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4. Introduction

A.XEEE’ of nonnegative cross-section, lies along a t - axis with
o0 <t <. It is composed of fibres, which are cylinders with their axes
arallel to the t-axis. The head of a fibre is its left endpoint on the
Q,axis9 the tail its right endpoint. Tibre heads are distributed along the
- axis according to a Poisson - process with parameter A (t), where X (1)

g Lebesgue - integrable on any finite interval and 0 < A (%) < A for all %
land some finite . e define such a process in the following way :
garding the t - axis as composed of intervals, of which the jth interval is

{

3,5+1] (open on the left, closed on the right), where j runs through the

tegers, the distribution of the number 'Ej of heads falling in the jth

terval is given by

r
- )\.‘
1) Pﬂgj =r} =e¢ J *;%" for r > 0
ith
S+
.2) r, def j A(t) dt.
! 3

The head of the ktn fibre (k = 1,2, c..s T3 ‘Ej =T 2> 1) having its
nead in the jth interval lies in
— A
: = r the Ej,‘l’”“’-ij,r
ith the common distribution function Kj(t), with

ij K where under the condition
PR i

are independently distributed random variables

¢

( 0 for t <d 9
1.3) F (1) def Flig 4 <) -4 x51 fcx(u) du for j <t G+,
= 9 - i

f 1 for j+1 <1t .

@ﬁgé -ij,k Tor different intervals on the 1t - axis are mutually independent.
The length x (> 0) and cross - section y (> 0) of a fibre have a
imultaneous distribution function H(x,y) = ?{K.S x, ¥ £ y}. The vectors
%x,y) belonging to different fibres are mutually independent and independent

1Kf the location of the fibre on the t -~ axis. A ;gilizatﬁgg of the yarn is a
éﬁtepfunction,v&ﬁchcan'hataken continuous from the right. The length of the

k"™ fibre having its head in the §°7 interval is
ik »
~ Object of this paper is the study of random variables like _g(to) and

P L s its cross- section
9.—5.

;(to,to-+h) s which denote the cross - section of the yarn at to and the

‘1ﬁme of yarn in the interval (to, to+-h] respectively (with t, arbitrary



2. Terpstra's approach

In this section we assume that H(xo,oo) = 1 for some X, ooy, d.e,
the fibres have length £ X with probability 1. Turthermore we take
A(t) =X >0, i.e. we consider a stationary Poisson - process (this restric-
tion need not be made).

itc(ty)
In order to derive 8 e ”'( o

, we first compute

(2°1) :PC(T’ to; S,l) dze;fg{ei.r'g(tC))

| n(s, s+1) = 1},

where _rl(s, S +1) denotes the number of heads of fibres in the interval
(sy s+1] and s < to-x, <t <s+l.
If t 1s the coordinate of the head of the one fibre falling in
(sy s+1)] , then it is known that t is uniformly distributed in this inter-

val. If the fibre has length x = x, with probability X the head lies

1
in (to-—x, to]. Hence
o e[ _
(2.2) o (T,t 38,1) = | | [e”y L 46%(1 - 2) (aH(x,y) =
c o} A 1 17 ]
= o d
=1 -2 OJf°° I~ x(1 eiTy) dH(x,y)
=1 - J - 1(x,y) .
As
- A1)
(2.3) Pla(s, s+1) =n] = e ! —(-—i,L for mo= 0,1, 2, ...

and _g(to) is the sum of the independent contributions to the cross - section
of all fibres with heads in (s, s+1] , we have (the characteristic function
of a sum of independent random variables being equal to the product of the
characteristic functions of the individual terms)

ger @ 17e(t,)
(2.4) o 1) & £

A1 (W1)B
;S, 1>}n e LI?%— =

T 1
= ngo{?g( » g
1 [ ity
=exp - 1{1 - (1 -7 0)3 J x(1 - e 7)) dH(x,y))] =
[l A . B
= exp - | | x(1 - et Y aH(x,y) .
Jd -

As was to be expected; @C(T, to) does not depend on either s or.
We may conjecture, that (2.4) will also hold if H(x, o) < 1 for a
Breny (1

"

(Some restriction is needed : we must have S_:g < @, cf,
' » i b

section 4.)



We remark that from (2.4) it is evident that _g(to) has a compound

isson - distribution, i.e.

n
(2.5) olty) = 'f1 =3’
J::
where
o n
. afx (Wrx)
(206) P%I_l‘ = n} = e L m"hT fOI’ n = 09 19 29 ° 00

and, under the condition n = n, the -hj are independently distributed,
each with distribution function

xd H(x,y
X
(2.7) oly) B 2o
c X

Analogously to the derivation of (2.4) one can show that

def g’eiT-Y(to’to*h) )

(2.8) q:’X(Tstosh) = C
. IS h . ,
=exp -r[h +€x + ,! J.[ {~i—2—~ (1 - ™) - (h-x) e *} an(x,y) +
y=o0 x=0 I
S ith i1h
o T (=) - (x-m) ™Y an(x,y)],
y=6 x=h I

always assuming a finite maximum length X for the fibres.
Roth (2,4) and (2.8) are due to Terpstra. These results are known for
¥y = 1 with probability 1 (cf. Spencer - Smith and Todd (1941), Fartindale

(1945), Breny (1952) and Breny (1953), Olerup (1952)). Related considerations

as to method of derivation are to be found in Fortet (1951).

3. Van Dantzig's method

In this section we assume that y =1 (or y = 1 with probability 1).

In Breny (1957) relation (2.8) (with y = 1) is obtained by applying a

J n )

limiting procedure to (in our notation) & exp i I wjgftj), expressed as

=0
a complicated sum of double integrals. As Van Dantzig pointed out to Breny

(cf. Breny (1957), page 3%3) one might proceed in the following manner. Let

A denote a Lebesgue - measurable set in the space

Q= {(tyx)] -0 <t <o, 0 x <o} and m(A) the number of fibres for |

€ A is satisfied. Then, if A~ B =0, m(4) and n(B
‘ Mg

‘which

A

1, .
%h <"39k’§'39k)




are independent stochastic variables having a Poisson - distribution, the
perameter of m(A) being

. [f
¢m(a) = ! a(t)atar(x),
7(x) def P{x < a2} is the distribution function of the length of a
For a general class of real functions %(t,x) one can define

(’oo foo

J _l a(tsx)dﬁs

m is a stochastic measure cn £ , with m(A) as described, for

y L - measurable set A. Because of the independence of the E(A) for

int sets, we shall have something like (use Riemann - sums)

[ [ © o o 1TE(t%,x")m(s )
gexp it | }' "5 (t,x) dm & T']' H E,e TRARVAG TR
6 -—5’0 v=0 “,:—00

~
~

'&’aﬁ ﬁ {(1 - )\(t) AtAF(x))eo + }\(t) AtAF(x)eiTE(tH’xv)}N

[T T exe - a(®) {0 - ave(e7,x))asom () =

Nexp - [oo j(w A(E) {1 - dre(t,x)} dt dF(x)

E-exp it Ojnoo foog(t,x)dg = exp - Jw foo A(E) {1 -ite(t,x)lat aF(x) .

- 00 [o e}

- Substitution of

E(t,X)

{1 for tg_to,t+x>to

0 ‘ otherwise

io
Py
ot
(o]
p
1

! w f
([ dm .
t ~-x<t<t
o -~ 0

(*li,'x) = {(t-to)l—(to-t) - (t—to—h)t(to+h_t)} +

-ftf-:“fp)L(to-x—t)'—(x+t-—to—h)k(to+h-x-t)}



leads to (2.8).

Stochastic set functions have been discussed by Prékopa (cf. Prékopa

(1956, 1957)).

4. Main formula

4

The kth fibre from the jth interval contributes to the cross - section at

#point t of the axis an amount

def vxo o -t) - U(ey - 8],

4.1 (% : X, :
%\4 ) EJik( ) stk{L(:’G‘Jsk =3k ‘ ~Js

‘where L(x) =1 for x>0 and L<X3 =0 for x < 0. Hence we find for
e 1

‘the total cross - section at point t

def ¢ "I:zj Lt + X ~t) -4 (% - %)}
5eZeo 1mg Falt gt Xy 25k '

-.1'{;.(4.2) c.t)

iF

We shall study the random variable

.3) uy & o(4) az(s)

ks

nder the condition ¢ x < . This variable is (as will be shown) well -

efined for any real - valued function T(t), which is of bounded variation

a closed interval [t1,t2] (with =-oo < b, <%, < © ), constant for

2

as well as constant for t > t and finally continuous from the

17 2
ght for all t. *fe assume (this is no restriction) that t, is a negative
iinteger and t2 a positive integer.
%&? With probability 1 o(t) is a stepfunction with a finite number of

?inite steps in the interval [t1,t2], given € x < o (Breny (1957)). As

gide [t1,t2] only a finite number of finite steps originate, it is suffi-
ieient to prove that with probability 1 only a finite number of fibres cover
t

‘¥he point Thus we have to prove

1 ©

i oql?

] L(ijsk * X5y - t,) <o} = 1

_ Ealy
“We take k£1 .0oe = 0 for -£j = 0, here and later.



(4.5) | P{ max (% +

\ - % > 0 for infinitely man jl= 0,
< )2 y many 3)

%3,k

To prove the last relation, it is sufficient to show (by one of the

Borel - Cantelli lemmas) that for the (independent) events

’ def max (t., ., +x. . - t,) >0}
.6 A, B Lk T X5k 1/ =
(4 ) 3 1.<_k_<,.§§',j Jds Jd
we have
t1-1
(4.7) 2 PlA] <.
J:—OO J

Now, if F(x) def P{x < x}

4.8 P{A} =P t .-t =
(4 ) { J} {1<]H{184X. ("'J k +-—}-C~,],k 1) 2 0}
=]
r : r
. D ] J+1
= I e 3—-'1,—{1—[,/ Flt, -t)adk.(¢)] } =
r=1 To j, 1 J
3+
=1 - exp -y {1 - | Ts‘(t,l-t)dKj(t)}_g_

IA

j+1 ) ' v
xjm - jf F(‘c,l-—t)dl(j(t) b <At - F(t1_3-1)},

as 1- e-x_g x for x >0 and Kj < x for each j. Hence, because
00
1 {1 - P} < xaF(x) =Fx <o, condition (4.7) is satisfied.
o
For a stochastic stepfunction g(t) wvhich has; with probability 1, a

8

™

k

finite number of finite steps in the interval [t1,t21, the integral in (4.3)
is defined with probability 1 as the Lebesgue - Stieltjes integral of the rea-

lization c¢(t) and satisfies

(4.9) By = J/ c(t) ar(s) =
[ _{z] fco
- j=§oo k=1 L3,k {L Qijyk*ﬁﬁjyk t) ’(tJ k-t)] aT(t) =
= 52 e ki1 Tk {2y * 25,00 - Ty 00 o

where the double series has only a finite number of nontrivial terms (i.e.

terms unequal O ) with probability 1 .



Lemma. If &, n= 14 25 e« are mutually independent real -~ valued

stochastic variables, such that the events A ={a, £ 0} satisfy
;?{An occurs for infinitely many n} =0, we have: s def ? = is a stochas-
LA n=1 '
‘tic variable for which (for all real 7 )

4. 10) % eiTE = ﬁ eAeiTén‘ o

n=1

Proof: s 1is a well - defined stochastic variable, for it is with proba-
A .

pility 1 the sum of a finite number of independent random variables unequal O .
i

‘As we have
LA

il
'
—
b

{An occurs for infinitely many n}

%‘d therefore

(o]
.12) 1im P{U 4} =0,
n — o0 m=n m

" (o o]
each € > O there exists an ¥ = N(e), for which »{ U 4 P < e
: m=N+1 O

(e o]
P{ /) A} >1-¢ (if A denotes the complement of the set A ).
m=N+1 m m m
t then
v ©  iTa N ita, Noodva| | = iTay
.13 Eg e O - e < ¢ e - e T -1
‘ ) =1 I’E L’;’];-E (/n=1\T+1 <
S e
S,E, : e - 1|la_ # 0 for at least onen 2 N+ 1)y-e 2¢,
Lln=N+1 || n
4 hence v
N itay ¢ S iTay
.14) lim TW‘ 8 e =C e y
N —co n="1, n=1
ich proves the lemma.
The random variables
def i
e .
, = oAt o+ x. - T(%,
15) 23 {;:'1 exp nyy ATy o+ 25,00 - Ty )]

¢ nontrivial, i.e. not equal to 1 with probability 1, only for j < t2— 1.

nce we find from (4.9) by applying the lemma to

; def
6) '@11 ; E”Gz-—n ’



%hat for all real ©

8 exp iT_gT =

r.

u E W I:f exp iT‘Y-j,k{T(—J-G-j,k + -}-c-j,k) - 'JJ(tJ k)}

J==00 =1

©o I3
j='—! i.l:j: exp 1le,k{T("tj,k + —}-{-j,k) - T(i?_j,k)} o

Further we have by (1,1), (1.2) and (1.3), using Fubini's theorem to

the second equality,

I

8) gﬁ exp lTlJ k{T(t * J,k) - T(tJ k>} =
e {E o ALy LBy et 2y,00) - Ty ) )

=rrPfr. =r} =
r=0 —~J J —J

il
n ™8

[oo J+1 )
JW exp 1Ty[T(t+x) -T(t)] dT{ (t) dT-I(x,y)} [Ej =r}=

[}

>] 0 +1 .
exp {_ ?\j(‘]»— b[ ‘{ jfa exyp iry[T(‘t+ x) - T(t)] dKJ('t) dH(x’Y))] =

o]

o [0 [j+1
exp -J o/ j[a AMt)[1 -expity {T(t+x)~T(t)}] at an(x,y) -

‘Because |1 - exp ity{T(t+x) - T(t)} ]| < 2 and T(t+x)-T(t) =0

-x and t~>-t2’ we have
) lj” |1 - exp ity {T(t + x) - T(t)}| dt < 2{x + (t2 - t1)}
Q’Jo,becauae

J J 1-expny{T(t+x) T(t)}] dt dH(x,y) < 2{z£+(t2_t1)}<w’

allowed to apply Fubini's theorem once again. Combining (4.17) and

we find our main formula

) B exp ity =

| o [ [ 3 . |
f"exp - j=§°° Cj J jJ A(t)[1 - expity{T(t+x)-T(t)}] at aH(x,y) =

)\(t)[‘l - exp ity T(t-:- x) - 7(t)]} ] dt aH(x,y) .



the particular cases

T(t)

i}

(e - t)

(%) (t-to)L(t—to)-(t-to—h;L(t-tO«h),

that both (2.4) and (2.8) are satisfied for ©x <(ew. 1In facta
lgeneralization of these results (with A (t) instead of XA ) has been obtained.

iiation (4.21) may be used to obtain interesting formulae for other
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