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On_the combination of independent two sample tests of Wilcoxon 1)

(corrected version)

by
Ph.van Elteren

1. Introduction

In statistical practice often the situation is met with, that
one wants to draw conclusions from data, which have not all been
gathered under the same conditions. When these conditions may af-
fect the observed quantities, the data must be divided into groups
that are homogeneous with respect to the conditions and the ef-
fects under consideration have To be tested wifthin each group.
The groups seperately often are too small to draw a conclusion.
Then 1t is tried to draw an over-all-conclusion, applying a com=-
bination technique on the results of the individual tests. A
well known technique is that of R.A. FISHER (1932) based on the
probability integral transformation., The underlying idea of
Fisher's technique 1s to use the logarithm of the product of the
tailerrors (or probabilities of exceedance) of the individual
tests as a test statistic. This statistic multiplied by -2 has
a >qudistribution with 2k degrees of freedom, k¥ being the number
of the tests, provided the hypothesis tested is true for all com-

" bined tests. This simple technique can be applied far a large
number of tests but has the following disadvantages:
1. It is only exact, 1f the statistics of the combined tests have
continuous distributions (cf. W.A. WALLIS (41942)). |
2. Attemps to change the woights of the individual tests make the
techniques much more complicated.

For these reasoﬁ&E the statistical department of the Mathema-
tical Centre often used annther easy combination method. It is
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based on a linear combination of the statistics of the individu-
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al tests. The obtained over-all statistic 1s in most cases appro-
ximately normally distributed under the hypothesis tested, as
either the individual statistics have approximately normal distri-
butions or the number of the combined tests i1s so large, that the
Central Limit Theorem applies. The method can be used for many
tests with symmetrically distributed statistics, and has a one-
gsided and a two-sided version. By an adequate choice of the com-
bination coefficients the method can obtain special consistency

or effeciency properties.

In the present paper the qualities of this combination method
will be illustrated on Wilcoxon's two sample test. Wilcoxon him-
self has recommended the use of the sum of the statistics 1f a
conclusion has to be drawn on k pairs of samples (cf. F., WILCOXON
(1946)). Two linear combinations, in certain special cases equi-
valent with the sum, will be treated here, One of them yields a
test, with a region of consistency that is independent of the pro-
portion of the sample sizes and the other has in an important spe-

cial case the largest efficiency.

Notation and definitions

Wilcoxon's two sample test can be applied on samples of two
random variables x and y (cf. F. WILCOXON (1945), H.B. MANN and
D.R. WHITNEY (1947)). In the present paper k pairs of random vari-

ables X,, ¥, (i=1,2,...,k) are considered with distribution func-

Xy
tions dgnoted by Fi(x) and Gi(x) respectively., Samples of indepen-
dent observations of these variables are assumed to be available.
The sample sizes will be denoted by m, (for ﬁi) and n, (for Xi)‘

The hypothesis H_ to be tested states that Fi(x) = Gi(x) for
1=1,2, .0,k

Let x. th
.«-»_1 3

ob =

}a,@}ni) be the r
f Iy respectively. Let

T L¢h 21,8

(r=1,2,...,m ) and y, . (8=1,2
gservation of ﬁi and the s observatl 0

on
sgn(z) be defined by
-1 1if z2<«0
def .
(2.1) sgn(z) =={ 0 if =z =0
+1 if  Z 50

. s T . . .
then Wilcoxon's statistic for the 1 h pair of samples is a linear

function of
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m, 1,
\ def * -
(2.2) W, == éga éz% Sgn(%ﬁr*“ yis)

(cf. D. VAN DANTZIG and J. HEMELRIJK (1953)).
As mentioned in section 1, the statistics considered in this paper
are of the type:

2
(2.3) W @.:@:i Z CLW. ,

The numbers c, are called the "weights" . They have to be real and
can depend on the sample sizes.

Only the right-sided test will be considered here, where hypo=
thesis HD is rejected 1if the observed value of W i1s equal to W,

or larger. W is defined as the smallest value that can be at~-

of,
tained by W for whichs

(2.4) P[g;», W, | Hclgoé )

where o« 18 the level of significance,

If the distribution of W under hypothesis HO is symmetric with
respect to 0, which is true if the distributions Fi(x) and Gi(x)
(i=1,2,...,k) are continuous, then the corresponding left sided
test will have a critical region: Wg W, and the two-sided test
a critical region |W| > W, s, » both at the level of significance
ol ., The properties of these tests can easily be derived from the
properties of the right sided test +treated below.

In this paper each test based on a statistic of the type (2.3),
with critical region defined by W > W_, will be called a W-test.

General properties of the distribution of W

In this and the next section the following assumptions are as-
sumed to be valid,
A 3.1 The random variables Kas BosevssXy 5 Yyseoes ¥, are indepen-
dent.,
A 3,2 The distribution functions Fi(x) and Gi(x) are continuous
(i=1,2, ...,k).

Assumption A4 3.2 is not necessary for all results to be treated,
but it is introduced for convenience in order to avoid the compli-

cations due to ties.
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Well known properties of Wilcoxon's statistic in the case of
one pair of samples yield immediately the following results:

(3.1) wo L |H) =0,
2) v 2 def e} =2 - 2 +n, +
(3. o == va {m) O} =3 > m Ny 1)
i:

(cf. H.B. MANN and D,R. WHITNEY (1947)) and under alternative
hypotheses:

(3.3) 2L ¥ - %E c.m.n.b,
‘ p==col= iiitd
1=
where
+60
def
(3.) oy Eropfxsy ] 1= / o, (x) aF (x) -1 .
]

For the variance & of W a more complicated expression in the dis-
tribution functions Fi(x) and Gi(x) is found (cf. D, VAN DANTZIG
(1951)) . ,

If the sample sizes m; and n, (i=1,2,...,%k) are large, the dis-
tribution of W will be approximately normal, This can be concluded
from a limit theorem by E.L. LEHMANN (1951) for the case of large
sample slzes and from the Central Limit Theorem for the case of
large k. These theorems are valid under very general conditions,
not only under hypothesis HO, but also under alternative hypo-~
theses if the }b | are smaller than 1.

It follows that the critical value W_, , defined in section 2,
is approximately equal to

ral

T . /I ‘ I 1
(3.5) W, = g-ud j c,mn, (miTni+1) ,

where u, is gilven by

(s} L 2
(3.6) ;ﬁ%:’ J[ e 2 ax =2,
‘ 2T
u_

The power of the W-test with respect to a given alternative (given
set of distribution functiors F, (x) (nd»Gi(x) will be “dpproximately
equal to




(3.7) B (Fs0y) = 1-plu, =) &)

(=4

where ((x) denotes the distribution function of a N(0,7)-variable.

Conslstency; designfree W-test

A test is consistent against an alternative hypothesis H and
with respect to a parameter N if the power of the test against
hypothesis H tends to 1 for 1 —roo. In this section the classes
of alternatives, against which the W-test is consistent, are in-
vestigated. The numbers k, ms and n; are supposed to be non-de-
creasing functions of a natural number N that ftends to infinity.
The dependence on N is denoted, if necessary, by writing k(N),
m, (M) , n, (W), (W) ete.

The following special cases will be considered:

Case I: k(N)=k for each N, and m,(N) and n, (N) tend to infinity

for Nesoo but m, (N)/N and n, ( N) /N remain bounded and larger than

a positive wumber

Case II: k(N) tends to infinity for N—sco and m, (N) and ni(N) re-
main bounded. For convenience it is assumed that k(N)=N and that

mi(N) and n (N) are constants (denoted by m; and ni) for ig N,

An argument similar to that given by D. VAN DANTZIG (1951)
shows that the power of the W-test tends to 1 if p(N NY/ & ( 1)

—> o0, This yields the following theorem:

Theorem 4,

The W-test is consistent with respect to N against all alter-
native hypotheses for which

3ok A

1

¢ -"2‘ o

N 2K 2 ciE(N} pa ci(N)mq(N)ni(N)bi~m%s+60 if N—>oco
i=1 ) i=1 -

in case I and

J

ke
2

b) N
[ ( e - s L @ _
gzz' (V) 5 > e (Mmyniby s foo if N -—soco

=1 i=1

in case II.

In both cases the test is for sgufficiently small o not consis-
tent against other alternatives.
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According to theorem 4.1 the consistency conditions depend on
the sample sizes. Glven the b, and the weights Ci<N) the test can
be made consistent by an appropriate choice of the sample sizes.
This can be avoided by a special choice of the weights:

4,1 (M) = < ,
(1) ¢, (N) o) me ()

where ¢ is an arbitrary constant not equal to 0. If this constant
is positive the test will be consistent against all alternafives
for whichs

&
1
N+§ jﬁ? bi*wco for N = 80 in case I
L=
and 1 N
N2 Zil D.~>80 for N —>oco in case II
i
1=

and, for sufficiently small o¢ , against no other alternatives,
As the consistency conditions of the W-test based on (4.1) do
not depend on the sample design (i.e. on the numbers my and ni),
it will be called the "designfree W-test". The use of designfree
tests has been recommended by C. VAN EEDEN and J, HEMELRIJK (1955).
The statistic of the designfree W-test is equal to the sum of

the Individual statistics Wy if M =My=. o=, and N=hs=. . =1 .

In practice the set of pairs of distribution functions Fi(x)
and Gi(x) (i=1,2,...,k) often can be considered as a random sample
from a population of such pairs. Alternative hypotheses with this
property will be called "randomized alternatives". If a randomized
alternative is true the b, are observations of a random variable b,
It can be shown that the W-test with positive weights is in case II
consistent against all randomized alternatives for which &b is po-

sitive. In case I the situation is more complicated.

Locally bhest W-test

In this section not only the numbers of observations but also
the distribution functions Fi{x) and Gi(x) and thus the guantities
bi are supposed to depend on N. This will be denoted by writing
F, (x3N), G, (x3N) and bi(N)g

Further the following assumption 1is made:




A 5,1 For sufficiently large N
def
(5.4) Ai(ng) e \fﬁw{Gi(x;N) - Fi(x;N)}

is bounded for N —> oo,
Then it can be proved, that <TO(N)/6*(N) —» 1 and R(N)/0(N)
is bounded for N —» o0 , Thus the power of the W-test can be

approximated by

(5.2) 1§ (u - 200y

o5 ()

The quantity jx(N)/(TO(N) is gilven by

K (M) )
‘5 ey (Mm (W)n, (M)b, (W)
(5.3) p() 15
(M) k {00
o \//%'12% 03" (W) my (W) ny (W) (my ()40, (1) +7)

It is easily seen that the right hand member of (5.3) and thus
asymptotically for N —» ¢o the power of the W-test, attains its
largest value 1if

ch, (N)
L (1=1,2, ..., k(N))

€534) Ci<N) =
mi(N)+ni(N)+ﬂ

provided k(N), mi(N), mi(N) and bi(N) are given positive functions
of N (¢ is an arbitrary positive constant).
Consequently The W~test with

(5.5) e, (W) = -
mi(N)+ni(N)+?

has for N —~3ac asymptotically the largest power against all alter-
natives for which all bi(N) are positive and bi(N)/bj(N) —~» 1 for
N —»co and each pair (i,J) of natural numbers (1< k(N), Jjek(N)).

Because of its conditional optimality the W-test based on (5.5)
will be called the "locally best W-test',

It can be shown that in case II the locally best W-test has
asymptotically for N -—»co the largest power against all "randomized"
alternatives" (cf, section 4) with positive & Db(N) ?ulfilling the
condition that & a(N) and var{g(N)% are of order N 2 for N —sco,




if a( is the random variavle, of which the numbers:

a, deﬁjﬁju (x3N) -~ Fi(x;N)f d(mix{Fi(x;N) , Gi(x;Nji)

(izﬂ,ej.ang)
are assumed to be observations,

"Designfree" versus "locally hest' i-tes

The designfree and the locally bust W-test are equivalent 1

o

and only if
(6.1) K,

m. n.
il 1
N L = 7

R ——— “

m, 4N, -+
1 L 1

et

o

e

independent of 1 for 1=1,2,...,k. This condition is fulfilled if

for i=1,2,...,k: mi:m and n,=n or m, =n and n, =m independent of 1.

4
There are more pospibilifties e.o., for:
K=0,8:m=1 r.=8 o =2 n,=2
1 L 1 L
1,5 2 o 2 L ete.

In order to compnre the azympiotic efficiencies of both tests
assumption A 5.1 and the folliowing ass.uptions are made:
For 1=1,2,...,k(N), each real volue of x and N —>» 0 :
A 6.1 j@i(X;N) Si (z:N) “onds to a Jivi%e limit independent of 1.

A 6.2 Incase I : N X (1) has a limit for each 1.
In case IT: let i(a) be the nurber of the values of 1 for
which ¥,=a, *then for cach possible value of a,
1i(2) /1 Sends to a firite limit.
The following nct=2fion s nazed:
Case T : quxgﬁaﬁﬂjkw cre the values esaumed by the limits of

- -

NOR, (),

TZJ denotes kmq multinlied Lty the number of values of 1

for which N~ 'K, (i) — Ay (1=1,2, 00nk 5 §=1,2, 00,V),
Case TIT: X,s%5s.04,X, are the vaiues assumed by the X g,

def .. . _y .

Qj def lim N(Xs)/m (2=1,2, 0, N 3 J=1,2,...,Y) .

Then the asymptotic efficiency € s 88 defined by E.J.G. PITMAN
,.3,__1

(1947) (ef. G.E. NCTIER (4953)), of the designfree W-test relative

to the locally best W-test is given by
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..?;. ¥ ) "W/E ) .});‘ (){ wx )2~ “/I
(6-2) GD;L:{Z"?J% quxl_q} :{q% 2z It
J="1 1=1 j=1 1=1 szl
Thus ep Lfgﬂ which agrees with the optimality of the locally best
3
test.

If the }<j are given and }<4<:K2<:*“%<)<1’
if Qﬁﬂ 71=§ and 'QE:'QB=*@EE‘?v~ﬁxO@ Then:

e = L] + =
D, L 2 box X
¥y

e will be minimum
D,L

=1

Conseqguently €y 1, — O 1f X, —»0oco and }{1 is kept constant. Two
5
examples are given below.

Example 1:

Case I : mq(N}=2N nq(N)mQN

Kq = 7
1 IIT ¢em, = 2 n, = 3
1 1 3
- S\ AT & = ——-:O?’}g
Case I : m,.(N)=3N n (N)=6N; D, L 9 g
2 2 )
< X, =2 j
v IT s m, =4 n, =5 c o 1
“ T JoAm -t

Example 2:

X, = 1 (like in example 1)

Case I : m, (N)=10N n, (N)=10N
o 2 ?}( 3 e o ._5“ = 0356
o = 5 Dy.L 9
o II : my = 10 n, =11 J

i M= o=z -

The tests can also b% compared with respect to the asymptotic
. againsy . i
values of their powgrvgpeolal classes of alternatives fulfilling

A 5,1 and A 6.1. Such a class is e.g. defined by

F, (x3N) = H(xff})

ol

(6.3) £\

Gy (x3) = H(x+gi+§ﬁ”

)

where H(x) i1s a continuous distribution functionjjf# an arbitrary’
L

real number and @ a finite positive constant independent of i,
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Another example 1s the class defined by
-3
1-@N
(6.4) Gy (x35M) = B, (x5m)]

where © has the same properties as mentioned at (6.3).

The first class consists of shift alternatives as considered by
PITMAN, the second of so called distributionfree alternatives of
LEHMANN (1953).

If h(x) is the derivative of H(x),

A 2§£U[h2<x) dx,

(\/3“: . %XJME :

in case 1T
B def
w/ %éi XL‘J g in case II,
: \
vgk jéa ?jxj in case I
¢ def
V3 jiﬁ V3% in case IT,

then the power of each of the tests tends for N —o0 to the values
given below.

Class (6.3) Class (6.4)
(6.5) Design free 1-0(u «~2GAB) 1«¢(ux~%@B)
Locally best | 1-9(u, -26AC) 1-¢(u, ~36C)

Table (6.6) gives numerical results obtained by the substitu-

tions Vit for class (6.3), case I
-3 _%XE, VT " " (6. 3)3 case II
h(x) = (2m) = e © =
2/ V% for class (6.4), case I
2 " H (6.4), case 1T,

)% and ?j according to the examples given above and o = 0,025,
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Example - \ Example 2
(6 6)g Design free 0,516 0,609
( Locally best 0,564 0,851

The following conclusions may be drawn from these results
1. I large differences between the quantities bi are possible the
designfree W-test should be used, asg in that case the locally best
test is not optimal and its consistency conditions strongly depend
on the sample sizes,
2. If it is reasonable to assume that the bi have values close to
0 and 1f the sample design shows large differences between the num-
bers K, (defined by (6.1)) the locally best test may be preferred
because of its larger efficiency.
3. If the numbers Ki are (approximately) equal both tests are
(nearly) eguivalent,

Résumé

Sur la combinaison de tests indépendents pour deux échantillons de

Wilcoxon

Dans cet article l'auteur analyse une classe de, tests, dont les
valeurs typigues sont des combinaisons linéaires féﬂ Ciwi des va-
leurs typiques Wy eooswy, de k tests indépendeants pour deux échan-
tillons de Wilcoxon. Deux combinaisons spéciales sont examinées ¢n
particulier, Les coefficients de ces combinaisons sont définis par:

(1) Cy = T ol ¢ est un nombre réel et m, et n, sont les effec-
* % tifs des échantillons du i-iéme test.
<2) C Fe] mmw?m
i m,+n, +1 °
i

des,
Le test (1) a une région de consistance indépendantéreffectifs. Pour

une classe importante d'alternatives le test (2) est asymptotique-
ment le plus puilssant pour kK — co ou m —>oc0, n, —»ce et mi/ni
posséde une borne supérieure,

Les efficacités des deux méthodes ont été comparées pour des cas

I
speclaux.
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