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Q~~ombination of independent two sample tests of Wilcoxon 1) 

(corrected version) 

by 

Ph.van Elteren 

1. Introduction 

In statistical practice often the situation is met with, that 

one wants to draw conclusions from data, which have not all been 

gathered under the same conditi0ns. When these conditions may af­
fect the observed quantities, the data must be divided into groups 

that are homogeneous with respect to the conditions and the ef­

fects under conB1deration have to be tested within each group. 

The group::; seperate1y often are too small to draw a conclusion. 

Then it is tried to draw an over-all-conclusioh, applying a com­

bination technique on the results of the individual tests. A 

well known technique ls that of R.A. FISHER (1932) based on the 

probability integral transformation, The underlying idea of 

Fisher's technique is to use the logarithm of the product of the 
tailerrors (or probabilities of exceedance) of the individual 

tests as a test statistic. This statistic multiplied by-~ has 
r:, 

a \ ,:.,-dj_stribution v1i th 2k degreea of freedom, k being the number 

of the tests; provided the hypothesis tested is true for all com­

bined tests. This simple technique can be applied f~r a large 

number of tests but has the follow1ng disadvantages: 

1. It is only exact, if the statistics of the combined tests have 

continuous distributions (cf. W.A. WALLIS (1942)). 

2. Attemps to change the w:ights of the individual tests make the 
techniques much more c0mplicated. 

For these reasons, the statistical department of the Mathema­
tical Centre often ~sed anrther easy combination method. It is 

based on & linear combination of the statistics of the individu-

1) Report SF 68 of the Statistical Department of the Mathematical 

Centre, Amsterdam, Head of the Department is Prof. Dr D. van 

Dantz:i.g. e 



al tests, The obtained over-all statistic is in most cases appro­

ximately normally distributed under the hypothesis tested, as 

either the individual statistics have approximately normal distri­

butions or the number of the combined tests is so large, that the 
Central Limit rrheorem applies. The method can be used for many 

tests with symmetrically distributed atatistics, and has a one­

aided and a two-sided version. By an adequate choice of the com­

bination coefficients the method can obtain special consistency 

or effeciency properties. 
In the present paper the qualities of this combination method 

will be illustrated on Wilcoxon 1 s two sample test. Wilcoxon him­

self has recommended the use of the sum of the statistics if a 

conclusion has to be drawn on k pairs of samples (cf. F. WILCOXON 

(1946)). Two linear combinations., in certain special cases equj_­

valent with the sum, will be treated here. One of them yields a 

test, with a region of consistency that is independent of the pro­

portion of the sample sizes and the other has in an important spe­

cial case the largest efficiency. 

2. Notation and definitions 

Wilcoxon 1 s two sample test can be applied on samples of two 

random variables~ and y (cf, F. WILCOXON (1945), H.B. MANN and 
D.R. WHITNEY (1947)). In the present paper k pairs of random vari­

ables x~, y. (i=1,2 5 ••• ,k) are considered with distribution func-
-1. ·-l 

tions denoted by F1(x) and G1(x) respectively. Samples of indepen-

dent observations of these variables are assumed to be available. 

The sample sizes will be denoted by m. (for x.) and n. (for y.). 
l ~ l ~ 

The hypothesis H0 to be tested state~:; that P1(x) S::, G1(x) for 

1=1,2, .• ,k. 
Let x,, _ (r""·1,2, ••• 3 m.) and y_. (s=1,2 ...• ,n.) be the r th ob~-

-1,r l tt -l,S . 1 
servation of x. and the s'' observation of v. respective1,1 • Let -l ~l J 

sgn(z) be defined by 

1
- ✓1 if z < 0 

sgn(z) 9-ef O i.f z =0 
+ ✓• if ') L I Z>1. 

( 2 .1) 

1 ~ t t1 then Wilcoxon's statistic for tne 1 palr of samples is a linear 

function of 
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(2.2) 
m. 
Li 

!':::::1 

ni 
L sgn(x1 - y. ) 
s=1 - r -is 

(cf. D. VAN DANTZIG and J. HEMELRIJK (1953)). 
As mentioned in section 1, the statistics considered in this paper 
are of the type: 

(2.3) 
k 

z. 
i=-1 

C, W. • 
1.-]. 

The numbers ci are called the 11 weights 11 • They have to be real and 
can depend on the sample sizes. 

Only the right-sided test will be considered here, where hypo~ 
t sis H0 is rejected if the observed value of Wis equal tow~ 
or larger. W~ is defined as the smallest value that can be at­
tained by W for which: 

(2.4) 

where -:xis the level of significance. 
If the distribution of Wunder hypothesis H is symmetric with 

0 
respect to 0, which is true if the distributions F1 (x) and a1(x) 
(i=1,2, ••• ,k) are continuous, then the corresponding left sided 
test will have a critical region: W ~ -WC>( and the two-sided test 
a critical region ]wj ~ W~;2 , both at the level of significance 
cl. The properties of these tests can easily be derived from the 
properties of the right sided test treated below. 
In this paper each test based on a statistic of the type (2.3), 
with critical region defined by W ~ W~ will be called a W-test. 

3. General properties of the distribution of W 

In this and the next section the following assumptions are as­
sumed to be valid. 

A 3.1 The random variables ~1, x2 , ••• ,xk, y 13 .•• ,yk are indepen­
de 

A 3.2 The distribution functions F1(x) and a1(x) are continuous 
(1=1,2, •. .,k). 

Assumption A 3*2 is not necessary for all results to be treated, 
but it is introduced for convenience in order to avoid the compli­
cations due to ties. 
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Well known properties of Wilcoxon 1 s statistic in the case of 

one pair of samples yield immediately the following results: 

( 3 .1) lo def \::i ( _, I H ) = G w .L 

- 0 
= 0 , 

(3.2) ~- 2 def 1 ) } 1 v 0 - var1w H0 = 3 
,, 

c . ni.; n 7 ( m; +n 7 +1) 
l - - ~ -

(cf. H.B. MANN and D.R. WHITNEY (1947)) and under alternative 
hypotheses: 

(3.3) 

where 

def 1.,o jJ- -- G W c.m.n.b. 
l l l l 

+60 

c1 ~~-! 2P[~i>l:1]-1 = 2 _/ G1 (x) dF 1 (x) -1, 

2 
For the variance cr of W a more complicated expression in the dis-

tribution functions F.(x) and G.(x) is found (cf. D. VAN DANTZIG 
l J_ 

(1951)), 

If the sample sizes m1 and n1 (1=1,2, •.. ,k) are large, the dis­
tribution of W will be approximately normal, This can be concluded 

from a limit theorem by E.L. LEHMANN 0951) for the case of large 
sample sizes and from thB Central Limit Theorem for the case of 

large k. These theorems are valid under very general conditions 7 

not only under hypother3is H , but also under alternative hypo-o 
theses if the )bJ are smaller than 1, 

It follows that the critical value W~, defined in section 2, 
is approximately equal to 

(3.5) 

where u<><-' 

(3.6) 

A 1 , .: k '1 
W = - u L.. c. m. n. ( m. +n. +-1) , 

<>< J o< ,• _,1 :L 1 l · l l 
.1- l 
l 

is given by 

00 

vi; j 
uoi 

1 2 
-~ --2-X 
C dx =ex_. 

The power of the W--test with respect to a given alternative (given 
set of distribution ct10L3 ,,., 1 ") 1··• 7 , ,, -.,;PD"'"'""l•,.,..,-,,L- 0 ly '-·i' " 1.· ,/s,. /,' .t -L J_ U '(..1 C1 j ..1.. (_...,j\. a Ill(.'.,; C 1 - -
et1ual to 
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( 3. 7) P ( F. G. ) = 1 _J. f(u - JJ..) ~) 
Cl'.. l 1 l '/1, "' ~ u 3 

where ~(x) denotes the distribution function of a N(0,1)-variable. 

4. Consistency; designfree W-test 

A test is consistent against an alternative hypothesis Hand 

with respect to a parnmeter N if the power of the test against 

hypothesi:s H tends to 1 for 1J ~C'XJ, In this section the classes 

of alternatives, against which the W-test is consistent, are in­

vestigated. The numbers k, mi and ni are supposed to be non-de­
creasing functions of a natural number N that tends to infinity. 

The dependence on N is denoted, if necessary, by writing k(N)y 

m1(N), n1(N), p.(N) etc. 

The following special crwes wlll be c ons1dered: 

Case I: ~(N)=k for each ll, and mi(N) and n1 (N) tend to infinity 

for N ➔ ao but mi (N)/N and n, (N)/n :remain bounded and larger than 
- J... 

a positive number, 

Case II: ·K(N) tends to lnfinity for H --'>,Mand m. (N) and nj (N) re-
l -

main boun1:Jed. F'or convenience it is assumed that k(N) ,:::N and that 

ml.(N) and n.(N) are constants (denoted by m. and n.) for i~ N, 
l l l 

An argument similar to that given by D. VAN DANTZIG (1951) 
shows that th.e power of the W-test tendG to 1 lf ; .. c(N)/u (N) 

. 0 

-:,, M. Thi:s yields the following theorem: 

Theorer.i 1+ .1 

The W-test ts C01]:3_istent wi3~h__!~espe~t to N against all alter~ 

native hypotheses for which 

N-1{1~ c. 2 (1sn!.· -•i Jt c:l(N)m1(N)ni(N)bi ··'7+oo if N-Yoc 
i::::-"j l _\ i::c,"j 

in case I and 

N 

in case II. 

In both cases the test is for sufficiently small O(_ not --------~- ···------- consls-

tent against other alternatives. 
___ -<,-_,,,,,. __ ,, •. -;>-.. -•--~-·---
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According to theorem 4.1 the consistency conditions depend on 

the sample sizes. Given the b. and the weights c.(N) the test can 
l l 

be made consistent by an appropriate choice of the sample sizes. 

This can be avoided by a special choice of the weights: 

( 4 .1) 

where c is an arbitrary constant not equal too. If this constant 

is positive the test will be consistent against all alternatives 

for which: 

end 

1 
N½-

k 

L 
i=1 

H 

for N--:,,, co 

N--} L b 1~eo for N ~co 

1=1 

in case I 

in case II 

and, for s,ufficiently small o<.. , against no other alternatives. 

As the consistency conditions of the W-test based on (4.1) do 

not depend on the sample design (:t.e, on the numbers m1 and ni), 

lt will be called the ndesignfree W-testn. 'l'he use of designfree 

tests has been recommended by C. VAN EEDEN and J. HEMELRIJ"K ( 1955). 
The statistic of the designfree W-test is equal to the sum of 

the individual statj_stics w1 if m1=m2= .•• =mk and n 1=n2= •.• =nk. 

In practice the set of cairs of distribution functions F.(x) . 1. 

and o1 (x) (i=1,2, .•. ,k) often can be considered as a random sample 

from a population of such pairs. Alternative hypotheses with this 

property will be called 11 randomized alternatives 11 • If a randomized 

alternative 1s true the b. are observations of a random variable b. 
1 -

It can be shown that the W-test with positive weights is in case II 

consistent against all randomized alternatives for which tb is po­

sitive. In case I the situation is more complicated. 

5. Locally best W-tsst 

In this section not only the numbers of observations but also 

the distribution functions F, (x) and G, (x) and thus the quantities 
l l 

b1 are supposed to depend on N. This will be denoted by writing 

Fi(x;N); G1(xJN) and b1 (N). 
Further the following assumption is made: 
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A 5.1 For sufficiently large N 

( \ def ,r: f } (5. ◄) ~i XJN; =-= VN L G1 (x,N) - F 1 (x;N) 

is bounded for N ~ oo • 

Then it can be proved, that 0' (N)/(J'(N) ~ '1 and u(N)/0- (N) 0 J- 0 

is bounded for N --:,I' 6Q • Thus the power of the W-test can be 

appro.ximated by 

(5.2) 

The quantity y (N)/ 0"'0 (N) is given by 
I{ (N) -
i?;-'1 C\ (N)mi (N)ni (N)bi (N) 

.J:: ( N }_ ~ --_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-__-:_-_-:_-_-_-_-_-:_-__ -_-_-_-_-__-

\/; 
It is easily seen that the right hand member of (5,3) and thus 

!.Symptotically for N -➔ oo the power" of' the W-test, attains 1ts 

largest value if 

cb i ( N) 
c 1 (N) = - ( i=1J 2.,,. ".I 1<:(N)) 

m1 (N)+n:L(N)+1 

provided k(N), m1 (N) 2 n1(N) and b 1(N) are given positive functions 

of N (c is an arbitrary positive constant). 
Consequently the W-test with 

(5.5) c_.(N) == 
L m,(N)+n.(N)+'1 

.L J. 

C 

has for N ~oo asymptct1cally the largest power against all alter­

natives for which all b, (N) rn°e positive and b. (N)/bj(N) ➔ 1 for 
l l . 

N ➔co and each pa:Lr (i,j) of natural numbers (1~ k(NL j~ k(N)). 
Because of its conditional optimality the W-test based on (5.5) 

will be called the "locally best 1:I-test 11 • 

It can be shown that in case II the locally best W-test has 
asymptotically f'or N ➔0o the largest power against all nrandomized 11 

alternatives 1' (cf. section 4\ with positive t b(N) fulfilling the 
' - 1 

condition that ::_ !( N) and var{ b ( N)} are of order N-2 for :N ➔ Ct;) i 
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if ..§_(N) is the random variaole J of which the numbers: 

a 1 ( N) 9-e f'j j G 1 ( x; N) - Fi ( x ; N) j d ( r:i ax l F J x ; N) , G 1 ( x ; N)} ) 
X 

are assumed to be observations. 

The designfree an6 t~2 l~c~~-J~ b~~t W-test are equivalent if 
and only if 

( 6 .1) K. c'i,::: 
l 

= K 

independent of i for i=1 5 2:, ... 5 v=. 'J'hj_:; cor_dj_ tion is f'ulf11led if 

m.~~ a~d n.=n or m.~n and n.=m independent of i. 
l l l l 

There are more pos~ihili es e.ry. for: 

m. ::=1 r 
}_ -J_ 

2 9 etc. 

assumption A 5.1 J. 
u 

~~c e!ficiencies of both tests 

tions are made: 

For 1=0 1,2., ••• ,k(N);, e2ch re21l v::,-:_ue of x a:1d N ~0,0: 

A 6 • 1 .J .6. 1 ( x ; N ) d F i ( x ; E ; s t o a ." :l · ::_ '~ e 1 ~- m 1 t i 1:: p e rd en t of i • 

A 6.2 
•• , ,1 

In c2se I : l'J 1Zi ( in ha::-:: a 1:::.rnijc :'.:'er each i. 

In case II: let :rz( :-,, ) be t1·1,::, n1J.r.-ber of the values of i for 

~ ~.=a, tl~2~ for o~c~ possible value of a, 

(2) ~~~c•3 t0 a fi~ite li~lt. 
The follow:lng nr:':-::+ ~ nn ., ,, ,,_,cc1 '. 

Case I Y,,u:X2, •• O):'" c:.0 E t 1·,::, \/ :i.11S;J c•r-531j_ 1~Sd by the limits of 
I .. ; 

N- 1K. ('-) 
l · 5 

n de,10+-r~ \,--'1 r· 1 1"'1'·"i,--;l·jprl 1-,- ·1·he ·1~:1 1 n•l--;r:,_.r of' •1al1 1 e"' of' i' (,"i c,'vCOC:J ., •d- ... ✓ .L __ •• L.,.,a_. ,✓ ,.Y V __ ,,<,.!>.,., .• \ ..< µ ~" 

u 

Then the asymptotic 

( 19 4 7) ( cf , G • E • 1; C 

to the locally bes~ 

efficj_er:c-r er L' as defined by E.J .G. PI'l'MAK 
• .J J --

'_i") :E ~1 (-: 3 \)-' c:"' the de:~:1.gnfree W-test relati,_•e 



(6.2) =I £ 12.x. 
. 1 J J J= 

9 

)) . 1-1 { ")) 2.. 121 )(1 -1 = 1+½ ~ 
1=1 J=1 

Thus eD,L~1 which agrees with the optimality of the locally best 
test. 

Consequently eD,L-.:,. o if X)J ~oo and X 1 is kept constant. Two 
examples are given below, 

Example 1: 

Case I . m'1(N)=2N n1 (N)~2N 1 • 
),('1 = 1 

II II m1 == 2 n = 3 1 8 
Case I m2(N)=3N n2(N)=6N 1 8 D,L = - = o,89 

9 
x2 = 2 

ti II m'1 = 4 n = 5 if 1 1 12-·t' 12 2 = 2 • 

Exam2le 2: 

x1 == 1 (like in example 1) 

Case I 

If II . . 

The tests 
s of 

A 5.1 and 

(6.3) 

m2 (N)=10N n2 (N)=10N] 1-x2 6 D L = L••- 0.,56 = 5 9 J 

m2 = 10 n2 = 11 

if - .l - 2 • 

can also be compared th respect to the asymptotic 
against 

their powerY-special classes of alternatives fulfilling 
A 6.1. Such a class is e.g. defined by 

f Fi (x;N) = H(x+/i) 

l a 1 ( x ; N ) = H ( x + J 1 +e N-½ ) . , 
\ 

where H(x) is a continuous distribution function, f i an arbitrary" 

real number and ea finite positive constant independent O.f i. 
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Another example is the class defined by 

(6.4•) 

where e has the same properties as mentioned at (6.3). 
The first class consists of sh~ft alternatives as considered by 

PITMAN, the second of so called distributionfree alternatives of 

LEHMANN ( 1953) • 
If h(x) is the derivative of H(x), 

def J 2( \ , A --· h XJ OXp 

def C :.e~-

in case I 

in case II, 

in case I 

in case II, 

then the power of each of the tests tends for N ~oo to the values 

given below. 

Class (6.3) Class (6 .4) 
------w+---------~f----------
Design free 

Locally best "1-') ( Uc,<, -29.4C) 1-:jJ( u« -½ec) 

Table (6.6) gives numerical results obtained by the substitu-
· tions V,r /k for class (6.3), case I 

1 1 2 V7r (6 ,3L case II 
h(x) ( 2-rr) -2 

--'"-X e II I! 
=: e 2 ' = 

2/ ~'k for class (6)+), case I 

2 l! II (6.4), case II, 

Xj and rz j according to the examples g tven above and o( == 0, 025. 



Example 1 Example 2 

Design free 0,516 0 3 609 

best 0 S6l~ , ~ 

The following conclusions may be drawn from these results 

4. If large differences between the quantities bi are possible the 

designfree W-test should be used, as in that case the locally best 

test is not optimal and its consistency conditions strongly depend 

on the sample sizes. 
2. If it is reasonable to assume that the b. have values close to 

l 

O and if the sample design shows large differences between the num-

bers Ki (defined by (6.1)) the locally best test may be preferred 
because of its larger efficiency. 

3. If the numbers K1 are (approximately) equal both tests are 

(nearly) equivalent. 

Resume 

.Sur la combj_naison de tests independents our deux echantillons de 

Wilcoxon 

Dans cet article l 1 auteur analyse une classe dextestsJ dont les 

valeurs typiques sont des combinaisons lineaires .L-.,, c. w1 des va-
l= t l -

leurs typiques w1, ... ,wk de k tests independents pour deux echan-
tillons de Wilcoxen. Deux combinaisons speciales sont examinees d1 

particulier. Les coefficients de ces combinaisons sont definis par: 

( 1) 

(2) 

ou c est un nombre reel et m. et n, sont 
1. l 

tifs des echantillons du 1-i~me test. 
C 

C ~ i m.+n.+1 • 
l l 

Jes effec-

. des..., 
Le test ( 1) a une region de consistance j_ndependante·teffectifs, Pour 

une classe importante d 1 alternatives le test (2) est asymptotique­
ment le plus f.J1.J.j_ssant pour k ~ oo ou m. ~ 0<0, n. -, oo et m. /n. 

l l l l 
'd b I • posse e une orne super1eure. 

,; d. I ./, , d Les ef'ficaci tes es cieux methodes ont ete comparees pour es cas 
I ' speciau.x, 
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