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§1, Introduction.
The theorem of Fermat says that ap_1EE 1(mod p) for all primes p
and for all integers s which are prime to p.
For odd p and a=2 this result was already known to the Chinese, who
incorrectly believed that also the converse of this theorem is true,
which says that all integers satisfying

(1) ol=1 = 1(mod m)
are prime, If this were true it would give us a means for testing a num=-
ber m on primality. In order still to be able to apply this test for in-
tegers which are not too large, Poulet 1) made a table of composite m
which are <\108
We shall call every composite m which satisfies (1) a Poulet number
or pseudo prime. Banachiewicz 2) gave in 1909 five Poulet numbers < 2000
and later found the two othersg”2 00 0O .
We shall prove that there exist infinitely many Poulet numbers,
Proofs of this result were already given by Sierpitski 3) and Jarden 4)°

and satisfy (1).

Sierpiniski considered numbers Moy seee, satisfying
m
h N
1 Myyq = 2 -1 (h = Ov1sc-<)_; (*k rrm)
whereas Jarden used the sequence
h
T w = 2% 4+ (h = 0,1,...).

We shall generalise their results and deduce further results on the
sequences I and II,

Further we consider composite integers m for which (1) holds for
all integers a prime to m. We shall call these integers of which Carmi-
chael 5) proved some properties Carmichael numbers and derive properties
of them.



-2 -

§2 The sequence I,

Definition. A Mersenne number is a number of the form 2P~ 1, where p is

prime, Consequertly a prime of the form 2P-1 is a Mersenne number,
Theorem 1. If m satisfies (1), then M = 2.1 also satisfies (1) 3),
Proof, From m 2m—1_1 we infer

ol_o M—1

M= 2B )22 T Iz —1 = oM,
Corollarl . Every Mersenne number is a prime or pseudo prime,
Theorem 2, There exist infinitely many Poulet numbers 3).
Proof. The sequence I with m, = 11 gives in virtue of my = 2 =1 = 23,89
for all integer h > 1 composite numbers my, which by theorem 1 satisfy
(1). Hence there exist infinitely many Poulet numbers,

We deduce further properties of the Mersenne numbers and of
sequence I,

Otviously either every element of sequence I is prime or there ex-
ists a positive integer k such that my is prime, O is composite. From
theorem 1 we then see that all elements My with h » k+1 are pseudo prime..

In order to find a further result on composite numbers of sequence
I we use a special case of a result of Bang generalised by C.G. Lekker-
kerker 6) which says that for every odd m the number 21 possesses a
prime factor which does not occur in any number 2d-1 with O< d«<m. We use

11

this result to prove the following

Theorem 3. If the number m possesses at least s different odd prime fac-
tors, then M = 21 possesses at least S = 2.1 gifferent prime factors,
Proof. Put m = PiPy.-Pgn, where P1y...,Pg are different primes.

Now let i1,...,it be a combination of t of the s integers 1,... ,s

Pi,...pig
(1< tgs). Put Q4 . =2 - 1. Then any q = Q.

possesses
1ouol_t lalguul_t

at least one prime factor which does not occur in a!? ay i with

u=1,...,5, which differ from gq. In fact every common prlme factor of

qi1...i+ and such a q11...i” is a prime factor of a ql1...iv with v<€ t

and by Bang's result a prime factor of q exists which does not occur in
any q ; with v < t, Consequently by considering all (s) divisors
1oocv
ay ; of M we find (2 1) different prime lelsors of M. Using this re-
1.no.t
sult for t = s, s-1,...,1 we obtain certainly 2 (2 ) = 2921 Qifferent
prime factors of M, 3=T
Corollary 1. By the general result of Bang we can apply the theorem also
gl _pm

to expressions of the form —-—%-1nstead of 2"-1 for all m> m, where

m only depends on a and b,

Corollary 2., If s(m) denotes the number of different prime factors of m

and T(m) = 2m—1, then the result of theorem 3 may be formulated as follows
s(T(m)) > T(s(m)).




Corollary 3. Considering the sequence I with m, = 11, we have s(m1) = 2,
hence by theorem 1 there exist Poulet numbers the number of prime factors
of which is greater than every given integer.

Theorem 4. If in sequence I the element m = Iy is prime, M = m,,q compo-
site, then every composite divisor of M is a pseudo prime 7).

Proof. For the composite divisor M of M the assertion follows from the-
orem 1. Now let n be a composite divisor of M. We prove the theorem by
induction and may aésume the assertion proved for any divisor > n of M.

is prime. Since q! 21
oM_1 = 29-1.9, Since
1'1--‘1__.l

Let N be a composite divisor of M such that g = Y
and since m is prime we have m[ g-1. Hence n[M =
N > n we have by induction nINtZN'1~1 = 29%=7_1, Hence nl|2
Remark. It is not true that if m has the property that all its divisors

2™_1 nas this property. For instance

i

are prime or pseudo prime, also U
take m = 211—1 = 23.89. By theorem 1 the integer m is a pseudo prime

of two factors, hence all divisors of m are prime. The number M = 2" _1
possesses the factors 223—1, 289-1 and hence also the factor 47 of 223—1.
The divisor 4 = 47(289~1) of M however does not satisfy 2d~1§E-1(mod a)

for 2891 )( 247(289“”"1-1, because 47(289-1)=1 = 46(mod 89).

In order to find Poulet numbers of the form m = pq, where p and q
are different primes, we remark that from,p‘m’Zm'1—1 and pl2p_1-1 follows
pth—1—1 and similarly q\Zp—1—1. Conversely from the last two relations
follows for different primes p and g that pg satisfies (1). For instance,
take p = 11, then q‘210~1 = 3.11.41, hence we must try either g = 3 or
g = 41. Now q¢ = 3 does not satisfy 11'2q~1_1, but g = 41 does. So
n = 11.41 is a pseudo prime. ‘

Similarly Poulet numbers of the form m = pgr (where p, q and r are
different primes) can be found from p‘2qr~1_1’ q]2pr"1—1, r|2P2" 11 and
so on. For instance p = 3, g = 5 gives m = 3.5.43 = 645.

§ 3. The sequence II. n
Definition. A Fermat number is a number of the form 22 +1 where h is a

non negative integer. Consequently every prime of the form 211 is a

Fermat number. n+k

Theorem 5. If 0 < k.g;2n—n—1, the number u = 22 (22 +1) is a Poulet number.
h=n

Remark. For k = O and k = 1 (supposed n > 2) this property was proved by
Jarden 4). n

Proof. Put uy, 2 +1 (h = 0,1,¢..). Consider an arbitrary positive inte-
ger n and an integer k satisfying 0L k < ol n-1. If 0g£ 1 < J the inte-

and un+j are relatively prime, for if a prime p divides Uy iq

2n+i 2n+i+1 2n+j
2 = ~1(mod p), 2 = 1(mod p), 2 = 1(mod p),

2

il

gers u, s

we have
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hence p + u i Cohsequently to prove the theorem it is sufficient to

n
prove ui'2u“#~1 for i = 041440.,ks Now for i = 0,1;4..;k we get on ac-~
count of n+i+1 < n+k+1< 2% the relations
.. sn| on n+1 n+k
I o2 (227 1) (22 +1)eia(22 #1)e1 = u-t,
hence , ‘
n+i n+i+1
_ 2 =14
Uos =P +1‘2 —1?2 wl,

which proves the theorem.

Corollary. For all n> O the integer k may be taken = O, hence every
non prime Fermat number is a Poulet number. '

Second proof of theorem 2.

By theorem 5 there exist Poulet numbers with arbitrary many prime
factors. This proves theorem 2.
Theorem 6. If the number M = 22m+1 is composite, every composite factor
of M is a Poulet number.
Proof. For the divisor M of M the assertion follows from theorem 5, co-
rollary. Now let n be a composite divisor of M. We prove the theorem by
induction and may assume the assertion proved for any divisor > n of M.
Let N be a composite divisor of M such that g = % is prime. Since
‘22a+1-1 and g4 2P-1 for 0< b < 22%7. Hence 2a+1‘p¥1,
2a+1 22a+1_1 we have nl2p—1—1.
1 = 291, Hence n12n-1—1.

52
ql? +1 we have g
2a+1
RS

2P=1_4 and on account of nlM = 2
Since N » n we have by induction niN{Z

N-1_

§ 4. Carmichael numbers.

We now consider the above defined Carmichael numbers. By definition
they satisfy
(2) a1 = 1(mod m)
for each a which is prime to m. Obviously every Carmichael number is a
Poulet number. In order to deduce some properties of these numbers we
prove the

Lemma. If a, m and n are positive integers with (a,m) =.1, then there
exists a positive integer b satisfying b= a(mod m) and (b,mn) = 1.

Proof. Suppose n = n,n,, where n, contains only prime factors which
divide m and where (n2,m) = 1. Then by the Chinese remainder theorem
an integer b exists with

b = a(mod m) b = 1(mod n2),
We then have

(b;nz) “-3‘1, (b,m) = (a,m) = 1, hence (b,l’l1) - 1’
whence we find
(bymn) = (b,mnyn,) = 1.
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Corollary. If a primitive root mod m exists, there also exists a primi-
tive root mod m which is prime to mn, where n is an arbitrary integer.

In fact let a be a primitive root mod m, then (a,m) = 1. By the lemma
there exists an integer b with'bEEa(mod m) (hence also b is a primitive
root mod m) and with (b,mn) =
Theorem 7. A Carmlchael number is

1°, 044 ;

2%, Quadratfrei;

3°. The product of at least three different prime factors.

"Proof.
10

5),

« IT m = 2pn, where p is an odd prime, isg a Carmichael number,
then by the corollary of our lemma a primitive root b of p exists which
is prime to m. From P 1= 1(mod p) and b2pn'155.1(mod p) we deduce
-1 ,2pn—1, which is impossible since p-1 is even and 2pn-1 odd.

In the case no o0dd prime divides the composite even number m we have
m = 2B (h> 2). If h = 2, thus m = 4 we have the relation 3355 -1 3%
§é1(mod 4), hence m ig no Carmichael number. If h 2> 3 a number a can be

n= -
found satisfying a2 = 1(mod 2%), ak—:__F/- 1(mod 2B) if 0 < x < 2P~2, 1

a were a Carmichael number we had a2 -1 = 1(mod Zh) hence 2h"2‘2h—1,
which is impossible.

20, Suppose that m = p2n, where p is an odd prime, is a Carmichael
number. By the corollary of the lemma an integer b exists which is a
primitive root mod p2 with (b,m) = 1. Then from bp(P"1)EE 1(mod p2) and
bP R=1= 1(moq p2) we deduce p(p—1)1p2n—1 which is impossible since p
does not divide pzn—1.

3% Suppose m = pg, where p and q are different odd primes. By the
corollary of the lemma a primitive root b mod p exists which is prime
to m. From bP~] = 1(mod p) and pPa- = 1(mod g) we deduce p-1|pg-1,
hence p—1’q—1. Similarly g-1|p-1, hence p-1 = g-1, p = g which contra-
dicts the assertion.

Theorem 8. If m = PyPp. - Py Where DPysere, Dy are different primes and
s > 3, then the number m is a Carmichael number if and only if

p.~1,m.—1, where m; = %L (1 = Ty00e98)e
i
Proof. For i1 = 1,...,8 we know by our lemma the ex1§tence of a primitive
root ay mod P5 which is prime to m. Then from alpl = 1(mod < ),
alm 1-*"1(mod Py ) we obtain p. -1)m— , hence pl—1lm -1
Conversely 1f pl—1tml~1 for i = 1,...,8, then we have for i = 1,...,s

p;-1{m-1, hence for all a prime to m we have

-1
D. ] —1‘ a1 1, thus ’ n=1_yq,
Remark. Using this property Ore finds Carmichael numbers 8)

I do not know whether there are infinitely many Carmichael numbers.
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Remark. It is obvious that there are only a finite number of Carmichael
numbers m = PyPoe e+ Dg (p1,...,pS prime) of which s-1 of the s prime fac-
tors are given. In fact by theorem 9 we have for the remaining prime Py
the relation ps~1‘p1p2...ps_1—1, 80 only a finite number of values of
py are possible.

Beeger 9) proved that there are only a finite number of Carmichael
numbers m = pqr (p,q,r prime), the smallest prime factor of which is
given (if one of the other prime factors is given, this property is ob-
vious from the above remark).

I prove the following extension of Beeger's theorem.

Theorem 9. There exist only a finite number of Carmichael numbers
DyDpe -+ Dy (p1,-..,ps prime) of which s-2 prime facters are given 10).
Proof. Without loss of generality we may suppose that the Carmichael
number m = npq, where n is given 'and where the primespand q satisfy %the
relation p < q.

By theorem 8 positive integers x and y must exist with
(3) qn-1 = x(p-1);  pn-1 = y(qg-1).

We then have x > y, and further x # 1, y # 1 (since p and q are
prime), Eliminating q from the relations (3) we find
(4) p-1 = AR=lipml

Xy-n
Since p £ g-2 the second relation (3) gives

_ -1 «pn-1 _ _ n+l
I =791 N Tpr1 T T o1
thus

We now distinguish two cases.
1%, xy—n2,3;2. Then from (4) and (5) it follows

p<L1 o+ (n—1)52n—1) < 1 + (n-1)(2n+%-V n-%).

2°, Xy—n2 = 1. By (5) and y # 1 we may put y = n-d with 1< d £n-2.

n2+1 n2+1 A d2+1
Then we have X = 7 = n-d = n+d+ oa hence x > n+d+1. Thus

1 = xy—nZ;; (n+d+1)(n-—d)_n2 = —d2+n-d,

a> -4+ n-%.

Then (4) gives
(6) p £ 1+(n-1)(2n+3- V n-%).

From the second relation (3) and y2 2 we conclude g £ 1+5(pn-1),
which proves the assertion.
Remark. The relation (6) is rather sharp as is seen by taking n = 43, in
which case it giv_es p £ 3361 and actually m = 43.3361,3907 is a Carmi-
chael number.

hence
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