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• Introduction 

A yarn, of nonnegative cross-section, lies along a t - axis with 

< t < 00 • It is composed of .!_ibr~, which are cylinders with their axes 

to the t - axis. 'J:1he head of a fibre is its left endpoint on the 

- axis, the tail its right endpoint. :c:'ibre heads are distributed along the 

axis according to a Poisson - process with parameter "- ( t) where \ ( t) 

Lebesgue - integrable on any finite interval and O < A ( t) i .\ for all t 

d some finite \. We define such a process in the following way: 

the t-axis as composed of intervals; of which the j th interval is 

(open on the left, closed on the right), where j runs through the 

egers, the distribution of the number r. of heads falling in the j th 
-"J 

is given by 

_/,_. 
p(r. = r 1 = e J 

'·-J I 

r 
A • 

- .:.J... 
r! for 

'j def Ji+1 /.. (t) dt. 

r > 0 

The head of the k th fibre (k = 4, 2, ... , r; r. = r > 1) having its 
-J -

· th · th · t 1 1· · t h d th d't· in e J in erva ies in --j ,k , . w ere un er e con i ion 

the t. 1 , ••• , t. are independently distributed random variables 
-J' --J 'r 

the common distribution function K.(t), with 
J ' 

( 0 

y. ( t) def 
F Ltj -1 .S. t} =~ 

-1 .r "- ( u) - "-· J ' ' 

t 
J ,1 

1 

for t < j 

du for . < t < J_ - j + 1 

for j + 1 < t 

e t. k fo1· different inte:l'.'vals on the t - axis are mutually independent. 
-J, 
The length 2:, (2. 0) and cross~ section x., (.~ 0) of a fibre have a 

function H(x,y) = P{.,! i X9 }l i. Y1 • ri:1he vectors 

;_,.;r) beloLging to different fibres are mutually ind0pendent and indepe~dent 
·.,: 

the location of tho fibre on the t - axis. A _realizati_o~ of the yarn is a 

epfunction,whic".lcan l::etaken continuous from the right. The length of the 
th fibre having its head in the j th interval is x. k, its cross - section 

-J ,-

j ,k • 
Object of this paper is -the study of random variables like 

i:l .. 
1'( t , t 0 + h) , which denote the cross - section of the yarn at 

' 9 
,,D';I.U:me of_ yarn in the interval ( t , t + h] respectively (with 

0 0 

h > O). 

t 
0 

t 
0 

and 

and the 

arbitrary 



• Terpstra's approach 

In this section we assume that .:l"(x0 ,oo)"' 1 for some x0 < oo, i.e. 

the fibres have length .S. x 0 with probability 1 • furthermore we take 

71.(t) = A > 0, i.e. we consider a stationary Poisson - process (this restric-

tion need not be made). 
e i1:c(t 0 ) 

In order to derive c e - , vre first compute 

( 2. 1) 

where n( s, s + 1) denotes the number of heads of fibres in the interval 

( s, s + 1] and s < t - x < t < s + 1 . 
0 0 0 

If t is the coordinate of the head of the one fibre falling in 

(s, s + 1] , then it is known that 1 is uniformly distributed in this inter-

val. If the fibre has length _)£ = x, with probability 
X 

l 
the head lies 

in (t - x, t J. 
0 0 

Hence 

(2.2) 

As 

( 2. 3) 

and c(t ) 
- 0 

(:o , oo [ i 't X O -! 
m (.: t ·s 1) = 1 I e Y -+ e (1 _.!.1 ) dH(x.y) 
'j'c 'o' ' : J - 1 ' - er u 

1 ,oo 
= 1 - l I 

J 
'
('

0 x( 1 - ei,;y) 
J 

P 112 ( s, s + 1) = n l -\1 
== e 

dH(x, y) • 

for n = 0, 1, 2, ... 

is the sum of the independent contributions to the cross - section 

of all fibres with heads in (s, s+l], we have (the characteristic function 

of a sum of independent random variables being equal to the product of the 

characteristic functions of the individual terms) 

(2.4) 
def (J 'i,.2_(to) _ 

cp(•,t) - Ce -
C 0 

- 00 n -"A 1 r \ ·11 \ n 
~ {:P (,, t ; s, 1)} e ..L::.:!:..L = 

n=o ~ o n! 

= exp -\1(1 - (1 _.1. ! x(1 - eiry)dH(x,y))) = 
roo Joo 

i d 
loo (00 • 

=exp_\ ! I x(1 - e1 "Y) dH(x,y). 
o} <i 

As was to be expected, f 0 ('Tj t 0 ) does not depend on either s 

We may conjecture, that (2.4) -;ill also hold if H(x, 00) < 1 for 

(Some restriction is needed: we must have [. .! < 00 , 

section 4.) 



We remark that from (?..4) it is evident that g_(t 0 ) has a compound 

pisson- distributions i.e. 

C ( t ) = 
- 0 

where 

"(2.6) 

n 
1; b. 

j=1 --J 

( ,, )n 
"- r .. ~ ----

n! for n=0,1,2, ••• 

and, under the condition .!1 = n ; 

each with distribution function 

the b. 
-··•J are independently distributed; 

(2.7) 

(2.8) 

G(y) def 

Analogously to the derivation of (2.4) one can show that 

def 9 i-c_~( to i to+h) 
cp (-c, t , h) = ~- e = 

V 0 

roo 
= exp - 11. [ h + t, x + I 

yio 

(h 2 
. { ·.- (1 

J iy-. 
X=O 

( h - X) e ii; xy } dH ( X 'y) + 

+ ir·oo loo _2_ ( 1 - ei-chy) - (x - h) ei-thy dH(x,y)] , 
y=b x,,;h iy-c 

always assuming a finite maximum length x for the fibres. 
0 

Roth (2.4) and (2.8) are due to Terpstra. These results are known for 

x_ = 1 with probability 1 (cf. Spencer - Smith and Todd ( 1941), ~fartindale 

(1945), Breny (1952) and ]reny (1953) 1 Olerup (1952)). Related considerations 

as to method of derivation are to be found in Fortet (1951). 

3. Van Dantzig's method 

In this section we assume that .l. :: 1 

In Breny (1957) relation (2.8) (with 

(or x_ = 1 with probability 1 ). 

y_ = 1) is obtained by applying a 
n 

limiting procedure to (in our notation) [. exp i E ,:.n(t.), expressed as 
j=O J- J 

a complicated sum of double integrals. As Van Dantzig pointed out to Breny 

(cf. Breny (1957), page 33) one might proceed in the following manner. Let 

A denote a Lebesgue - measurable set in the space 

i\/2 = {(t, x) I -oo < t < oo, 0 ~ x < oo} and .!P:(A) the number of fibres for 

rhich (.!,j ,k' 1fj ,k) E A is satisfied. Then, if A ,., B = O, ]!.(A) :.1J~i 



~re independent stochastic variables having a Poisson- distribution, the 

tarameter of E(A) being 
•;; 

t;. 1) 

there 
:jf I 

(( 
/i ?1.(t)dtdF(x), 

"'A 

= .. •.(x\, def pl<.!.~"' l · th d' t .,... t· f t· f th 1 th f " 1 ~ J is e is riuu ion unc ion o e eng o a 

For a general class of real functions s(t,x) one can define 

m is a stochastic measure 0n Q, with m(A) as described, for 

L - measurable set A. Because of the independence of the m(A) for 

setsj we shall have something like (use Riemann - sums) 

S exp i. 
rco r oo 

/ · \ ( t , x) dm ~ 
CO 00 

I 
l 

0 ._, -
- 00 

TT TT 
v=O µ=- oo 

oo co r i 't t, ( t * 9 X * )} 
~ TT TT { (1 - \(t) ~ttF(x))e 0 + \.(t) ttl:IF(x)e µ v ~ 

v=O µ=- oo 

~TT TT 
V=O µ=-00 

exp - \ ( t) { 1 - i • r, ( t *, x *)} 6 t ti F ( x) ~ 
µ V 

~exp - [
00 r 11.(t)f1 - i.r,(t,x)}dtdF(x) 

O - co 

t.exp i't j'oo _J 00 
r,(t,x) d~ = exp - 1•X) _[ 00 

\,(t) l1-i•t,(t,x)1dtdF(x) 

Substitution of 

r.(t,x) ~ {: 
for t<t,t+x>t 

·- 0 0 

otherwise 

to (2.4), because 

c(t) 
- 0 

f 
t -x<t<t 

dm 

0 -- 0 

In the same way 

= l (t - t ) ~ ( t - t) - ( t - t - h) l ( t + h - t)) + 
l o o o o 

+ t,,,. t ) I. ( t - x - t) - (x + t - t - h) I. ( t + h - X - t)} 
0 0 0 0 



," 
leads to (2.8). 

Stochastic set functions have been discussed by Prekopa (cf. Prekopa 

(1956, 1957)). 

,, 
,::4,, Main formula 
f~il; 
f"i' 
;.~•1 

''" _,, 
,j;.., ! •• ,, 

The k th fibre from the j th interval contributes to the cross - section at 

t of the axis an amount 

-c. k(t) defy. k!L(_t. k+.x_. k- t) - L (t. - t)}, 
J, J, l J, J,- -J,k 

iJbere l, (x) = 1 for x 2. 0 and 
:,.l··:-

\.(x\ = 0 
t 1) 

for X ( 0 • Hence we find for 

Jt}le total cross - section at point 

f\',,-

\;114. 2) 
"'.}•. 

00 1:j 
o~t) def i.: i.: Ji.· k{l(_i. k+,?f. k-t)-1.(J.. k-t)J • 
- j=-oo k=1 J, J, J, J, 

We shall study the random variable 

~>~i :/ ' 
!'lli~der the condition t, x < oo. This variable is (as will be shown) well -I'\';. 
~l,fined for any real - valued function T(·t) , which is of bounded variation 
.½·?~l. 
:'' a closed interval [t 1,t2] (with -oo < t 1 < t 2 < oo), constant for 

i t 1 , as well as constant for t > t 2 and finally continuous from the 

'::t;ght fcfr all t. ~f!e assume (this is no restriction) that t 1 is a negative 

1 --~:teger and t 2 a positive integer. 

,frc With probability 1 .2,( t) is a stepfunction with a finite number of 

n!l.te steps in the interval [t 1 ,t2], given t,?£ < oo (Breny (1957)). As 

[t 1 ,t2 ] _ only a finite number of finite steps originate, it is suffi-

,nt to prove that with probability 1 only a finite number of fibres cover 

t 1 • Thus we have to prove 

t1-1 1:,· 
p {. E t LC.! . k + .! . k - t 1 ) < 00 } = 1 

J=- co k=1 J, J, 

for r.. = 0 , here and later. 
-J 



(4.5) P r max ( t . k + x . k - t ) > O 
l1(k(r. --J, ·-J; 1 -

-- -·-J 
for infinitely many j } = 0 • 

To prove the last relation, it is sufficient to show (by one of the 

Borel - Cantelli lemmas) that for the (inde·,,endent) _e__y§EJ& 

(4.6) 

we have 

(4.7) 

Now, if 

(4.8) 

p \A. l 
J 

F(x) def P{lS i x1 ' 

< co • 

P f A .1 = P / max ( t . k + x . k - t 1 ) _> 0 } = 
J 1 \1(k(r. ·-J5 -J, 

- ---J 
1 =: 

00 -A..j /\,7 

E e -M..- { 1 -
r=1 r! 

= 1 - exp - Aj \ 1 -
,f 

- .Jj+1 < \ . l 1 1!' ct 1 - t) dI<J. (tr 1 < II. l 1 - F ( t 1 - j - 1 ) } , 
J J 

-x as 1 - e < x for x > 0 and A •• < \ for each j • Hence, because 
. 00 J --

k!1 l 1 - F(k)} i. d xdF(x) = t,x < 00 , condition (4,7) is satisfied. 

For a stochastic stepfunction .2.(t) 1vhich has; with probability 1, a 

finite number of finite steps in the interval [t 1 ,t 2 ] s the integral in (4.3) 

is defined with probability 1 as the Lebesgue - Stiel tjes integral of the rea­

lization c(t) and satisfies 

(4.9) [

00

_9.(t) dT(t) = 
- 6o 

r· ~t 
L'. k=1 X.J· • k j=-00 , 

00 J,o r l, (1. k + .! . k - t) - i_ (1. k - t) l dT ( t) 
-oo J, J, J, 

r· 
00 -J 
E L'. X.·kiT(t.k+x.k)-T(t.k)J, 

j =- oo k= 1 -J , l ~J , -J , -J, 

where the double series has only a JJn.i.t~ number of nontrivial terms (i.e. 

terms unequal O ) with probability 1 • 



~~1E1E~· If ~ , n = 1, 2 5 • , • are mutually independent real - valued 

stochastic variables, such that the events A = { a / ol satisfy 

l{An occurs for infinitely many n J = O 1 

:·~ic variable for which (for all real -r ) 

n --n def 00 • 

we have : s = r a is a stochas-
n= 1 --n 

e i -r~ TTOO P . h~_ 
Ce = Ce . 

n=1 

Proof ; s is a well - defined stochastic variab~e 9 for it is with proba­

ty 1 the sum of a finite number of independent random variables unequal O. 

i1nii therefore 

each E > 0 
00 

P{ n A l > 
m=JIT+1 ml 

then 

00 

t~ 

00 00 

{ An occurs for infinitely many n} = n \ J" \. A 
n= 1 m=n m 

there 

1 - E 

00 

lim 
n-400 

P { L' A } = o , 
m=n m 

exists an JIT = N(e), 

(if A denotes the 
m 

i 't §:n ( N i1:-a TT --n < 
(; N Gr~ e - e 

n=1 

00 

00 

for which p { u Am\ m=N+ 1 

complement of the set 

i •.@:.n 00 i -r §.n en e . e -
(__,n=N+1 

·, 
I 

< E 

A ). 
m 

1 i. 

i. £{ h~ TT e - 1 a f 0 for at least one n 2_ }IT+ 11 • E i 
L n=1H1 n 

N 

TT E 
n= 1 

C oo 

c. TT 
TI= 1 

ich proves the lemma. 

The random variables 

r• 
Z. def rt exp i -r v- . k' T (_t . l + ..! . k) - T (j_ . k ) l 
-J =1 ~Jt l J,c J, J, I 

2 E i 

e nontrivial, Le. not equal to 1 with probability 1, only for j < t 2 -1, 

nee we find from (4.9) by applying the lemma to 



: ~ ,'' ' ·, 

~'hat for all real ,; 

oo r• 

= £ jrt n 
= jfttti exp h X . k { T (J. . k + 2f . k) - T (_i , k ) } • J, J, J, J, 

Further we have by (1,1), (1.2) and (1.3), using Fubini's theorem to 

second equality, 

Cf i exp hx, k {T(J.. k + .!· k) - T(j_. k)} = G =1 J, J, J, J, 

= t, E { TT e x:p iT z . k [ T (i . k + ~. k) - T (! . k) ] ..!: . = r} PI.! . = r} = r=o k=1 J, J, J, J, J l J 

oo r (co (j + 1 ,• r 
= t { 1 exp i-ry[T(t+ x) -T(t)] dK.(t) dH(x,y)} P{.!.· = r) = 

T=O (j 'j J J 

= exp {- "-.(1.- (
00 

(
00 jj+1 exp i,;y[T(t + :x:) - T(t)] dKJ.(t) dH(x,y))} = 

J ti 0 

= exp -100 J00 jfj+1 11.(t)[1-expi1:y{T(t+x)-T(t))JdtdH(x,y). 

I 1 - exp i't'yLT(t + x) - T(t)} I i 2 and T(t + x) - T(t) = 0 

·i, t i t 1 - x and t 2. t 2 , we have 

1 _100 11 - exp i'ty{T(t + x) - T(t)} I dt i 2{x + (t 2 - t 1)} 

becaui:)e 

~llowed to apply Fubini's theorem once again. Combining (4.17) and 

we find our main formula 

~ 8 '9' j.? ~ f J~ /j+\_ ( t )[ 1 - exp isy{T( t+x)-T( t)]] dt dH(x,y) = 

i1~i:~(t)[ 1 ~-•q i•y{T( t + x). r( t) l] dt dl!(x,y) • 



e particular cases 

T(t) == 

- '9 -

L(t-t), 
0 

T( t) == (t-t )l(t-t )-(t-t -h)L(t-t -h) 
0 0 0 0 

are satisfied for l,2£ <'oo, In fact a 

ilzation of these results (with A (t) instead of A ) has been obtained, 

· ation (4. 21) may be used to obtain interesting formulae for other 

variables besides _g_( t O ) and _y( t 0 , t 0 + h) , 
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