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§ 1. Introduction. 
The theorem of Fermat says that aP-1= 1(mod p) for all pFimes p 

and for all integers a which are prime top. 
For odd p and a=2 this result was already known to the Chinese, who 

incorrectly believed that also the converse of this theorem is true, 
which says that all integers satisfying 

(1) 2m-1= 1(mod m) 
are prime. If this were true it would give us a means for testing a num
ber m on primality. In order still to be able to apply this test for in
tegers which are not too large~ Poulet 1 ) maqe a table of composite m 
which are<.108 and satisfy (1). 

We shall call every composite m which satisfies (1) a Poulet number 
or pseudo prime. Banachiewicz 2 ) gjJ.ve in 1909 five Poulet numbers< 2000 
and later found the two otherst(' ;t o o O .. 

We shall prove that there exist infinitely many Poulet numbers. 
Proofs of this result were already given by Sierpinski 3 ) and Jarden 4 ). 

Sierpinski considered numbers m0 ,m1 , ... , satisfying 
mh ( , 

I mh+1 = 2 - 1 (h = 0,1, .• ,):, ,.,. prlM,(.) 
whereas Jarden used the sequence 

2h 
II uh = 2 + 1 (h = 0, 1 , ... ) , 

We shall generalise their results and deduce further results on the 
sequences I and II. 

Further we consider composite integers m for which (1) holds for 
all integers a prime tom. We shall call these integers of which Carmi
chael 5 ) proved some properties Carmichael numbers and derive properties 

of them. 
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§ 2. The sequence I. 
Definition. A Mersenne number is a number of the form 2P-1, where pis 
prime. Consequenliy a prime of the form 2P-1 is a Mersenne number. 
Theorem 1. If m satisfies (1), then M = 2m-1 also satisfies (1) 3). 
roof. Fromm 2 -1 we infer P I m-1 

M = 2m-1 ! 22m-1 _1 _1 J 22m-2_1 = 2M-1 _1 • 

Corollary . Every Mersenne number is a prime or pseudo prime. 
Theorem 2, There exist infinitely many Poulet numbers 3). 
Proof. The sequence I with m0 = 11 gives in virtue of m1 = 211 -1 = 23.89 
for all integer h ~ 1 composite numbers mh which by theorem 1 satisfy 
(1). Hence there exist infinitely many Poulet numbers. 

We deduce further properties of the Mersenne numbers and of 
sequence I. 

Otviously either every element of sequence I is prime or there ex
ists a positive integer k such that mk is prime, mk+ 1 is composite. From 
theorem 1 we then see that all elements mh with h ~ k+1 are pseudo prime •. 

In order to find a further result on composite numbers of sequence 
I we use a special case of a result of Bang generalised by C.G. Lekker
kerker 6 ) which says that for every odd m the number 2m-1 possesses a 
prime factor which does not occur in any number 2d-1 with O<. d <m• We use 
this result to prove the following 
Theorem 3. If the number m possesses at leasts different odd prime fac
tors, then M = 2m-1 possesses at least S = 2s-1 different prime factors. 

Proof. Put m = p11¾2•··Psn, where p1 , ••. ?Ps are different primes. 
Now let i 1 , ••• , it be a combination of t of the s integers 1, .• , ~ s 

p· p· 11 . . . -1t 
( 1 !S t s; s) • Put q1. . =2 - :1 • Then 

1 • • • 1 t 
any q = q. . possesses 

11 • • • lt 
at least one prime factor which does not occur in alY qi . with 

J 1 • · • 1u 
which differ from q. In fact every common prime factor of 

q. and such a q. . is 
11•••1+ 11···1,, 

a prime factor of a q. . with v < t 
11 • •. iv 

and by Bang's result a primo factor of q 

any q. . with v < t. Consequently by 
1 1 • • • 1 v 

exists which does not occur in 
considering all(~) divisors 

q. . of M we find (s) different 
11 , • • lt t 

sult fort= s, s-1~•·•,1 we obtain 
prime factors of M. 

prime divisors of M. Using this re
s 

certainly L,(~) = 28 -1 different 
j=1 J 

Corollary 1. By the general result of Bang we can apply the theorem also 
am-bm 

to expressions of the form a-b instead of 2m-1 for all m~ m0 where 
m only depends on a and b. 

0 
Corollary 2. If s(m) denotes the number of different prime factors of m 
and T(m) = 2m-1, then the result of theorem 3 may be formulated as follows 

s(T(m)) ~T(s(m)). 



.., 

Corollary 3. Considering the sequence I with m0 = 11, we have s (m 1) = 2, 
hence by theorem 1 there exist Poulet numbers the number of prime factors 
of which is greater than every given integer. 

1heorem 4. If in sequence I the element m = mk is prime, M = ~+1 compo
site, then every composite divisor of Mis a pseudo prime 7). 
Proof. For the composite divisor M of M the assertion follows from the
orem 1. Now let n be a composite divisor of M. We prove the theorem by 
induction and may assume the assertion proved for any divisor> n of M. 
Let N be a composite divisor of M such that q =~is prime. Since q' 2m-1 
and since mis prime we have ml q-1. Hence njM = 2m-1 = 2q- 1-1. Since 
N > n we have by induction nJ N\ 2N- 1-1 = 2qn- 1-1. ·Hence nl 2n- 1-1. 

Remark. It is not true that if m has the property that all its divisors 
are prime or pseudo prime, also M = 2m-1 has this property. For instance 
take m = 211 -1 = 23.89. By theorem 1 the integer mis a pseudo prime 
of two factors, hence all divisors of mare prime. The number M = 2m-1 
possesses the factors 223-1, 289-1 and hence also the factor 47 of 223-1. 

The divisor d = 47(289-1) of M however does not satisfy 2d- 1 =:=. 1(mod d) 

for 289-1 f 247 ( 289 - 1)- 1-1, because 47(2 89-1)-1 = 46(mod 89). 
In order to find Poulet numbers of the form m = pq, where p and q 

are different primes, we remark that from p\m\2m- 1-1 and pj2P- 1-1 follows 
pt2q- 1-1 and similarly q\2P- 1-1. Conversely from the last two relations 
follows for different primes p and q that pq satisfies (1). For instance, 

take p = 11, then q!2 10-1 = 3.11.41, hence we must try either q = 3 or 
q = 41. Now q = 3 does not satisfy 11 l2q- 1-1, but q = 41 does. So 
m = 11,41 is a pseudo prime. 

Similarly Poulet numbers of the form m = pqr (where p, 
different primes) can be found from pl2qr- 1-1, qj2pr- 1-1, 

so on. For instance p = 3, q = 5 gives m = 3.5.43 = 645. 

§ 3. The sequence II. 

q and r are 
r j 2Pq- 1-1 and 

h 
Definition. A Fermat number is a number of the form 22 +1 where his a 

Consequently every prime of the form 2n+1 is a non negative integer. 
Fermat numper.
rheorem 5, If O ~ 

n+k h 
k~ 2n-n-1, the number u = --r;(2 2 +1) is a Poulet number. 

h=n 
Remark .. Fork 
Jarden 4 ). 

== 0 and k = 1 ( supposed n '.?:, 2) this :property was proved by 

h 
Proof. Put uh= 22 +1 (h = 0,1, ••• ). Consider an arbitrary positive inte-
ger n and an integer k satisfying O ~ k ~ 2n-n-1. If O ~ i < j the inte-

gers un+i 
Ne have 

and un+j are relatively prime, for if a prime p divides·un+i 

2n+i 2n+i+1 
2 = -1 (mod p) , 2 = 1 (mod p) , 

2n+j 
2 ~ 1 (mod p); 
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hence 
prove 
count 

pf uh1j. Cohsequently to prove the theo~em it is sufficient to 
uiJ 2u- -1 for i = 011~, •• ,k~ Now for i ~ o.,,,;.,k ~e get ◊n ~c
of n+i+1 E, n+k+1 ~ 2n the relations 

.. · 1· n,· n n+1 n+k 
2n+i+ 1 22 (2 2 +1)(2 2 +1) ... (2 2 +1) .... 1 = u-1~ 

hence 
n+i I n+:i.+1 ! 

u . = r;f- + 1 2 2 - 1 211- 1 .J 1 , n+i 
which proves the theorem. 
Corollary. For all n~ 0 the integer k may be taken= o, hence every 
non prime Fermat number is a Pou.let number. 
Second proof of theorem 2. 

By theorem 5 there exist Poulet numbers with arbitrary many prime 
factors. This proves theorem 2. 
Theorem 6. If the number M = 22m+1 is composite, every composite factor 
of M is a Pou.let number. 
Proof. For the divisor M of M the assertion follows from theorem 5, co
rollary. Now let n be a composite divisor of M. We prove the theorem by 
induction and may assume the assertion proved for any divisor> n of M. 
Let N be a composite divisor of M such that q =~is prime~ Since 

ql2 2a+1 we have ql2 2a+ 1-1 and qf 2b-1 for 0< b <. 2a+ 1• Hence 2a+ 1f~1, 
2a+1 I 1 l 2a I 2a+1 I 1 2 -1 2P- -1 and on account of n M = 2 +1 2 -1 we have nt2p- -1. 

Since N > n we have by induction nf Nj 2N- 1-1 = 2qn_1. Hence nt 2n- 1-1 .. 

§ 4. Carmichael numbers. 
We now consider the above defined Carmichael numbers. By definition 

they satisfy 
(2) am- 1 = 1(mod m) 
for each a which is prime tom. Obviously every Carmichael number is a 
Poulet number. In order to deduce some properties of these numbers we 
prove the 
Lemma, If a, m and n are positive integers with (a,m) =,1, then there 
exists a positive integer b satisfying b~ a(mod m) and (b,mn) = 1. 
Proof. Suppose n = n 1n2 , where n 1 contains only prime factors which 
divide m and where (n2 ,m) = 1. Then by the Chinese remainder theorem 
an integer b exists with 

b = a(mod m); b __ 1 (mod n 2 ) ! 
We then have 

(b,n2 ) -· 1 ' ( b,m) = ( a ,m) = 1 ' hence (b,n 1) = 1 ' 
whence we find 

(b,mn) = (b,mn1n 2 ) = 1 • 
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Corollar~. If a primitive root mod m exists, there also exists a primi
tive root mod m which is prime to mn, where n is an arbitrary integer. 

In fact let a be a primitive root mod m, then (a,m) = 1. By the lemma 
there exists an integer b with b::::. a(mod m) (hence also b is a primitive 
root mod m) and with (b,mn) = 1. 
Theorem 7-. A Carmichael number is 5): 

1 o. Odd ; 

2°. Qu.adratfrei; 
3°. The product of at least three different prime factors. 

·Proof. 

1°. If m = 2pn, where pis an odd prime, is a Carmichael number, 
then by the corollary of our lemma a primitive root b of p exists which 
is prime tom. From bP- 1= 1(mod p) and b2pn- 1= 1(mod p) we deduce 

p-1 / 2pn-1, which is impossible since p-1 is even and 2pn-1 odd. 
In the case no odd prime divides the composite even number m we have 

m = 2h (h~ 2). If h = 2, thus m = 4 we have the relation 33 E -1 / 

j 1 (mod 4), hence mh~~ no Carmichael number. If h ~ 3 a number a can be 
found satisfying a2 = 1(mod 2h), akef=. 1(mod 2h) if O<. k <2h-2 • If 
a were a Carmichael number we had a2h-1 = 1 (mod 2h) hence 2h-2 j 2h-1, 

which is impossible. 

2°. Suppose that m = p2n, where pis an odd prime, is a Carmichael 
number. By the corollary of the lemma an integer b exists which is a 
primitive root mod p2 with (b,m) = 1. Then from bp(p- 1)::: 1(mod p2 ) and 

bP2n-l= 1(mod p2 ) we deduce p(p-1)lp2n-1 which is impossible since p 

does not divide p2n-1. 

3°: Suppose m = pq, where p and q are different odd primes. By the 
corollary of the lemma a primitive root b mod p exists which is prime 
to m. From bP- 1 = 1 (mod p) and bpq- 1 - 1 (mod q) we deduce p-1 j pq-1 1 

hence p-1jq-1. Similarly q-1,p-1, hence p-1 = q-1, p = q which contra
dicts the assertion. 

Theorem 8. If m = p 1p2 ••• ps where p1 , ••• ,p8 are different primes and 
s ~ 3, then the number mis a Carmichael number if and only if 

p.-1/mi.-1, where m. = l!L (i = 1, ••• ,s). 
1 i pi 

Proof. For i = 1, ••• ,s we know by our lemma the exi,tenoe of a primitive 
root ai mod pi which is prime to m. Then from ai Pi- ::= 1 (mod pi), 
a . m- 1 ::::::: 1 (mod Pi· ) we obtain p. -1 j m-1 , hence p. -1 f m. -1 • i - i i i 

Conversely if pi-1jmi-1 for i = 1, ••. ,s, then we have for i = 1, ••• ,s 
pi-11m-1, hence for all a prime tom we have 

pi} a pi - 1 - 1 I am- 1 - 1 , thus m / am- 1 - 1 • 

Remark. Using this property Ore finds Carmichael numbers 8). 

I do not know whether there are infinitely many Carmichael numbers. 
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Remark. It ie obvious that there are only a finite number of Carmichael 
numbers m = p1p2 ••• p8 (p1, ••• ,p8 prime) of which s-1 of the a prime fac
tors a.re given. In fact by theorem. 9 we have for the remain.ing prime p8 

the relation p8 -1lp1p2 ••• p8 _ 1-1, so only a finite number of values of 
p8 are possible. 

Beeger 9 ) proved that there are only a finite number of Carmichael 
numbers m = pqr (p,q,r prime), the smallest prime factor of which is 
given (if one of the other prime factors is given,this property is ob
vious from the above remark). 

I prove the following extension of Beeger's theorem. 
Theorem 9, There exist only a finite number of Carmichael numbers 

P1P2-••P8 (p1,•••,Ps prime) of which s-2 prime facters are given 10). 
Proof. Without loss of generality we may suppose that the Carmichael 
number m = npq, where n is given ·and wherethe.prlmeepn:nd q satisfy \he 
Felation p < q. 

By theorem 8 positive integers x and y must exist with 
(3) qn-1 = x(p-1); pn-1 = y(q-1). 

We then have x > y, and further x j 1, y /. 1 (since p and 'q are 
prime), Eliminating q from the relations (3) we find 

( 4) p-1 = (n-1) (2+y). 
xy-n 

Since p ~ q-2 the second relation (3) gives 

_ J!l=.1. < pn-1 _ n+ 1 
Y - q-1 ' p+ 1 - n - p+ 1 ' 

thus 
(5) y~ n-1. 
We now distinguish two cases. 

1°. xy-n2 ~ 2. Then from (4) and (5) it follows 

p ~ 1 + (n-1)~2n-1) <. 1 + (n-1)(2n+½-~). 

2°. xy-n2 = 1. By (5) and y /. 1 we may put y = n-d with 1 ~ d ~n-2. 

Then we have x n2+1 n2+1 · d2+1 
= -y- = ~ = n+d+ ~' hence x~ n+d+1. Thus 

1 = xy-n2 ~ (n+d+1) (n-d)-n2 = -d2+n-d, 

hence 
d~ -½+~. 

Then (4) gives 
(6) p ~ 1+(n-1)(2n+½- v;.:j). 

From the second relation ( 3) and y ~ 2 we conclude q_ ~ 1+½( pn-1), 
which proves the assertion. 
Remark. The relation (6) is rather sharp as is seen by taking n = 43, in 
which case it giv-es p ~3361 and actually m = 43.3361,3907 is a Carmi
chael number. 
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