contained in the lemma's below already were ob- t 

tained in that report; for the sake of completeness however we shall giv~ 
a proof of all our assertions in section 3. r 

Lemma 1. Let q be a prime. If q f b, then there exists for each posi-
tive integer ta positive integer c = c(qt), such that I 

I 
( 2 .1) qt I un if and only if c (qt) j n. I 

--------------------
1) H.J.A.Duparc - W.Peremans, Reduced sequences of integers and pseudo-I 

random numbers II, Rapport Z.W. 1952-013, Mathematisch Centrum, • 
Amsterdam (dutch). 
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If q \ b, q { a., then _q I un only if n = O. 

Before stating the other lemma's we introduce the following symbols 

which will appear to be useful. 
If q is a prime and fan arbitrary positive integer, then 

(2.2) A(q.,f) 
denotes the number of factors q which are contained· in f (possibly 0). 

Furthermore, if q {band n is a positive multiple of c(q), we write 

( 2 • 3 ) ~ ( q ., n) = A ( q ., c {q ) ), 

so~ (q.,n) denotes the difference in the number of factors 
respectively inn and the smallest positive integer c with 

Lemma 2. Let q be a prime with q f b. Then there exists a 
integer k = k(q) with the following properties 

( 2 • 4 ) A ( q, Un) = 0 if C ( q) 1' n 

( 2 • 5) A ( q., un) = k + ~ ( q, n) if c ( q) j n., 

except when we have simultaneously 

q = 2, A(2.,uc( 2)) = 1, 1(2.,n) = O; 

q, contained 
I 

q I uc · 
positive 

in this case the right hand member of (2.5) must be replaced by 1. 
Lemma 3. Let q be a prime with qlb, q,!a. Let 0( ., /3 be the positive 
integers 

(2.6) ex = A( q, a)., f = A(q,b). 
If 2 0( < (3 , then 

(2.7) (n = 1, 2., ••. ). 

If 2<X ~ f'., then there exist a positive integer d=d(q) and a mono

toneously increasing function _y?q(x) = _1/7q(a.,b;x)., defined on the set 
of non negative integers x, depending on q., a, band assuming integral 
values only, with the following properties 

(2.8) 

( 2. 9) 

if d -t n 
I 1.,2, ••• ). 

Although generally spoken no definite statement can be made about the 

values of Cfq(o) and Soq(1), the following formula holds in each case: 

( 2 .10) r q ( X) = X-1 + (_f q ( 1) ( X = 1., 2, . • • ) , 

Lemma 4. Suppose g = (a,b) > 1 and put 

(2.11) 
1 1 1 2 la' 

g = q1 q2 · · • qcr ' 

where q1 , q2, .•• ,q~ are different primes and 11, 12, .•. ,la are positive 
integers. Let n be an integer> 1 and put 

(2.12) 
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where p1 , p 21 .•• ,p6 are different primes and r 1 , r 2 , ••• Jrs are positive 
integers. Put 

(2.13) (m = 1,2, ..•• ), 

( 2, 14) 

where i 1 ,1 2 , .•• ,ik are positive integers with 1 ~ 11 < 1 2 < ... < ik (. s 

( 1 ~ k ~ s ) and m = n , pi p, ..• p, 
1 l2 lk 

(2.15) /j = min (A(qj,a), ½A(qJ:~)), 

Let £ k be defined by 

( 2, 16) 

Then we have 

, [ s . ( 7T . f V 
. , ·. n , 1 

' l 1= 
I 

1 

-1 

) 
(2.17) 0

\ 

I 
C 1' 12.'.!., 1k =1 

11 < 12 (., • • < ik 

\ !1 d'2 
\.. ~ K.(q1 q2 ' .. 

if k is even 

if k 1s odd 

where K = K(aJb) is a constant not depending on n. 

(k = 1,2J ..• ,s). 

Lemma 5. Given a finite number of non vanishing integers x 1 ,x2 , .•. ,xw, 

we have the following formula 

[ 
w 1-t. r w 

{ x 1 , x2, ... J xw } = TT x . . 1 I 1J 
i 1=1 l1 - - i 1,t2=1 

11 < 12 

( 2 .18) 

[ 7 -f 
• • • ( X 1 J X2' • .. , XW) j W, 

where [ k is given by ( 2 .16) and where l a1 , a2, .•. , an} and ( a1 , a2, ... J a.~\ 
denote the least common multiple and the greatest common divisor of 

a1 , a21 ••• ,an respectively. 
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3. Proof of the lemma's. 

Proof of lemma 1. For given q and t, let c be the smallest positive 

integer with q I 
i 

u, First we prove by induction on hJ that we have 
C . 

( 3, 1) qt l uhc for h = 1, 2J .•• 

By definition of c the relation (3.1) is true for h = 1. If (3.1) 

holds for a certain value of hJ then by (1.9) we have u(h+1)c = uhc+c = 
=uhcuc+1 + buh0 _ 1uc-= O (mod qt). Hence (3.1) is proved. 

Secondly we prove that, if q 1 b and if n is a positive integer with 

qt I unJ we have c\n. Put n =he+ rJ where O ~ r < c and his~ positive 

integer. Then by (1.9) we have un = uhcur+1 + buh0 _ 1ur, hence q Jbuh 0 _ 1ur. 

If q was a di visor of uhc _1 , then from buhc- 2 = uhc - auhc-- 1 and 

q f b, we would obtain q~uhc-2' hence also ql~hc-3' .• ,,qlu1; tris is 
a contradiction, since u1 = 1. Hence we have 1q f uh 0 _ 1 . From q jbuh0 _ 1ur, 

q 1 b, q f uhc- 1 it follows that we have qtlur. Hence, by the definition 
of cJ we haver= O. So the first part of the lemma is proved. 

The second part of the lemma follows from these two facts. 

First we have q f u1 . . Secondly, if q f un, then qi un+1 (n = 1, 2, .•• ), 

since from q\un+1 and qlb\bun_ 1 = un+1 - aun would follow q\aun, hence 

q I un in view of q + a. 
Proof of lemma·2. The relation (2.4) is a restatement of the part 

of (2.1), implied by the words "only if". 

We now prove, that if q is an odd prime (2.5) is valid, when we take 

k = k(q) = A(q,uc(q)) · 

Let n be a positive integer with c(q)j n, i.e. qlun. Put k = A(q,un). Then 

un = eqh with q f e, h ~ 1. Applying (1.8) we find 

( 3. 2) 
uqn W + buqn- 1 = (.A.Jqn = (un uJ + bun __ 1 )q 

= bquq + ebq-'1uq-'1 qh+1 w + .•. + eqqqhwq. 
n-1 n-1 

In the last member for j = 2J ... , q replace U.J j by u. L0+ bu. 1 . Since for 
. J J-

a prime q > 2 the coefficient of w J in the right hand member of ( 3. 2) 

contains at least the factor q2h+'1 for j = 2, ... Jq, we obtain 

(3.3) 

where a1 , a2 are two rational integers with 

The relation 

(3.4) 

In view 

( 3. 5) 

_ bq-1 q--1 h+1 
a1 :=::: e un-1 q 

h+2 (mod q ). 

( 3. 3) remains true if we replace w by tiJ. Hence we have 

u ~ ebq--'1 uq-'1 qh+'1 ( mod qh+2) . 
qn n-1 

of q f e, q + b, q f un-'1 we may conclude 
A(q,uqn) = h+1 if A(q,un) = h > O. 
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In particular we have A(q,uqc(q)) = k+1. If n is a positive integer 

with c(q)jn, then by the first part of lemma 1, we have A(q,un) ·~ k. If 

moreover /7 ( q, n) = 0, then we do not have A( q, un) ~ k+1. For from 

A(qJu ( )) = k+1, A(q,u) ~ k+1 and the first part of lemma 1 would qc q n 
follow A(q,uc(q)) = k+1, which is a contradiction. This proves (2.5) in 
the case 1 (q,n) = O. The validity of (2.5) for other values of ~7 (q,n) 

now is an immediate consequence of (3,5). 
We note, that for positive integers t, on account of the first part 

of lemma 1 and the relations (2.4) and (2.5), we have the following 

formula 

(3.6) 

If q=2, then again (3.2) is valid; it has the form 

u2n W + bu2n-1 = 
2 2 2h+1 t J + e222hw2. b un_ 1 + ebun_ 1 j, 

Hence we have for c(2)! n 

(3.4a) u2n = ebu n-1 
2h+1 + e2a22h (h = A(2,uc( 2)). 

Since 2h > h+1 only if h '? 2, the deduction of (3,5) remains valid 

only if h ~ 2. Thus in the case q=2, A(2,uc( 2)) ~ 2 the formula (2.5) 

can be proved with k = A(2,uc( 2)) by the same argument as before. 

Finally suppose q=2, A(2,uc( 2)) = 1. Then put 

k = k(2) = A(2,u2c( 2)) - 1. 

At any rate by (3.4a) we have 4lu2c( 2), hence k ~ 1. If 2c(2)in and more
over 4c(2)+ n, i.e. 1 (2,n) = 1, then by the same argument as before we 

may conclude A(2,un) = A(2,u2c( 2)) = k+1. From the last relation and 

(3.5) we infer the truth of (2.5) in the case l (2,n) ~ 1. If l(2,n) = O, 

then A(2,un) = A(2,uc( 2)) = 1. 

Proof of lemma 3. If 2CX < /3, then from u 2 = a, u 3 = a2+b it follows 

that (2.7) holds for n = 2,3. If A(q,un) = (n-1)CX, A(q 3 un+1) = no<, then 

we have A(q 3 un+2) = (n+1)<X on account of 

un+2 = aun+1 + bun, A(q,aun+1) = (n+1)CX, 

A ( q, bun) = (3 + ( n--1) ex > ( n+1) o< • 

Hence, by induction on n, we see that (2.7) is true for n = 1,2, .•. 

Now suppose 2 o<. = /3 . Using the same argument as above we see, by 
induction on n, 

( 3. 7) A ( q , un) ~ ( n -· 1 ) c< = -P ?}-f ( n = 1 , 2, . • . ) ; 

however it can not be decided by that argument whether in (3,7) the 
equality sign holds. We put 
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a *-- a b-11< - ~ -, - , 
qO< 2cx 

q 

( n = 1, 2, .•• ) . 

* * * Then a, b, un are integers satisfying 

J * f * ,lo. * * ,I(~ ** q -, a, q b, u0 = O, u1 = 1, un+2 = a un+1 +bun. 

Hence on the sequence { u!} lemma 2 can be applied. So 
positive integers c~= c"'(q) and k* = k*(q), such that 

there exist two 

A ( q, u~) = 0 if c ~ 1 n 

= k~ + A(q, .E..) if c\ n, 
c* 

with the exception that A(q,u~) is always equal to 1, in the case q = 2, 

A(2,u*c*(2)} = 1, if n has a value with c*ln, 2c#f n. From these facts 

follow (2.8), (2.9), (2.10) if we take 

_st'q(O) = -½(3 + k*(q) 

~q(1) = -½/3 + k*(q) 
;fJq(x) = x-1 + jq(1) 

or -½/3 
+ 1 (x = 1,2, .•• ). 

It should be noted that ½f is integral, in view of the assumption 20( =/3. 
1 

Finally we treat the case 2c< > /3. First we prove, by induction on n, 
the following formulae 

(3.8) A(q,un) = n2113 if n is odd ( 

( 3 . 9) A ( q, un) ~ o< + n 2 2 /3 if n is even ) 

(n = 1,2, ••• ). 

If n = 1 or 2, (3.8) and (3.9) respectively are trivially true. If 
mis a positive integer and (3.8), (3.9) hold for n = 2m-1 and for n=2m 
respectively, 

since we have 

we deduce 

A(q,u2m+1) = A(q,au2m + bu2m-1) 

= A(q, bu2m_ 1) = mp, 
A(q,au2m) =CX + A(q,u2m) ~ 20( + (m-1),!3) m /3 = A(q,bu2m_) 

,and 

in view of 

A(q,au2m+1) = 0( + mp, 

A(q,bu2m) = f + A(q,u2m) ~ o< + mf. 
So (3.8) and (3.9) are proved. 

In order to determine exactly the value of A(q,un) if n is even, we 
now deduce a recurrence relation for the numbers u2m (m = 0.,1,2., .•• ), 
analoguous to the relations (1.7) for the numbers un. We have ' 
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u2m+4 = au2m+3 + bu2m+2 

u2m+3 = au2m+2 + bu2m+1 

u2m+2 = au2m+1 + bu2m, 

so elimination of u 2m+1 and u2m+3 yields 

au2m+1 = u2m+2 - bu2m 

u2m+4 = bu2m+2 + a(au2m+2 + bu2m+1) 
2 2 

= (a +2b) u2m+2 - b u 2m. 

In view of a1u0 , a\u2 we have a!u2m for all m. 
We put 

( 3 .10) a:il' = 

,I( By the last remark and (3.9) the numbers a, 
Furthermore we have u; = O, u; = 1, 

2 * ,i,i -Jf. * (a +2b)u2m+2 
a um+1 + b um = qP .aqmp 

(3.11) 
2 2 

(a +2b)u2m+2-b u2m u2m+4 
= ----~----= aq ( m+1 )!3 aq ( m+1 )p 

aq(m~1),,4 

b*, u: are 

(m=1,2, ... ) 

integers. 

From (3.10) follows qi b::,I(.. So lemma 2 can be applied on the sequence 
{u:}, i.e. there exist positive integers c* = c*(q) and k* = k~(q) such 
that 

O if c* { m, 

= k * + A( q, ~) 
C 

if c*jm;: 

in the case q = 2, 2o< > (3, A(2,u~~( 2)) = 1 however we have A(q,u!) = 1 
if c"'lm, 2c*f m. 

A. further property of the sequence S u -Jf} is the fact, that the num-
#- * I. n ..., 

bers c, k can be determined exactly (except for the number k~ in the 
case q = 2). By repeated application of (1.8) we find in the case q > 2 

u 2q l.,J + u 2q _ 1 = CJ 2q = ( a w + b) q 

= Ji (q)anwnbq-n = r· (q)an (u W+bu )bq-n + bq, L n 1 n n n-1 n=O n= 

u2q = ~ (q)anbq-nu = z:= xn, say. 
n=1 n n n=1 

By (3.8) and (3.9) we have 

A(q,X1) = A(q,qabq-1) = 1 +ex+ (q-1) f, A(q,Xq) = q o< + 921 /3 
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A(q,Xn) = 1+n1X+(q-n)/3+ n21 ,f3 = 1+nC<+(q-1- _n21)p if n is odd and 

2~ n ~q-1 
A(q,Xn) ~ 1+no( +(q-n)/3 +o(+ n22 /3 

= 1 +(n+1)o< +(q-1- -~)/3 if 

Hence in view of o< > ½ p we find 

A(q,Xn) > A(q,X1 ) 

n is even and 2~ n ~ q-1. 

for n = 2, .•. !}q, 

so 

* hence A(q,u) = 
I q }k 

follows q ;j u~ for 
1. Since q is a prime, from this relation and lemma 2 

-;,\< * 1 ~ m ..:(:_ q--1. This shows that we have c = q!} k = 1 
in the case q > 2. For arbitrary m we now have 

(3.12) 
>l< 

A(q,um) = A(q,m), 
>IC ,\< 

In the case q = 2 however, we have u 2 = a = 
~ *-A ( 2 !} u 2)) 1. Hence we only may conclude c·-(2) = 

a2+2b 
~ , which only implies 

q 
2. For even m we get 

( ) * ( m * 3.12a A(2!}um) = A 2, 2 ) + k (2). 

Taking d(q) = 2, 5t'q(o) = o< -/3, fq(x) = x+jl\(O) if q > 2, 

d ( 2) = 2, _!f 2 ( O) = ex -/3 , f 2 ( 1) = d - f +k* ( 2) , 

!jJ2 (x) = x-1+f2 (1) (x = 1,2, .•. ), 

the relations (2.8), (2.9), (2.10) follow from (3.8), (3.10}, (3.12L 
(3.12a). This completes the proof of the lemma. 

Proof of lemma 4. Let the left hand member of (2.17) be denoted by 

r:.1 and let q be one of the prime factors q1, q2, .•. , qa' of g. Let 0( and 

j3 begl..ven by (2.6). Inthe case 2CX~flet d and :fq(x) be determined 
by lemma 3. In order to evaluate A(q,M1) we distinguish the following 

five cases according to the values of o<. !} j3, n 

I 

II 

III 

and d -f n 
; dl; if and only if i = 1,2, .•• ,s 1 where s 1 is an 

l 

integer with 1 ~ s 1 .::; s; q -1- P1,P2, • • .,Ps 1 

IV 2cx ~ /3; q = P.-,; d Jl. if and only if i = 1,2, .•. ,s,1 where s 1 r , pi I 

is an integer with 2 ~ s 1 ~ s 

v 2 ex ~ (3 ; q = P1 ; d j n; 

n t d = q where tis a non negative integer. 

It is obvious that in each case, after having arranged the prime facto:. 

of n in (2.12) in a suitable way, (exactly) one of the cases I-V occurs. 
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In the sequel 11,12, ... ,ik are always supposed to form a set of unequal 
positive integers with increasing order. 

Case I. By (2.7) and (2.13) we have A(q,vn) = A(q,un) = (n-1)o<.. Using 
also (2.14) we further have for each admissable set (11,12, .• qik) 

= ( n - 1)0( 
Pi Pi •.. P 0 

1 2 1 k 

In view of the form of M1 this yields 

A(q,M1 ) = A(q,un) -I: A(q,u(i1 )) +L A(q,u(i1 ,i2)) -
11 11,12 

... 

. •. + (-1)k + .•• + ( -1) s A ( q, u ( 1, 2, .•• , s~ 

=n0<.f1-:t=--1..+C 1 
. 1 p. 0 0 Po pi 

- 1 1= 1 1 1 1' 1 2 1 1 2 

- o< • [ 1 - (~) + (~) - • , • + ( -1) 8] , 

hence in view of s ~ 1 

- • • • + ( -1) s p p 
1 2 

s 1 
A(q,M1) = no< 7T (1 - p). 

f::;,1 1 

Case II. By (2.8), (2.13) we have A(q,vn) = n21(3, 

1 
• • • 

A( q, v( i 1 , i 2, .•. , ik)) = ½ B . n - ½f . This yields r p O pl. 0 • • pi 
1 1 2 k 

s 1 
A(q,M1) = ½n6 p- (1 - p:-). 

/ 1*1 ]. 

Case III. We have ajn. Applying (2.8) and (2.9) we obtain 

A(q,vn) = ½pn + 5°q(A(q,~)) 

n 

½ B. n p - ½,g if ik > 
F pi pi / 

since in view of the assumptions we :av: di ik n 
PoPi ••• P 1 ' 

1 1 2 k 

=A(q,nd) ifik~s1 anddj., n 
·r Pi P1 • · • 

1 2 

I 

I 

I 



- 11 -

. . . 

s1 ~ 
• 0 .+ (-1) L-. 

s 
+ (-1) 1 b1 + ... + (-1)s.(½/3 PP n + bo) 

;- 1 2 • • • P s 

2) 

= ½fn.[1-[ 
11 

+ b0 . [ 1-(~) + 

Since the coefficients of b0 end b1 vanish in view of s ~ 1, s 1 ~ 1, we 
find 

s 1 
A(q,M1 ) ::; ½n/3 JT (1 - p). 

I i:,;,1 i 

Case IV. In view of (2.8), (2.9) and the assumptions of this case we get 

A(q,vn) = ½pn + _50 q(A(q,~)) 

A(. q, v ( 11 , i 2 , .•• , ik) ) = ½ /3 n + J\ ( A ( q, ~)) 

½f n+_f q(A(q,~n 

½f n - ½J 
Hence, putting -½,P = b0 , fq(A(q,d~1 )) + ½/3 = b1 , 

if 

if 

if 

11 > 
i1 = 

ik> 

1, ik ~ s1 

1, . .::::: ik _ s1 

s1. 

5,Dq(A(q,~)) - 5Dq(A(q,a~1 )) = b2 , we find (in the finite sums writing down 

only the first terms) 

0 • 0 

.. J 

2) If s 1 is ~'qual to s, then the terms with s 1 are the last terms of this 

sum. 
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since in the case considered we even have s 1 - 1 ~ 1. 

Case V. n t Now we have in view of d = q, assuming t ~ 1 

A(q,vn) = ½t8n + yDq(A(q,£)) = ½J9n + J>q(t) 

A(q,v(i1,i2, .•• ,ik)) =} ½!3 n +J\Ct-1) if k = 1, i 1 = 1 

. l½/.3n - ½f if ik> 1., 

hence, putting -½_f = b 0 , Jq(t-1) + ½J= b1, we obtain 

s 
A(q,M1 ) = ½13n + b0 + b1 + (fJ (t) - UJ (t-1) - I - (½J0_!l_ + b 0 ) - b1 I J q J q i 1=1 ;- Pi1 

+ 

~ •• + (-1)s (½l.3P P n P +bo) 
/ 1 2 • • • s 

- . . • + 

Therefore s 

A(q,M1) = ½!3n Tr (1- D1 ) + (/J (t) - (Oq(t-1), if t ~ 1. r i=1 Ci .J q J 
If t = O, the deduction remains valid, if only we replace 'fq(t-1) by 

-½f • Hence s 

A ( q, M1 ) = ½ f n JJ1 ( 1 - p:) + !J q ( O) + 1/3 if t = o . 

Combining the results we see 

s 1 (' 
(ex ., ½A) . 7T ( 1 - -) + o, 

/- i=1 pi 

where J is unequal to zero if and only if q is one of the primes 
/?J n t P1,P2, .•• ,ps and moreover 20< ?:-;- , d = q with a non negative integer t. 

In this exceptional case, as we see from the proof of lemma 3, O is 

equal to !fq(t) - _y?q(t-1) = 1 if*t;?:: 2 in virtue of (2.10); if t = 1, 

then J = JJ q ( 1) - :fJ q ( O) = 1 or k ( q); if t = O, then O = !f q ( O) + ½ j8 = 
= k*(q) or 1 in the case 20( = J3 and cf= !f q(o) + ½ f = o< -½(3 in the 
case 2o< > J2 ( in this case we have d = 2, hence q = 2). At any rate, 
since for given a and b the numbers o(, .,P , d, k*(q) only depend on q, 
we conclude that only for a finite number of values of n the number J has 
a value f 0,1. Hence J is bounded, say byb.. Thus, noting (2.15), for 
each J = 1,2, ..• ,(1 follows 
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s 
A(q . .'IM1 ) ~ nf. TT (1 - ...1.) + 6. 

J J 1=1 P1 

This proves (2.17) with K = (q1q 2 ... q~)~ • 

Proof of lemma 5,3) Without loss of generality we may suppose 

x1 ,x2 :i ••• ,xw to be positive. Let q be a prime. Put A(q,x1) = T 1 and 
arrange the numbers xi such that we have ---,;1 ~ T 2 ~ ... ~ T w. Then the 
number of factors q contained in the different products, which occur in 

the right hand member of ( 2 .18) successively are equal to 

7;' 1 + T 2 + · • • + ?: w' 

( w-11) ,,.,,,1 + (w1-2)r-r-2 + .•• + (2),,.,.., + ,,,..-
L L 1 ~w-2 ~ w-1' 

( w2-1) ,., 1 + (w2-2),,.,- 2 + .•• + (3)'1" +,., 
1,., t. 2 t. w-3 c.. w--2' 

o•••e•o•o•oo••oooo•o••• 

(w-1),,,,...,, +,.,.. 
W-2 (.. 1 L 2' 

T1 , 
since there are T 1 factors q contained in the number f xi ,x. , .•• ,x1 l ;:in" 

1 ~ 1 l2 ~ 
since there are (:=~) admissable sets ( 11 , 12, .• 09 ik) with 11==1, (::~~) 

admissable sets (1 1,1 2, .•. ,ik) with 11 = 2, etc. (k = 1,2, ..• ,w). 

Hence the total number of factors q 3 contained in the right hand 
member of (2.18) is equal to 

{ 1 _ (w11) + c~r21) _ ... + (-1 )w-2 (:=~) + (- 1)w-1} T 1 + 

+ { 1 _ (w:/) + (w;/) _ .•• + (-'1)w-3 (:=~) + (-1)w-2)'t' 2 + .•. 

. . . + (1 - 2 + 1)Tw_ 2 + (1-1)1:"'w-'1 + T w 

= T w == A ( q, { x 1 , x 2, .. ., xw} ) . 

This being true for each prime q the lemma is proved. 

4. Proof of the theorem. 

Let {un} be the sequence defined by (1.1). We consider a fixed int~~~ 
n > 1. Let the factorization of n and g = (a,b) be given by (2.11) and 
(2.12). Then, on account of n > 1, by lemma 1 the primes q1,q2, .•. ,q~ are 
also contained in un. We put 

(4.1) 
_t,, t2 I un I == q1 q2 . . . 

4) 

3) This lemma already was proved by J.G.VAN DER CORPUT, Nieuw Archief voor 
Wiskunde (2), 12 (1912). 

4) The integers um and also the integers um below can be negative for some 

indices m. So in (4.1) it is necessary to take the absolute value. 
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where q +1, .•• ,q + are primes, different from each other and different 
<T C1 T 

from q1,q2,.~-,qo- and where t 1,t2., .•. ,ta+~ are positive integers (in 
our notation we have tj = A(q.,u) for j = 1,2, .•• .,a+~). 

J n 
Furthermore we put., vm being given by (2.13), 

um 
u = - ( m= 1 , 2, .•. ) 

m vm 

(4.2) u(i1,i2, .•. ,ik) = um., u(i1,i2, .•• ,ik) = um with 

m = n ( 1 :tf: i 1· < i 2 <. . • . <-. ik ~ s ) ., 
pi pi . •" pi 

1 2 k 

hence., v(i1,12, .•• ,ik) being given by (2.14), 

(4.3) u(i1 ,i2 , .. .,ik) = v(i 1,i2 , .. . ,ik) .u(i1,i2, .•• ,ik). 

Our method of proof consists in considering all those prime factors 

qj of un' which also divide one of the numbers u 2 ,u3, .•. ,un_1; we 
suppose the factors of un in (4.1) to be arranged such that the prime 
factors with that property are given by 

(4.4) 

If we can show that for each n, with a finite number of exceptions, 
the corresponding number 

(4.5) tcr+1 
~+1 

to-+r 
1 

•••. qa'+C: 
1 

theorem is proved. 

... 
is smaller than jun!' then the 

If q j is a prime with CT' +1 
both a and b, hence on account 

~- j ~CT+ "C 1, then it does not divide 

of qjl u and lemma 1 we have q. f b. 
n \ J . Again by lemma 1, this implies that the values of m with qj um are given 

by the multiples of a certain positive integer, c(qj). Since qJ is one . 
of the numbers (4.4), c(qj) is a proper divisor of n, hence c(qj)JP:, 

i.e. qj\u(i) for at least one o.f the numbers i = 1,2, ..• ,s. So, by (2 11\ 

and (4.2), the primes q<1+1,. ••,%+T all are contained in 
1 

{u(1), u(2), .•• ., u(s)}. 
We now prove 

( 4 • 6 ) A ( q j , Un) - A ( q j ., tu ( 1 ), u ( 2), ••• , u ( s ) J ) = 

= { O or 1 always (j =c1+1, ... ,CJ'+1:'1 ) 

· 0 if qj I P1 ,P 2 , .•• .,ps 

Consider a prime q j with (5 +1 ~ j ~ er+~. Let i 0 be an integer with 

1 ~ io ~ s, c(qj)I p: . Then, by -lemma 2, A(qj_,u(io)) = A(qj_,u(io)) is 
0 
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equal to A(qj,un) = A(qj,un) if q j ,,I Pio and equal to A(qj,un)-1 if 

qj = p. . Hence we find that 
io 

A(qj, {u(1),u(2), ••• ,u(s)}) = max A(qj., u(i)) 
~=1,2, ••• ,s 

is equal to A(qj,un) if qj differs from p 1,p2 , ••• ,p8 and is equal to 

A(qj,un) or A(qj,un) - 1 if qj is one of the primes p 1,P 2, .•. ,p 6 • 

This proves (4.6). 
From (4.6) we immediately conclude, M being given by (4,5), 

t t2 tcr 11 5) 
M~ q1 1 q2 ... qo- . p1p2 ..• Ps . {'u(1),u(2), ••• ,u(s)j 

(4.7) ~ n vn{u(1),u(2), .•• ,u(s)J. 

Next, in order to apply lemma 5, we determine the greatest common 

divisor (u(i1), u(i2), .•. ,u(ik)), where i 1.,i2, .•• ,ik are integers with 
1 ~ 11 < 12 < ... < ik ~ s. If q is a prime and this a positive integer 
such that qtl(u(i1),u(i2), .•• ,u(ik)), then q is one of the primes 
qcr+1, ..• ,qcr+-r, i.e. q f b. From q f b, qt}u(i 1), qt1 u{i 2), .•• ,qtl u(ik) 

and lemma 1 i~ follows that c(qt) divides P:, P: , .• ,, P: , hence 

divides also p p n , i.e. qt/u(i1,i~, ••• ~ik), whic~ in view of 
11 i2 .• • pik 

q f b implies qtju(i1,i2, .•• ,ik). If on the other hand we have 
qtlu(i1,i2 , .•• ,ik), then we have also q f b; furthermore qt_Ju(i1.,i2., ... ,iiJ .. j 
yields qtfu(i1), qtfu(i 2), .•. ,qtju(ik), hence qt}ii(i1), qt{ii(i 2), ..• 
... ,qt/u(ik) in view of qf b. By these considerations we learn 

(u.(11),u:(12), .•. ,u(ik)) = ju(11,i2., .•• .,ik)}. 5> 

Applying lemma 5, (4.2) and (4.3) we obtain 

.•. [v(1,2, .•. ,s)Jts . 
... c u(1.2 •.••• s)rsl. 

In virtue of lemma 4 from (4.7) we now get 
s 

1T ( 1- ..1.) 
i=1 pi 

..• [u(1,2, .•. ,s) J<sl 
5) The least common multiple and the greatest common divisor are always ( ·-• 

understood to be positive. 
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Put z = I t 1 · Then by ( 1. 5) we have 
(4.9) 0<z<1. 

For each positive integer m and c = + 1 from (1.1) and (4.9) we 
obtain 

l(w-w)umlc = lwm-wmlE = lw1E.m(1-(~)m/~.Jw!E-m(1 - zm). 

Hence we get 
c . _ n n 

£ I I k P1 pi ... pi P1 pi ••. p. E. 
!u(i1,i2,···,ik)I k?- w 1 2 k (1 - z 1 2 lk )lw-wi- k, 

I Un [ TI; u(i1 )r1 . L}~T12 u( 11, 12)r2 ... [u( 1, 2, ... ' s) ts 1 

n(1 -L _1_ + Z: 1 
, i P1 . < i p. pi I 1 1 1 1 2 1 1 2 ~ w 

n Each number -p ----- is a positive integer, whereas in virtue of . p. . •. p. 
11 12 lk 

the uniqueness of factorization in the ring of rational integers to dif

ferent sets (i 1,i2, .•• ,ik) belong different numbers p. Pin··• pi 
1 1 2 k 

Hence in the last relation the product of the terms involving z is mino
oo 

rized by 7I (1 - zm), which in view of (4,9) is a convergent infinite 
m=1 

pro 1·rnt with a positive value B. This number B obviously does not depend 
on n; it can be computed by means of theta series. Returning to (4.8) we 
may conclude 

s 
J/1 J/2 11c• n ,T ( 1 - 1.) 

K a u q~(.i 1= 11 pl 
M n q1 q2 ·•• " 

( 4 · 1 O) I un I < B ( lcu I ) 

By (1.3) we have lwwl= lb!, so by (1.5) we get lwl>~. Further1 
more it follows from (2.15) l. 

Q1 /2 /rf A(q1,b) A(q2,b) A(q(].,b) ½ lb\½. 
q1 q2 · • • ~r ~ ( q1 q2 · • · qo, ) ~ 

1 d" 1 /2 d1a-so the number e = ~ q1 q2 .•• qcr is positive and smaller than 
1, whereas it does no depend on n. 

The exponent of €} in (4.10) can be estimated by means of a result 

of E. Landau concerning Euler's :JJ -function. For if s,o(n) is Euler's 
JJ-function, i.e. if!/ ( n) denotes the number of integers m with 1 ~ m <. 
(m,n) = 1, then, by a well known result in the elementary theory of 
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s 
numbers, we have fl" (1 - ...1.) = 

i=1 pi 
_;P(n) and E.Landau proved 6 ) n , 

(4.11) 

where 

lim 
n~ro 

inf J(n) log log n = e-0 , 
n 

C is Euler's constant. 

Hence 
.--~ n ( 1- ..:L) -

n g i=1 Pi =·G 
n (~(,O(n) log log n _ log n log ~o~ n) 

log log n n log 8 -
tends to zero for n ~ ro, since t) is a fixed number between O and 1 and 
since the form between brackets has the positive limes inferior e-c. 

This proves the existence of a positive integer n0 , such that 
;1 ~ 1 if n > n0 , which establishes the truth of the theorem. 

d 

Final remarks. 
1. In order to find in a concrete example the exceptional integers n, 
which do not possess the property mentioned in the theorem, we can not 
use ( 4 . 11 ) as 
it stands, since it does not provide the construction of an index n0 
such that M <. I uni if n > n0 . We consider for instance the case a=b=1. 
Then {un] is the sequence of Fibonacci, and g=1. Thus no primes q1, ..• 
••• ,qo- occur; writing n~ = p1p2 .•. ps and inspecting the relation (4,7) 

and the proof of (4.10) we finds 1 
* n -rr· ( 1 - r) -if- ( ) 

u1 M z ; ( t~) i=1 1 = ; ( ~) JJ n , 
n 

where 0-,, = 1+ ~ = 1,618 ... ,B = TI ( 1 - zm) with z = W 
m=1 W 

-= 

The formula 

gives very rapidly the value B = o.473 ..• 
Hence _j_ Mis certainly smaller than 1, if we have 

Un 
10 ( 10 10 -Jf. log B + ':f n) log W - log n > 0, 

i.e. 
0. 209 _cp ( n) - 1010g n;,\<) 0. 325. 

3--Vs 
2 

Using the last relation and a table of Fibonacci's sequence we 
easily find that the exceptional values of n, i.e. the values of n such 
that undoes not contain "new 11 primes, are given by 

n = 1, 2, 6, 12. 
2. Of course it is not necessary for the proof to use 
it is sufficient to show that we have K~* g<:fJ( n) < 1 

ing on n; 8 < 1) for almost all values of n and this 
mentary methods. 

the relation (4.11); 
(K, B, e not dEp6D~ 

can be done by ele-

6) E.Landau, Uber den Verlauf der zahlentheoretischen Funktion JJ (x), 
Archiv der Mathematik und Physik (3), 5 (1903), 86-91. 


