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1. Introduction.

Very recently we were told by VAN DER POL that the following propo-
sition has been proved by BANG:

If w, are two rational integers, different in absolute value and
not equal to zero, and if

~- 1
(1.1) u =2 W (n=-0,1 2,...),

n w - W
then for each positive integer n, with a finite number of exceptions,
there exists a prime q with

!
a } s o] % u, for V=1, 2, ..., n-1.

Moreover BANG raised the question whether this result remains valid,
if for wJ) we take a real quadratic algebraic integer and for TO its con-
jugate. This has led us to the following theorem, a proof of which is
the main object of this report.

Theorem. Let a, b be two non-vanishing rational integers with

(1.2) a® + 4 > 0

and let ), &0 be the roots of the equation
(1.3) X - ax - b = 0.

Then the sequence of rational integers

w" - "
(1.)4') U.n =m— (1’1 =0, 1, 2, ..)

has the property, that for each positive integer n, with a finite number
of exceptions, there exists a prime g with
o] I U, s q,f u, form=1, 2,..., N-1.

In this theorem rationality of w), U is not required; it forms a
generalization of the proposition of BANG. ’
2 4 4b> 0, the numbers (u
and (O evidently are real and different in absolute value. Since inter-
changing ) and GJ does not affect the assertion of the theorem, we may
suppose without loss of genereality “F\AL

(1.5) lwl s 1o, 4“1
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Preliminary remarks. In view of a # O and a




From (1.3) it follows that w', (U satisfy the relations

(1.6) W2 =aw+ b, EDE'= alo+ b.
Using (1.6) we deduce from (1.1) that the integers u, satisfy the
following relations

(1.7) uy, =0, u; =1, u = au ., + bu, (n =0, 1, 2,...).

n+2 +1

The sequence {un} is determined uniquely by (1.7), so by (1.1) and
(1.7) the same sequence is defined.

By means of the relations (1.7) the following formulae can easily
be proved by induction

(1.8) w? = U, W+ buy ot = unCD + bu (n =1, 2,...).

n-1
With the aid of the last relations a certain kind of addition formu-
la can be deduced. Letl%a be a positive integer, Y a non-negative intege:.

From W't = wh w® 1t follows by repeated application of (1.8) for
V>0
%u+v(A)+ b%u+v—1 = (g#cu + b%p_q)(uvtu - bu»-q)
~ 7 P
= %#uVUJ + b(u}‘u.v_1 + gﬂ_qu»)OU»+ b %#-1uv_1’
hence by (1.6) and (1.7)
%u+v£u + b%u+vm1 = (agyuv + b%uuv—ﬂ + b%u_qu»)UJ +

-+ b(qﬂuv + b%u-1u»-1)

= (%“uv+1 + bg“_qu»)bu + b(u/‘buV + bgp_qu»_q).

The same relation holds with J replaced by {0 . Hence by (1.5) we may
conclude

(1.9) %u+v = W, g + b%u-ﬂ

Since this relation also holds if VY = 0, (1.9) is valid for /A)>O, » 2 0.

u,, .

2. Some lemma's.,

1) periodicity properties, modulo an arbitrary po-

In another report
sitive integer m, for the sequence defined by (1.7) are studied extensive
ly. Some of the results contained in the lemma's below already were ob-
tained in that report; for the sake of completeness however we shall give
a proof of all our assertions in section 3.

Lemma 1. Let q be a prime. If g + b , then there exists for each posi-

tive integer t a positive integer ¢ = c(qt), such that

(2.1) q u_  if and only if c(qt)l n.

I n

1) H.J.A.Duparc - W.Peremans, Reduced sequences of integers and pseudo-
random numbers II, Rapport Z.W. 1952-013, Mathematisch Centrum,
Amsterdam (dutch).
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If q ‘ b, a % a, then g U, only if n = 0.

Before stating the other lemma's we introduce the following symbols
which will appear to be useful.

If g9 is a prime and f an arbitrary positive integer, then
(2.2) A(a,f)
denotes the number of factors q which are contained in f (possibly 0).
Furthermore, if g +'b and n is a positive multiple of c(q), we write

(2.3) m (a,m) = & {a, zrgy)s

sof7 q,n) denotes the difference in the number of factors g, contained
respectively in n and the smallest positive integer c¢ with q;u

Lemma 2. Let g be a prime with g * b. Then there exists a positive
integer k = k(q) with the following properties

(2.4) Alq,u ) =0 if C(Q)J("
(2.5) Ala,uy) = k +77(a,n) if c(a)|n,
except when we have simultaneously
q = 2, A(zxuc(g)) = 1, 42(251’1)
in this case the right hand member of (2.5) must be replaced by 1.

Lemma 3. Let q be a prime with ng, q@a. Let X ,/3 be the positive
integers

(2.6) o = Alg,a), A= 8(q,D).
If 2 </3 , then
(2.7) Alq,u ) = (n-1)e (n =1, 2,...).

If 2eX > /3 , then there exist a positive integer d=d(q) and a mono-
toneously increasing function 90q(x) = 99q(a,b;x), defined on the set
of non negative integers x, depending on q, a, b and assuming integral
values only, with the following properties

(2.8) Aa,uy) =212 1f afn \

(2.9) Alq,u,) = /* P (A (a,g) if d}nj

Although generally spoken no definite statement can be made about the
values of 99q(0) and 99q(1>’ the following formula holds in each case:

(n = 1,2)..0)0

(2.10) qu(x) = x-1 + (7pq(1) (x = 1,2,...) .
Lemma 4, Suppose g = (a,b) > 1 and put
1 1 1y
_ 1 2
(2"11) g - q/] q2 o o @ qo- s
where qq, Qps o059, are different primes and 11, 12,..°,lg are positive

integers. Let n be an integer > 1 and put
r
1

r r
2 S

1.
Po oo Py

(2.12) n=rp
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where p1, pg,..,,ps are different primes and T r2,,..,rs are positive
integers. Put

o
(2.13) =T Alapum)  (n- 1,200,
j=1
(2«1"") V(i,‘y lg)o.o,ik) = Vmg
where i’l’iQ"’"’ik are positive integers with 1 £ fi,1 < i, < L.l <L 1k“<~
(1€ k €s) and m = n 5
Py By «..Py
1 72 k
(2.15) : de = min (qj,a), %A(qizb)),
Let Ek be defined by
£, = 1 1if k is even
k
(2.10) { £, = -1 1if k is odd (k= 1,2,...58)
Then we have
S £ s - £
. / . . 2
n[. V(lﬂﬂ ! [ 7] v(i,,1,) j
{ 14=1 - Lgs 1™
J 11 < 12
S -
£ E
(2.47) ) [ ] V(1,1 ..051) k.,.l'v(’l,Q,o..,s) e
| 1 =1 1772 k l <
; ,]’ ou.,lk-— -
i <i tQ< ik
F1 Lo Jron £ 1
( q2 c e q,a.,) E (1- '}3’;)

where K = K(a,b) is a constant not depending on n.

Lemma 5. Given a finite number of non vanishing integers X1’X2"°"Xw’
we have the following formula
, W —81 w _82
/ {x 3 Xy e eesX = [- X, _\ [ TT (X, 5%, )} ce
, 12Xps %y | _17—[1 1q ] L1l =g T
E 1 17 -2
11 < 12
B W -Ek
(2.18) | 77 (Ko 3%y 5oeesXs )
. . i i i
\\ 1,‘,12’00 glk'—/] 1 2 k
\ 1’1<12<"'°<1k
k ﬂl—ew
c e 0 [:(X;ISXQB'"’EXW)_J 2
where E:k is given by (2.16) and where {aq,ag,...,an} and (aq,az,...,a

denote the least common multiple and the greatest common divisor of
aq, ag,...,an respectively.




3. Proof of the lemma's.

Proof of lemma 1. For given q and t, let c be the smallest positive

integer with qt\! ucn_First we prove by induction on h, that we have
t
(3"1) q ‘ uhC fOI"h= /]323000

By definition of c the relation (3.1) is true for h = 1. If (3.1)
holds for a certain value of h, then by (1.9) we have u(h+1)c =
— T

=Up Uoiq T ou qu, =0 (mod q”)
Secondly we prove that, if q.% b and if n is a positive integer with

Yhete T
. Hence (3.1) is proved.

qt u. s we have czn. Put n = hc + r, where O £ r c and h is a positive
integer. Then by (1.9) we have u, = Ul +obu
If g was a divisor of u then from bu

t
he-qUps hence @ Ebuhc-ﬂur°

he -1? he-2 = Yhe T @Upe.q @04

q * b, we would obtain q%uhc“2, hence also q!uhC_B,,..,qtqu this is

a contradiction, since u, = 1. Hence we haze a | PIIPE he-qY%p’
Q<% b, g * Upe -1 it follows that we have q ]ur. Hence, by the definition
of ¢, we have r = 0. So the first part of the lemma is proved.

From qt}bu

The second part of the lemma follows from these two facts.
First we have g + us.  Secondly, if g + u_ s then g + U g (n= 1,2,.04),
since from qlun+1 and qlblbunnq = u,

- au would follow q\aun, hence
q‘un in view of q } a.

+1
Proof of lemma 2. The relatiom (2.4) is a restatement of the part
of (2.1), implied by the words "only if".
We now prove, that if g is an odd prime (2.5) i1s valid, when we take

k = k(q) = A(q,uc(q))-

Let n be a positive integer with c(q){n, 1i.e. q!un° Put k = A(q,un). Then

u_ = eq? with q,f e, h > 1. Applying (1.8) we find
- an _ q
(5.2) uqn(*)+ buqn_q = (W = (un(L)+ buan)
=% o+ ebq"qug::{ o+ L+ %P wY,
In the last member for j = 2,...,9 replace cuj by ujuJ+ buj_q. Since for
a prime g >» 2 the coefficient of w? in the right hand member of (3.2)
contains at least the factor <:12h+1 for j =2,...,0, we obtain
(3.3) uqn(k)+ buqn_q = a,W+ a,,
where aq, a, are two rational integers with
a, = epd-1 ug:q qh+1 (mod qh+2),
The relation (3.3) remains true if we replace w by (o . Hence we have
_ - ~ h+1 h+2
(3.4) Ugn = epd- u%_q q (mod g ).

In view of q«f e, q—% b, q + U,_q We may conclude

(3.5) Aa,ugy) = b+t if A(q,ug) = h > 0.
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In particular we have A(qg,u ) = k+1. If n is a positive integer

with c(q)?n, then by the first g:ﬁ%)of lemma 1, we have A(q,un)'z-k, If
moreover Qy(q,n) = 0, then we do not have A(q,un);z k+1. For from
A(qjuqc(q)) = k+1, A(qyun).g k+1 and the first part of lemma 1 would
follow A(q,uc(q)) = k+1, which is a contradiction. This proves (2.5) in
the case Oz(q,n) = 0. The validity of (2.5) for other values oflﬁz(q,n)
now is an immediate consequence of (3.5).

We note, that for positive integers t, on account of the first part
of lemma 1 and the relations (2.4) and (2.5), we have the following

formula

t 0,t-1
(3.6) o(q¥) = g0 K)o gy,

If g=2, then again (3.2) is valid; it has the form

A= h+1 2.2h, 2

ugn(«)+ buzn—1 =D U4 + ebun_q 2 LI+ e 2 .

Hence we have for c(e)ln

_ h+1 2 _2h _

(3.4a) Uy, = ebu, _, 2 + e“a? (h = A(E,uc(e)).

Since 2h > h+1 only if h > 2, the deduction of (3.5) remains valid
only if h > 2. Thus in the case g=2, A(2,uc(2))§a 2 the formula (2.5)
can be proved wih k = A(E,uc(g)) by the same argument as before.

Finally suppose g=2, A(2,uc(2)) = 1. Then put

k = k(2) = A(2,u2c(2)) - 1.

2¢(2) hence k > 1. If 20(2)ln and more-
over bc(2) n, i.e. 72(2,n) = 1, then by the same argument as before we
may conclude A(2,un) = A(2,u20(2 ) = k+1. From the last relation and

(3.5) we infer the truth of (E,Bg in the case/7 (2,n) > 1. If 42(2,n) = 0,
then A(E,un) = A(E,uc(g)) = 1.

At any rate by (3.4a) we have 4}u

a°+b 1t follows

) = ne¢, then

il

Proof of lemma 3. If 26x<:/3, then from Uy = a, u3
that (2.7) holds for n = 2,3. If Alq,uy) = (n-1)e, A(q,u
) = (n+t1) ¢ on account of

n+1
we have A(q,un+2

u = au + bu, A(g,au = (n+1)X ,

n+2 n-+1 n+1)
A(gsbuy) = B+ (n=1)x > (n+1)oc,

Hence, by induction on n, we see that (2.7) is true for n = 1,2,...
Now suppose 2 X ==/3, Using the same argument as above we see, by
induction on n,

(3.7) Ala,uy) > (n-1) X = E%Qyﬁ (n=1,2,...);

however it can not be decided by that argument whether in (3.7) the
equality sign holds. We put
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*_ a %_ b *__ *__ un _
a --&-, b = —, uo-O, un—m (I’l——",g,...).
q q20< _ a
Then a*, *,11* are integers satisfying
X >k KoK * X
q4% a” ’ q‘* " u =0, uy =N Upup =80, TP,

Hence on the sequence {u:} lemma 2 can be applied. So there exist two
* c*(q) and k¥ = k*(q), such that

x Ca K
A(qﬂun) =0 if ¢ % n

positive integers c

il

o a(a, ) ar ¢| n,

*
A(a,u’)
3n c

with the exception that A(q,u ) is always equal to 1, in the case q = 2,
A2, u*o*(E)) =1, if n has a value with c*‘n, 25** n. From these facts
follow (2.8), (2.9), (2.10) if we take

qu(o) 1f (q) or -3+ 1
}”q ) = -4 K¥(q) + 1 (x = 1,2,..4) .

ﬁ5+

-1 +
qu(x) x-1 ﬁﬂq(’l
It should be noted that %/5 is integral, in view of the assumption 2CK§/3.
Finally we treat the case 2CXZ>/B. First we prove, by induction on n,

the following formulae
(3.8) Aa,uy) = —n—;—iﬂ if n is odd 1

(3.9) A(q,un)?;o(+£%2-ﬁ if n is even ,S

If n=10r 2, (3.8) and (3.9) respectively are trivially true. If
m is a positive integer and (3.8), (3.9) hold for n = 2m-1 and for n=2m

il

il

(n = 1y23o00)-

respectively, we deduce
A(q,u2m+1) = A(q,augm + bu2m~1)

= A(q, buzm-ﬂ) = @/3,
since we have

Ald,au, ) =X + A(q,u, ) 2 2X + (m—ﬂ)/3 > mﬁ= A(q,buy )
-and
Alasugp o) = Aldsaug, p + Puy ) 2 X+ m/a

in view of

A(q,au2m+q) = £ + m/39

A(q,bugm) = /9 + A(q,ugm)ga X+ m/ﬁ.
So (3.8) and (3.9) are proved. v
In order to determine exactly the value of A(q,un) if n is even; we
now deduce a recurrence relation for the numbers u (m = 0,1,2,...),

2m
analoguous to the relations (1.7) for the numbers u, - We have
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+ bu

Yomelh = @Uopis 2m+2
Yops3 T @opio DU 14
Uopap = 8Uopyq T PUpys
so elimination of Yo 1 and u2m+3 ylelds
Bopnpq = Yppip 7 Plpy
Upmal = PUppio + a(8Ugy o + BUsy )
2 2
= (a“+2D) Uppgn = P7Uo0
3 l !
In view of aiugs aju, We have aqum for all m.
We put
2 2 } u
* _ a“™+2b X b x # 2m
(3010) a = ——, b = - =y, U =0, u_ = - (m = 1,2,
qﬂ 2 q2p o) > m aqim-ljz
By the last remark and (3.9) the numbers a*, b*; u, are integers.
Furthermore we have ug = 0, uj‘= 1,
2 2
NPT R s +20)upyip P Uoy
a u u = -
+ ~ mJ 2 "',]
an T P e et
2 2
_ (2 +2b)u2m+2"b Yom _ Yom+l .
aq(m+1»6 aq(m+1»9 m+2

From (3.10) follows q«% b*, So lemma 2 can be applied on the sequence

B3
{ug}, i.e. there exist positive integers X = c*(q) and k¥ = & (q) such

that *

A(q,um) =0 1if c%% m,
* . * ;
A(q,ug) =k + A(q, l%) if ¢ %m;t
c

in the case q = 2, 2cx:>/3 , A(E;u*% ) = 1 however we have A(q,u*) = 1
*) * c*(2) m

if ¢ | M 2¢ *’ m.
A further property of the sequence % u:i} is the fact, that the num-

X *

bers c¢”, k~ can be determined exactly (except for the number k* in the

case q = 2). By repeated application of (1.8) we find in the case q > 2

Vo @+ Vo g = w2 = (aw+ )
_ Qy 0, na-n _ - o qy.n a-n | .4
= %ié (n)a w b = %Eﬁ (n)a (unuJ+bun_1)b + b3,

- a.
Upg = %i; (g)aan nun = Z;? X, say.
By (3.8) and (3.9) we have

Ala,X,) = 8(q,qa0d "y = 1 4o+ (q—q)/z, A(q,Xq) = q X + 9%1/3
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A(qun) = 1+n£x+(q—n)/94—f%§l/3-— 1+n xX+(q-1- ——*)/3 if n is odd and

2L n £ a1
, . n-=2
A(g,X,) 2 1+ +(q- n)ﬁ O+ 5=
=1 +(n+1)o<+(q-4~'§y8 if n is even and 2< n £ g-1.

Hence in view of & > %/9 we find
Ala,X,) > A(q,Xq) forn=2,...,d,

oq) = Ala,X,) = 1+ X+(a- ’l)/i

hence A(q,u ) = 1. Since q is a prime, from this relation and lemma 2

follows qzt u for 1< m < gd-1. This shows that we have X = a, k)k= 1

50 A(q,u

in the case g > 2. For arbitrary m we now have

(3.12) a(a,ur) = A(q,m).
2

In the case q = 2 however, we have ug = a* = E_%@E’ which only implies
X ¢ a
A(E,ug).> 1. Hence we only may conclude o*(2) = 2., For even m we get
*
(3.12a) a(2,u) = A(2, B) + x¥(2).

Taking d(q)

2, 5& (0) =X - /3 50 (x) = x+§Da(O) if q > 2,
2, jﬂg =X "ﬂs %2 ) =O("ﬁ+k*(2)3
502(}() = X"/H'jﬂg(/]) (X = 1:2:'°'->3

the relations (2.8), (2.9), (2.10) follow from (3.8), (3.10), (3.12),
(3.12a). This completes the proof of the lemma.

Proof of lemma 4. Let the left hand member of (2.17) be denoted by
ﬁq and let g be one of the prime factors P dpseees0y of g. Let X and
/5 be given by (2.6). Inthe case 2 gﬂ let d and ‘(pq(x) be determined
by lemma 3. In order to evaluate A(q,M we distinguish the following

a(2)

il

)
/\
five cases according to the values of KX , /43, n

T 2 X <
II 2 2p and d-{ n

fn & . .
X = o L =
IIT 2 /9 5 d’pi if and only if 1 ’|,2,.,..,s,l where S,| is an

integer with 1¢ 5, Ls; q# DysPpseeesD

t‘
. — . n . N
Iv 2CX§2/9 5 Q4 = pq, diﬁz if and only if i = 1,2,...,81 where s,1
is an integer with 2 é;sq £ s

Vo 223 5 q = D a|n;

% = qt where € is a non negative integer.

It is obvious that in each case, after having arranged the prime facto:
of n in (2.12) 1in a suitable way, (exactly) one of the cases I-V occurs.
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In the sequel 11,12,...,ik are always supposed to form a set of unequal
positive integers with increasing order.
Case I. By (2.7) and (2.13) we have A(q,vn) = A(q,un) = (n-1)X ., Using

also (2.14) we further have for each admissable set (iq,ig,,..,lk)

. n B s . _ n Ay
A(q,V(l,I,igg..-slk)) - A(Q3u(113129'!°31k)) (p, p. o o o pn 1)

In view of the form of M1 this yields

A(a,M,) = A(a,uy) -2 Ala,u(i,)) cD al@u(igiy) - ...
2

iq 11,1
cee + (=1 o 5 o AMau(inisseeesy))) £t (-1)°A(a,u(1,2,.0,8))
l,l,lg, oe,lk
S
1 1 S 1
= nX [1— 5 e +§ - .+ (=1) W
{1 Py ; - p Py 9192 oo Pg

4
_a_[k -(i +(S)-...+(—ﬂs ;

hence in view of s > 1

- 2
Alg,M,) = no 771=1‘ (1 - pi)‘,

Case II. By (2.8), (2.13) we have A(aq,v,) = 'n';/j’

A, V(110 0es1y)) = %ﬁc 5 it = - %/"" This yields
_li i o 9 o i

1 T2 k
, s )
MaMg) = dnp TT (1 - 50
1=1 i
Case III. We have din. Applying (2.8) and (2.9) we obtain
n
A(a,v,) = 3fn + QO (A(a,)
. {1 n
A(q,v(iq,ig,,..,lk)) = 2/30 5T +:y9q q,d )) if i, éés
1 72
1 n _ 1 o N )
2/% pipi . 3ﬂ if 1, > 8,4,
k
since in view of the assumptions we have d p 5 o 5
i iy
n _ Ny .o n P
A(q’dpi 5. T ) = A(q, d) if H&fé 54 and d,f A if i, > 54
1 72 1 72 k
Putting -%/9 O’]ﬂq q,d) + 58 = bq, we find

S . ) n Vii
Ala,M,) = pn+b+,l~i;(§ﬁb—i—+bo)—iﬁ—1b,]+
17 1 17




- 11 -

Lt 11 te Lyrip&sy
81 n
o (=1) yA— (%ﬁp 5 5— + )
i 3 L "31 ) i
17772 S 8,
+ (-’1)81 b, + + (- (3 +o) 2
1 : ’ Qﬁ PPy cee Dy 0
)’ 1 § 1 8 1
1
= 2 n,[/l-'é_. "'"'"'""+ % - o e e + (—,‘)
D, —— 5. D D0y oew D
/6 1, 1, 1,35 14 12 17 e S
’ S
1
+bo,[q-(§) +(3) - ..+ (-1)5’] +b40[4 - +<g> oo+ (1) ]

Since the coefficients of b, end b,1 vanish in view of s 21, s, = 1, we
find s
/‘
Ala,My) =30 TT (1 - =5
o /:5 i=1 Py
Case IV, 1In view of (2.8), (2.9) and the assumptions of this case we get
A( st ) = 2/3n + 99q Qsd
A(q,v(iq,iz,o..,ik)) = /6n+6ph( q,d )) if > 1
—ﬁn+§ﬂq( q,dq if i, =1, 1
—2*/31’1-5/5 if ik> S,],
Hence, putting —%/@ = bO’qu(A(q’E%—)) + %/9 = b,

s&q(A(q,%)) \foq q,a—~)) = by, we find (in the finite sums writing down

IN N

only the first terms)

L S L n .
A(a M) = df8n + b ¥ by + by - T (BB + k) - 2 Z; by

11=1 11 11 11‘2
\ 1 n E E:::*
+§—“'f(2/391p1 +bo)+11<s b1+2<1 i1, 8 beﬁ.
1772 1t 1772 S ToTeT
=—é—ﬁn["-. '51—*}:—-— 5—%‘— ]*bo[q‘(i“@" J
11 11 11,12 ‘11 12

’ 3] S -1 s_ -1
+b1.[4_(j) (D - ] +102.[1_(S“1 )+ (L) - ]

Thus again we find

()]

A(qﬁMq) Pn il - 5_)5

2) If 54 is equal to s, then the terms with s, are the last terms of this
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since in the case considered we even have 84 - 12 1.
Case V. Now we have in view of-% e qt, assuming t > 1
n
Ala,vy) = 3pn + P (8(a,z)) = 28n + P (t)
Ala,v(Lsips.eesiy)) = —;—ﬁn tP(E-1) AL k=1, 1, =
AR IE if 1> 1,

hence, putting -3 /2 = b., t-1) + $8=b,, we obtain
0 a 1

S

=1 - -1) - ip 1 -
) = /6n.+ by + b, +.§0q(t) ~99q(t 1) g ~,](2 5 + Dy) b, +
1 1

2::; /B 5y p +by) - ..t (_1)k ) ;Z::; 1 (%/Bpiqpig?'°p +0y) +e

To1p

dee (-1 (é/qupzn"‘ 5ot bo)

- 1 - 2 - _1}8 1
—an°[12; 1+§f PP, e p’lp2"‘ps}
+ bo,\;1~(i) + (5 - (--1)3] +bmby (P (8) - Po(t-1).

Therefore

S
- %/5“27; 9= __) +§0q y (t-1), if t > 1.

If t = 0, the deduction remains valid, if only we replace yoq(t—ﬂ) by

-%/3. Hence
_ian T _ A + 14 1
Maty) = 2pn T (1 - 50 + (P5(0) + 2f af &

Combining the results we see

0.

1l

A(Q,M,) = n.min (<, 34) 787”(’1-—:-]- +J
9/]"‘ ° SZﬁ .j_zf] i

where c? is unequal to zero if and only if g is one of the primes
pq,p2,...,p and moreover 2CK3>/3 = qt with a non negative integer t.
In this exceptional case, as we see from the proof of lemma 3, (y is
equal to q(t) - §ﬂq(t—1) =1 1if t> 2 in virtue of (2.10); if t = 1,
then § = (1) - ( (0) = 1 or W (q); if t = 0, then & =P (0) + 4 =
= k*(q) or 1 in the case 2K = /3 and Cf==99 (0) + 2/5 = X ——/3 in the
case 2cx:>/6 (in this case we have d = 2, hence q = 2). At any rate,
since for given a and b the numberSCX.,/é , d, k (q) only depend on q,

we conclude that only for a finite number of values of n the number Cf has
a value # 0,1. Hence 5 is bounded, say by AA . Thus, noting (2.15),

each j = 1,2,...,0 follows
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Alg.,M,) € n 7§f(1-—l)+A
3’“‘//31:1 Py )

This proves (2.17) with K = (qqqz...qg)

Proof of lemma 5.3 Without loss of generality we may suppose
XgsKps oo s Xy to be positive. Let g be a prime, Put A(q,x ) = TTi and
arrange the numbers x; such that we have "C,] < T2 KL . s’:'f . Then the
number of factors q contained in the different products, which occur in
the right hand member of (2.18) successively are equal to

T+ To+ e +T,

(T, (AT, et (DT, T

w-2 w-1°
(Wéq)fq + (Wée)TQ + e + (g)’[w_B +Twﬂ-2’

. . ° . ° . ° . ° . » . ° ° ° ° . ° . . °

gsince there are Yf factors q contained in the number {Xi s Xy ,...,xilﬂ“”
/| 1 2

. . . . W--2

since there are (k 1) admissable sets (11’12’°"’1k) with 1,=1, (k~1)

admissable sets (11’12""’ik) with i, = 2, etc. (k = 1,2,...,W).

.1
Hence the total number of factors q, contained in the right hand
member of (2.18) is equal to

{4 D B N B G D M G N G Dl } T+
I e N G B O R G IR G L e P

(M -2+NT, L+ (1NT, 4+ T

W
= YTW = A(q,{_xq,x2,o..,xw}).

This being true for each prime g the lemma is proved.

4., Proof of the theorem.

Let {un} be the sequence defined by (1.1). We consider a fixed inter~-
n > 1. Let the factorization of n and g = (a,b) be given by (2.11) and

(2.’12)° Then, on account of n > 1, by lemma 1 the primes qq,qz,...,qd are
also contained in Uy, We put

4)
t t t t t
_ g ] 2 o T+ a+T
(%.1) tun’ =9 9 e Qg Gpyq cer Ggyr o

. . - = - - - Ln . o - -

3) This lemma already was proved by J. G VAN DER CORPUT, Nieuw Archief voor
Wiskunde (2), 12 (1912).

4) The integers U and also the integers Gﬁ below can be negative for some
indices m. So in (4.1) it is necessary to take the absolute value.
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where g are primes, different from each other and different

ac+1°° " Yo+

from qq,qg,,,.,qo.and where tq,tg,..,,qj+1 are positive integers (in
n) for j = 1,2,...,0+T).

Furthermore we put, v_ being given by (2.13),

our notation we have tj = A(qj,u

N um ( )
—ﬁ = —— m=1 2,--.
m Vo ’
(4.2) ‘ u(iq,ie,...,ik) =u, ﬁ(iq,ig,...,ik) = ﬁh with
= n < i <
"B, ... by (e iy <l <.l <s),
I~ Kk

hence, V(iﬂ’ie""’ik) being given by (2.14),
(4.3) u(iq,ig,o..,ik) = v(iq,ig,...,ik).ﬁ(iq,iz,...,ik).

Our method of proof consists in considering all those prime factors
qj of Uy which also divide one of the numbers ug,u3,..,,uan; we

suppose the factors of u, in (4.1) to be arranged such that the prime
factors with that property are given by

(“’L” q./IJQES"."qO" q0'+/]’°“’q0'+7: (Oéfqéf).

/]
If we can show that for each n, with a finite number of exceptions,
the corresponding number

t t
(h.5) M- g t,l . t2 ' 1% . 2T+1 G#EH v tU+1 U+T%
° . /] 2 cs.0 }O, Cr+,] ...,QG+T1 - .ne g+1 R ) qc,_*_fc/l

is smaller than lun s then the theorem is proved.
If a; is a prime with O +1 £ jJ £ T+ T
both a and b, hence on account of qj u

49 then it does not divide
a and lemma 1 we have qj+ b.
Again by lemma 1, this implies that the values of m with qj u, are given

by the multiples of a certain positive integer, c(qj). Since q. is one
n

3
By

of the numbers (4.4), c(qj) is a proper divisor of n, hence c(qj)
i.e. q,%u(i) for at least one of the numbers i = 1,2,...,8. S0, by (2 13)

and (4.2), the primes QT+1""’%3+11 all are contained in
{5(1), W(2),.., (o)}
We now prove
(4"6) A(stun) - A(qj,{ﬁ(’]),a(g),,.‘Sa(S)}) =
' 0 or 1 always (J =C7+1,...;T+1%)
O 1f gy # DysPpsevesPyg

0 be an integer with

n - ,
5;—, Then, by lemma 2, A(qj,u(lo)) = A(qj,u(io)) is
0

Consider a prime ay with 0 +1 £ j §§O'+T;. Let 1

S~

1€ 1, €5, c(qj)
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equal to A(qj,un) = A(qj,un) if a # pio and equal to A(qj,un)—ﬂ if
q. = p. . Hence we find that

J 19
Aay, {W(1),0(2),..,0(s))) = max Aay, (1))
J 1=1,2 s Y
- 9E5 0 a6y

is equal to A(qj,un) if a; differs from PysPpseeesPy and is equal to
A(qj,un) or A(qg,un) - 1 if a is one of the primes 0, P55 .0.sP -
This proves (4.0).

From (4.6) we immediately conclude, M being given by (4.5),

t t to _ _ _
M< a, 1 ap C g« PyPp <ee Py - {u(ﬂ),u(E),,,.,u(s.} 5)0
(4.7) < n v {B(1),5(2),...,8(s)] -

Next,'in order to apply lemma 5, we determine the greatest common
divisor (E(iq), ﬁ(i2),°..;ﬁ(ik)), where 1,,1,,...,1, are integers with
1L i’l < 12< ceo €1 &s. If g 1s a prime and this a positive integer
such that qt|(ﬁ(iq),ﬁ(12),...,ﬁ(ik)), then q is one of the primes

. t . T . t .
qg+1,...,qq+Ta, i.e. q % b. From q 1 b, q 'u(lq), a ‘u(lz),...,q !u(lk)

and lemma 1 it follows that c(q~) divides —3~3 52— Seees 52— , hence
i i i
divides also 55 n = , i.e. qtlu(iq,i;,...?ik), which in view of
i,I 15 1

q + b implies qt]ﬁ(iq,iz,u,.,ik), If on the other hand we have
o} ,ﬁ(iq,ig,,..,ik), then we have also g 14 b; furthermore qtju(iq,iz,g.uiQ,
yields qt'u(iq), qt*u(ig),,.,,qt,u(ik}, hence qt‘ﬁ(iq), qt{ﬁ(ie),...
,.,qt‘ﬁ(ik) in view of q,f b. By these considerations we learn
(B(1,),T(15)5 -0 B(1)) = [R(L1p 1)) )

Applying lemma 5, (4.2) and (4.3) we obtain
[5(1.3(2),...5()) - i
— £ £ -
- t[?:f G| 1. [; , u(iq,igj] 2 .. [?(1,2,...,5)] SI

In virtue of lemma 4 from (4.7) we now get

(4.8) M« Kn(qqdl1 qug quu‘f) 1 |
}[7171— u(iq):}E’la [117;];2 u(iq,ig)]Eg [u(,‘,g’“.,s)]ES‘

5) The least common multiple and the greatest common divisor are always
understood to be positive.
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Put z = |%%l, Then by (1.5) we have
(4.9) 0< z < 1,
For each positive integer m and & = + 1 from (1.1) and (4.9) we
obtain e
[(w-@) | = [w™a™] " = [wlEP(1oem™Es | w]E M - 2",

Hence we get

8 . n n
K DPg DPs: o+ Ds P: P: oD
£ 1 %1 i 1,71 i —1-€
lu(i,l,iz,...,ik): k;!wl 12 Kq.g 172 kylw- ol K,
£ 1 & - &
.. 2 -
un[TT u(iq)} T [ 7T u(qulg)\ [u(ﬁ,E,--a,S) ° |
1 1 <4 i}
1 1< *o A
n(1 -y s 2 A (- — .
i, Py i.<1i. P1 Py PgPye e Py
> }w[ 1 14 1<1y "1, i
L n n
S D, D — s\ 8 :
. 1 1,01 D D5 e | ) () (P
(-2 T 1=z ) TT (1-2 77 3. (12 V2 Sy[w-im[ TR .
l’l j_,]<12

Each number 5 is a positive integer, whereas in virtue of

2 1k

the uniqueness of factorization in the ring of rational integers to d4dif-
n -

c e pi

ferent sets (11’12’°"’ik) belong different numbers 5
1,71, K
Hence in the last relation the product of the terms involving z is mino-

00
rized by T (1 - z"), which in view of (4.9) is a convergent infinite
m="1

pro™ict with a positive value B. This number B obviously does not depend
on n; it can be computed by means of theta series. Returning to (4.8) we
may conclude

t]
i1 Lo v T (1= )
(4 10) M <\Kn (q,l ds ces Qg ) i=1 i
. | Ynl B lw o
By (1.3) we have 'UJCDI= Ibl, so by (1.5) we get ‘(A),>\/lb'. Further
more it follows from (2.15)

1
YRS Y o A(a,sP)  Aay,D) A(q,,P) 3 3
A Gy T oeee gy £ (a, a5 oo 4 )" < |vlZ,
%
So the number () = T{ET qqfq qéyg ces qjg‘ is positive and smaller than

1, whereas 1t does no depend on n.

The exponent of £ in (4.10) can be estimated by means of a result
of E. Landau concerning Euler's -function. For if‘yo(n) is Euler's
99—function, i.e. if (n) denotes the number of integers m with 1< m <1ni
(m,n) = 1, then, by a well known result in the elementary theory of
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S
numbers, we have |/ (1 - é}) = 32%31, and E.Landau proved 6)
i=1 i
(4.11) lim  inf #2%El log log n = e*G,
n—

where C 1s Euler's constant.

e 1

nﬁ(’l— —) n Y (n) log n log log n

) ) ~ log log n -
Hence n @ 1=1 Py O 1log logn (5 n & & log O -1 )
tends to zero for n— , since (& 1is a fixed number between O and 1 and

since the form between brackets has the positive limes inferior e_C°

This proves the existence of a positive integer Ny such that

M <1 ifn> no, which establishes the truth of the theoren.
Ll -

Final remarks.

1. In order to find in a concrete example the exceptional integers n,
which do not possess the property mentioned in the theorem, we can not
use (4.11) as

it stands, since it does not provide the construction of an index Ny
such that M < |u ] if n> N We consider for instance the case a=b=1.
Then {u } is the sequence of Fibonacci, and g=1. Thus no primes qq,...
...,qo,occur; writing n* = pqu...ps and inspecting the relation (4.7)

and the proof of (4.10) we find

S 1
* n,7T (’1 "”P"") *
1 n” /1 i=1 i _n G (n)
_\IEM<B (7;) "'—B' (w)-gp E
0w —
where W= iilCE = 1,618... ,B = (1 - 2™ with z = & illﬁi .
2 m="1 W 2
The formula
- v
]; (1 - zm)3 =1 - 3z + 523 - 726 + 9210 - 1125 + e
m="]

gives very rapidly the value B = 0.473
Hence éL M is certainly smaller than 41, 1f we have

n 10 10 10

log B +—§0(n) log W - Pl0g n*> 0,

0.209 (0 (n) - 100e n*> 0.325.

Using the last relatlon and a table of Fibonaccl's sequence we
easily find that the exceptional values of n, i.e. the values of n such
that u_ does not contain "new" primes, are given by

n=1, 2, 6, 12.
2. Of course it is not necessary for the proof to use the relation (4.11);
it is sufficient to show that we have == ()%)rl-< 1 (K, B, £ not Cepend
ing on n; @ < 1) for almost all values of n and this can be done by ele-
mentary methods.

-t - e - am = e v = - -

6) E.Landau, Uber den Verlauf der zahlentheoretischen Funktlon‘y7(x
Archiv der Mathematik und Physik (3), 5 (1903), 86-91.




