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Abstract

An extension of the linear complementarity problem (LCP) of mathematical pro-

gramming is the so-called rational complementarity problem (RCP). This problem

occurs if complementarity conditions are imposed on input and output variables of

linear dynamical input/state/output systems. The resulting dynamical systems are called

linear complementarity systems. Since the RCP is crucial both in issues concerning

existence and uniqueness of solutions to complementarity systems and in time simula-

tion of complementarity systems, it is worthwhile to consider existence and uniqueness

questions of solutions to the RCP. In this paper necessary and su�cient conditions are

presented guaranteeing existence and uniqueness of solutions to the RCP in terms of

corresponding LCPs. Using these results and proving that the corresponding LCPs have

certain properties, we can show uniqueness and existence of solutions to linear me-

chanical systems with unilateral constraints, electrical networks with diodes, and linear

dynamical systems subject to relays and/or Coulomb friction. Ó 1999 Elsevier Science

Inc. All rights reserved.

1. Introduction

The classical linear complementarity problem (LCP) can be formulated as
follows. Given a real k-dimensional vector q and a real k � k matrix M, ®nd
k-dimensional vectors y and u such that y � q�Mu and for all indices i we
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have yi P 0, ui P 0, and at least one of yi and ui is zero. The LCP and various
rami®cations and generalizations of it play an important role in many opti-
mization and equilibrium problems, and for this reason the LCP has been
studied extensively in mathematical programming; see [8] for a comprehensive
treatment. The rational complementarity problem (RCP), which is the main
subject of this paper, is a variation of the LCP in which the ®eld of real
numbers is replaced by the ®eld R�s� of rational functions with real coe�cients.
To formulate a complementarity problem over R�s�, we equip the ®eld of
rational functions with a suitable order to be de®ned below.

The RCP is motivated by its relations to a class of discontinuous dynamical
systems, called linear complementarity systems (LCS) as studied in
[13,14,30,31]. Linear complementarity systems are speci®ed by linear di�eren-
tial equations and inequalities similar to those appearing in the linear com-
plementarity problem. Typical examples of such systems include mechanical
systems subject to unilateral constraints, electrical networks with diodes, sys-
tems subject to relays and saturation characteristics, optimization problems
with state constraints and systems with Coulomb friction. The dynamics of the
complementarity class consists of continuous-time phases separated by state-
events resulting in re-initializations of the continuous state of the system. In
fact, in each continuous-time phase (called `modes') the system is governed by
its own characteristic dynamic laws. The RCP plays a crucial role for LCS as it
couples the continuous state to a corresponding mode. Systems in which
continuous dynamics and switching rules are connected are called `hybrid
dynamical systems'. Hybrid systems have recently drawn much attention, see
e.g. [2,27]. In this ®eld of research existence and uniqueness of solutions are
often assumed, and su�cient conditions are rarely given. In previous papers
[13,14,30,31] well-posedness results for LCS were obtained based on the so-
called linear dynamic complementarity problem, a version of the complement-
arity problem based on taking derivatives of the LCS. The RCP has only been
mentioned without exploiting its possibilities. In establishing a relationship
between RCP and LCS, conditions for existence and uniqueness of solutions to
LCS are derived in this paper. These conditions are more general than the ones
in [13,14,30,31].

There is a connection between the RCP and a parameterized form of the
LCP; this relation is explored in detail in this paper. There are also relations
between the RCP and certain generalizations of the LCP. Speci®cally, we
discuss the order complementarity problem (OCP) that was de®ned in [6] as well
as a version of the LCP de®ned over a general totally ordered ®eld. We illus-
trate that certain results can be derived on an abstract level; however for the
main part of the paper we opt for a concrete treatment heading directly to-
wards establishing the connection between RCP and a parameterized LCP. It is
this connection (plus the body of knowledge already available for LCP) which
enables us to establish well-posedness results for LCS. As speci®c applications
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we discuss linear mechanical systems with unilateral inelastic constraints,
passive linear electrical networks with ideal diodes (and more generally linear
dissipative systems with complementarity conditions), and linear systems with
relays (based on LCP-results in [17]). The earlier well-posedness results in
[13,14,30,31] do not cover these special subclasses of complementarity systems.

The outline of the paper is as follows. In the next two sections, we introduce
some notational conventions and several complementarity problems: LCP,
RCP, OCP and an `abstract linear complementarity problem.' In Section 4
necessary and su�cient conditions guaranteeing existence and uniqueness of
solutions to RCP will be presented in terms of LCPs. In Section 5 LCS will be
introduced together with its solution concept. The connection between solu-
tions to RCP and initial solutions to LCS will be stated. In the next section
three physically relevant subclasses of complementarity systems are considered
for which well-posedness results are obtained.

2. Notation

In this paper, the following notational conventions will be in force. N de-
notes the natural numbers f0; 1; 2; . . .g, R the real numbers, R� the nonnegative
real numbers and C the complex numbers. For a positive integer l, �l denotes the
set f1; 2; . . . ; lg. If a is a (column) vector with k components, we denote its ith
component by ai. Given two vectors a 2 Rk and b 2 Rl, then col�a; b� denotes
the vector in Rk�l that arises from stacking a over b. The support of a vector
a 2 Rk is de®ned as supp a :� fi 2 �k j ai 6� 0g. MT is the transpose of the matrix
M 2 Cm�n and M� denotes the complex conjugate transpose. A matrix
M 2 Cm�m is called positive semi-de®nite if 2Re x�Mx � x��M �M��x P 0 for
all x 2 Cm. This is denoted by M P 0. In case strict inequality holds for all
nonzero vectors x, we call the matrix positive de®nite and write M > 0. By I
we denote the identity matrix of any dimension.

Given M 2 Rk�l and two subsets I � �k and J � �l, the �I ; J�-submatrix of M
is de®ned as MIJ :� �Mij�i2I;j2J . In case J � �l, we also write MI� and if I � �k, we
write M�J . The �I ; I�-submatrices are sometimes called the principal subma-
trices. For a vector a, aI :� �ai�i2I . A matrix M 2 Rk�l generates a convex cone,
denoted by pos M , obtained by taking nonnegative linear combinations of the
columns of M. Formally,

pos M :� fq 2 Rk j q � Mv for some v 2 Rl
�g:

By R�s� we denote the ®eld of real rational functions in one variable. For
reasons of clarity and cohesion, we shall systematically use a notation in which
vectors over R�s� are written with an argument s and (vectors of) time func-
tions appear with an argument t. Vectors over R are written without argument;
distributions are also written without an argument, but in a di�erent font. If
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p�s� � 0 for all s, we write (to avoid misunderstandings) p�s� � 0. If p�s� is not
the zero polynomial, we write p�s� 6� 0. M�s� 2 Rk�l�s� means that M�s� is a
k � l matrix with entries in R�s�. Furthermore, the kernel of a rational matrix
M�s� 2 Rk�l�s� over R�s� is denoted by kerR�s� M�s�. The dimension of a linear
subspace L of Rk�s� over R�s� is denoted by dimR�s� L. A rational matrix is
called (strictly) proper, if for all entries the degree of the numerator is smaller
than or equal to (strictly smaller than) the degree of the denominator.

A vector u 2 Rk is called nonnegative, and we write u P 0, if ui P 0 for all
i 2 �k and positive (u > 0), if ui > 0 for all i 2 �k. If two vectors u, y 2 Rk satisfy
that for all i at least one of ui and yi is zero, we write u ? y. Similarly, we write
u�s� ? y�s� for two rational vectors u�s�, y�s� 2 Rk�s�, if for all i at least one of
ui�s� � 0 and yi�s� � 0 is satis®ed.

The set of arbitrarily often di�erentiable functions from R to Rm is denoted
by C1�R; Rm�.

3. Complementarity problems

In this section, we introduce several instances of the complementarity
problem. One of the fundamental results in the literature on complementarity
problems will be examined for all versions of the complementarity problem
considered here.

The linear complementarity problem (LCP) [8] is de®ned as follows.

De®nition 3.1 (Linear complementarity problem). Given a matrix M 2 Rk�k

and a vector q 2 Rk. LCP(q;M) amounts to ®nding u, y 2 Rk such that

y � q�Mu; �1�
y P 0; u P 0; �2�
y ? u: �3�

Recall that (3) implies that for all i 2 �k yi � 0 or ui � 0. Furthermore, it is
evident that (2) and (3) can be replaced by u ^ y � 0, where ^ denotes the
componentwise minimum of two vectors.

LCP(q;M) is called solvable, if there exist u, y 2 Rk satisfying (1)±(3).
LCP(q;M) is called feasible, if there exist u, y 2 Rk that satisfy (1) and (2).

In [8], a wealth of theoretical and algorithmical results have been gathered
concerning this fundamental problem in mathematical programming. We recall
some notations and concepts from [8].

If we rewrite (1) as

q � ÿMu�Iy � �ÿM I� u

y

� �
; �4�
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we see that we have to express q as an element of the cone pos �ÿM I�.
However, this has to be done in a special way. In general, when q � Az with
zi 6� 0, we say that the representation uses the column A�i of A. The condition
y ? u requires that in expressing q as an element of the cone pos �ÿM I� not
both ÿM�i and I�i may be used.

De®nition 3.2. Given M 2 Rk�k, J � �k, K � �k, J \ K � ; we de®ne the matrix
CM�J ;K� 2 Rk�card�J[K� as 1

CM�J ;K� :� �ÿM�J I�K�: �5�
We de®ne the complementarity matrix CM�J� 2 Rk�k (relative to M) by

CM�J� :� CM�J ; J c�
with J c :� �k n J :� fi 2 �k j i 62 Jg. The associated cone pos CM�J� is called a
complementarity cone (relative to M).

If M 2 Rk�k, there are 2k complementarity cones. From the discussion above
De®nition 3.2, it follows that if for some q 2 Rk a solution to LCP�q;M� exists,
then q has to be an element of a complementarity cone pos CM�J� for some
J � �k. Hence, the collection of vectors q for which a solution to LCP�q;M�
exists is exactly the union of all complementarity cones of M, i.e.

LCP�q;M� has a solution iff q 2
[
J��k

pos CM�J�: �6�

Hence, the existence of solutions to LCP�q;M� for all q 2 Rk is equivalent to
the union in (6) being equal to Rk.

If we assume that all complementarity matrices of M are invertible, a nec-
essary and su�cient condition for existence and uniqueness of solutions to
LCP�q;M� for all q is that the 2k complementarity cones of M form a `parti-
tion' of the space Rk. We call such a set of 2k cones a partition of the vector
space Rk, if the union of the cones is the whole vector space and the intersection
of any pair of cones is a lower dimensional cone (called `face' or `edge') [29].

For index sets I, J � �k with the same number of elements the �I ; J�-minor of
M is the determinant of the square matrix MIJ :� �Mij�i2I;j2J . The �I ; I�-minors
are also known as the principal minors. M is called a P-matrix, if all principal
minors are strictly positive.

The following result is classical.

1 ``card'' denotes the cardinality of a set. For a ®nite set the cardinality is equal to the number of

elements in the set.

W.P.M.H. Heemels et al. / Linear Algebra and its Applications 294 (1999) 93±135 97



Theorem 3.3. For given M 2 Rk�k, the problem LCP(q;M) has a unique solution
for all vectors q 2 Rk if and only if M is a P-matrix.

Proof. See [8,29]. �

In this paper we shall be motivated to consider a problem in which the role
of the real numbers in the LCP is taken over by the ®eld R�s� of rational
functions with real coe�cients. To formulate the ``rational complementarity
problem'' it is convenient to ®rst introduce a total ordering on R�s�. One can
de®ne many orderings on R�s�, but we shall be particularly interested in the
following one.

De®nition 3.4. A rational function f �s� 2 R�s� will be said to be nonnegative if

9r0 2 R 8r 2 R fr > r0 ) f �r�P 0g:
If this condition holds we write f �s� � 0.

In other words, a rational function f �s� is nonnegative if and only if f �r� is
nonnegative for all su�ciently large real r. It is easily veri®ed that the binary
relation � so de®ned is indeed a total ordering on R�s�. Indeed, a nonzero
rational function must be either eventually positive or eventually negative,
since a rational function can have only ®nitely many poles and zeros. The
ordering de®ned above can also be described as the one induced by the lexi-
cographic ordering of the coe�cients of the Laurent series around in®nity. On
the rational vectors Rk�s� a partial ordering induced by the ordering in De®-
nition 3.4 can be introduced as follows. We write for f �s� 2 Rk�s� that f �s� � 0
if and only if fi�s� � 0 for i � 1; . . . ; k. After these preparations, the RCP can
now be stated as follows.

De®nition 3.5 (Rational complementarity problem). Let a rational vector
q�s� 2 Rk�s� and a rational matrix M�s� 2 Rk�k�s� be given. The rational
complementarity problem with data given by q�s� and M�s�, denoted by
RCP(q�s�;M�s�), is the problem of ®nding rational k-vectors u�s� 2 Rk�s� and
y�s� 2 Rk�s� such that

y�s� � q�s� �M�s�u�s� and 0 � u�s� ? y�s� � 0: �7�
Any pair of rational vectors satisfying the above conditions is said to be a
solution of RCP(q�s�;M�s�).

Writing out the RCP explicitly in terms of the ordering yields: ®nd rational
vector functions u�s� and y�s� such that

y�s� � q�s� �M�s�u�s� and yT�s�u�s� � 0 �8�
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hold for all s 2 R and there exists a r0 2 R such that for all rP r0 we have

y�r�P 0; u�r�P 0: �9�
The latter formulation of the RCP(q�s�;M�s�) is used in [31].

Clearly, RCP is strictly analogous to LCP and one may expect that results
like Theorem 3.3 will mutatis mutandis be valid for RCP. We shall prove below
that this is indeed the case, but we shall also establish a relation between RCP
and a parameterized version of LCP. Since a large body of results on LCP is
available, it will prove to be convenient to have such a relation. First let us
discuss how RCP ®ts into various possible generalizations of LCP.

Firstly, we note that R�s� can be looked at as an (in®nite-dimensional) vector
space over R, and hence the same holds for Rk�s�. Obviously the partial order�
is compatible with the vector space structure of Rk�s� as a vector space over R;
moreover, for each two elements f �s� and g�s� there is a maximum f �s� _ g�s�
and a minimum f �s� ^ g�s� (coinciding with the componentwise maximum and
minimum), so that Rk�s� is actually a (real) vector lattice [25]. Therefore, RCP
can be looked at as a special case of the order complementarity problem which is
de®ned in [6]. This fact was pointed out to us by Kanat Cßamlibel.

De®nition 3.6 (Order complementarity problem). Let X be a vector lattice. Let
a vector q 2 X and a linear mapping M : X ! X be given. The order comple-
mentarity problem with data given by q and M (denoted by OCP(q;M)) is the
problem of ®nding vectors u and y in X such that

y � q�Mu and u ^ y � 0: �10�
Any pair of vectors �u; y� satisfying the above conditions is said to be a solution
to OCP(q;M).

To formulate a statement analogous to Theorem 3.3 for OCP, ®rst the
notion of a mapping of type (P) has to be introduced. In the de®nition below
(taken from [6, De®nition 2.10.b]) the notations x� :� x _ 0 and xÿ :� ÿ�x ^ 0�
are used for the positive and the negative parts of x.

De®nition 3.7. Let X be a vector lattice. A linear mapping M : X ! X is said to
be of type (P) if the conditions

�Mx�� ^ x� � 0 and �Mx�ÿ ^ xÿ � 0 �11�
hold only for x � 0.

The de®nition could be summarized as: M is a mapping of type (P) if it does
not reverse the sign of any nonzero vector. The result for OCP that is most
closely to Theorem 3.3 is now the following [6, Theorem 2.14].
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Theorem 3.8. Let X be a vector lattice. A linear mapping M : X ! X is of
type (P) if and only if for each q 2 X the problem OCP(q;M) has at most one
solution.

A real matrix is of type (P) if and only if it is a P -matrix (cf. [9], [8, Theorem
3.4.4]). In the general context of OCP, however, the type-(P) property is not
strong enough to guarantee existence of solutions, as is shown by an example
in [6].

Of course, it would be possible to consider a generalized OCP with vector
lattices over R�s� rather than over R. However, in this way we would not make
use of the fact that in the rational complementarity problem we are dealing
with a space that is ®nite-dimensional as a vector space over R�s�. So, rather
than looking at RCP as a special case of an OCP formulated over R�s�, we will
look at it as a special case of an abstract version of the standard LCP. This
abstract version can be formulated as follows.

De®nition 3.9 (Abstract linear complementarity problem). Let �F; P� be a to-
tally ordered ®eld. Let q be a vector in Fk and let M be a matrix over F of size
k � k. The linear complementarity problem over F with data given by q and M
(LCPF�q;M�) is the problem of ®nding vectors u and y in Fk such that

y � q�Mu and u ^ y � 0: �12�

Any pair of vectors �u; y� satisfying the above condition is said to be a solution
to LCPF�q;M�.

Obviously, RCP is the same as LCPR�s�, while LCPR is the standard LCP. So
if we can prove that Theorem 3.3 and related results can be generalized to
LCPF, then we get immediate corollaries for the rational complementarity
problem. Unfortunately it appears that the proofs of Theorem 3.3 that are
available in the literature (for instance [8,29]) do not readily extend to the
abstract case because of their dependence on geometric intuition and/or to-
pological properties of the real line. Below we shall present a proof of the
abstract analogue of Theorem 3.3 on the basis of an indirect argument using a
result from mathematical logic known as ``Tarski's principle''. Further on in
the paper we shall however use a di�erent approach, using more concrete
reasoning to obtain results that are formulated only for RCP; this will su�ce
for the intended applications to certain dynamical systems.

First we establish that in the context of an arbitrary totally ordered ®eld, a
matrix is a P-matrix if and only if it is of type (P) in the sense of De®nition 3.7.
The standard proof of this fact (see [8,9]) makes use of eigenvalues in a way
that does not extend to general ordered ®elds.
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Lemma 3.10. Let �F; P� be a totally ordered field. The following properties are
equivalent for matrices M 2 Fk�k.

(i) All principal minors of M are positive.
(ii) If x 2 Fk satisfies �Mx�ixi6 0 for all i 2 f1; . . . ; kg, then x � 0.

Proof. The proof of the implication from (i) to (ii) as given in [9] is directly
applicable to the case in which the real line is replaced by an arbitrary totally
ordered ®eld, so we only need to prove the implication in the reverse direction.
The proof will be given by induction with respect to the size of the principal
submatrices of M. So suppose that (ii) holds, and consider ®rst the minors
corresponding to principal submatrices of M of size 1, i.e. the diagonal ele-
ments of M. Let ep denote the pth unit vector. Since obviously �Mep�i�ep�i � 0
for i 6� p, condition (ii) implies Mpp � �Mep�p�ep�p > 0. Assume now that all
minors of principal submatrices of sizes up to jÿ 1 are positive, and suppose
that there is a principal submatrix MII of size j such that det MII is nonpositive.
Take p 2 I and de®ne ~I :� I n fpg. Let N be the matrix de®ned by

N � kepeT
p ; k � ÿ det MII

det M~I ~I
: �13�

Note that by our assumptions kP 0. Since �M � N�II is obtained from MII by
adding k times the pth unit vector with card(I) components to the pth column
of MII , and since the determinant of a matrix is linear as a function of each of
its columns, we have

det�M � N�II � det MII � k det M~I ~I � 0:

Therefore, there exists a nonzero vector xI such that �M � N�II xI � 0. Let x be
the vector de®ned by xi � �xI�i for i 2 I and xi � 0 for i 62 I . Write y � Mx, and
note that yI � MII xI � ÿNIIxI . Consequently, for i 62 I we have yixi � 0 because
xi � 0, for i 2 ~I the relation yixi � 0 holds because yi � 0, and ®nally
ypxp � ÿkx2

p6 0. Therefore condition (ii) is violated and we have reached a
contradiction. �

To get the analogue of Theorem 3.3 for the abstract version of LCP we shall
appeal to some ideas in mathematical logic, in particular a result known as
Tarski's principle. We brie¯y review the most pertinent facts; see [28] for a
complete treatment. A totally ordered ®eld �F; P� is said to be real closed if its
ordering P is unique and there is no proper algebraic extension ®eld of F that
has an ordering extending P . It can be shown that a totally ordered ®eld is
real closed if and only if F� �������ÿ1

p � is algebraically closed. For example, R is real
closed but R�s� is not. It follows from Zorn's lemma that every totally ordered
®eld admits an algebraic order extension that is real closed; by a theorem of
Artin and Schreier [3], the real closure is unique up to isomorphism. An
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elementary property of a totally ordered ®eld is one that can be stated in ®rst-
order logic (allowing quanti®cation over individual elements but not over sets)
using the algebraic operations and the order relation. Tarski's principle [28,
Corollary 5.3] asserts that real closed ®elds are indistinguishable from R on the
basis of elementary properties; so any elementary property that can be shown
to hold in R is true in every real closed ®eld.

Theorem 3.11. Let �F; P� be a totally ordered field. The following statements
are equivalent for matrices M in Fk�k.

(i) For all q 2 Fk, the problem LCPF�q;M� has a unique solution.
(ii) All principal minors of M are positive.

Proof. We have already shown in the foregoing lemma that (ii) is equivalent to
the statement that M is of type (P). The implication from (i) to (ii) then follows
as in [4, p. 274] (see also [6, Theorem 2.14]), since the argument given there,
which proceeds from the assumption that M is of type (P), is valid over an
arbitrary totally ordered ®eld. It remains to prove the reverse implication. For
this, note that the property expressed in the theorem is (for each given k) an
elementary property. Since the statement is true for R by Theorem 3.3, it
follows from Tarski's principle that the statement is also true for the real al-
gebraic closure �F of F. In particular, if all principal minors of M are positive,
then there exists for each given q 2 Fk a unique pair of vectors y and u in �Fk

such that y � q�Mu and y ^ u � 0. Let I � �k be the set of indices i for which
yi � 0, and let ~M be the matrix of size k � k whose jth column equals the jth
column of ÿM if j 2 I , and is equal to the jth unit vector if j 62 I . Note that ~M is
invertible, since its determinant is (up to a sign) a principal minor of M. De®ne
v � ~Mÿ1q 2 Fk. Because uI � 0 and yIc � 0 we must have vI � yI and vIc � uIc ,
and in particular it follows that both y and u must actually belong to Fk. So we
have constructed a solution to LCPF�q;M�. Since the solution is unique over �F,
it is certainly also unique over F. �

In particular it follows that the rational complementarity problem
RCP(q�s�;M�s�) has a unique solution for all q�s� if and only if all principal
minors of M�s� are positive in the ordering that we de®ned on R�s�. A corollary
that is speci®c to RCP is the following.

Corollary 3.12. For a rational matrix M�s� 2 Rk�k�s�, the problem RCP �q�s�;
M�s�� has a unique solution for all q�s� 2 Rk�s� if and only if there exists a r0 2 R

such that for all rP r0 the problem LCP�q;M�r�� is uniquely solvable for all
q 2 Rk.

Proof. According to Theorem 3.11, the ®rst statement is true if and only if

8I � �k 9r0 2 R 8r 2 R fr P r0 ) det MII�r� > 0g; �14�
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whereas the second statement can be reformulated as (Theorem 3.3)

9r0 2 R 8r 2 R 8I � �k fr P r0 ) det MII�r� > 0g: �15�
Since the ®rst quanti®cation in (14) is over a ®nite set, the two statements are
equivalent. �

Note that the corollary is actually equivalent to Theorem 3.11 as applied to
RCP. The connection between RCP and LCP as given in the corollary will be of
crucial importance below to show well-posedness results for certain dynamical
systems. Actually, we shall need some re®nements of the corollary. Not in all
cases does an ``abstract'' approach lead directly to a statement relating RCP
and a parameterized LCP. Interchanging quanti®ers is involved and this is not
always as easy as in the proof above. Below we shall follow a ``concrete''
approach, in which we aim directly for connections between results connected
to RCP and corresponding results connected to a parameterized LCP.

4. Relation between RCP and LCP

Let q�s� 2 Rk�s� and M�s� 2 Rk�k be given. For any particular r 2 R the
data of RCP (8) and (9) de®nes a standard LCP�q�r�;M�r��. So, a connection
between the RCP and the corresponding parameterized set of LCPs must exist,
especially considering Corollary 3.12.

The ®rst re®nement of Corollary 3.12 is concerned with the question of
existence of solutions to RCP independently of uniqueness. Note that the
theorem below applies to RCP�q�s�;M�s�) for a speci®c q�s� and does not state
a result for all possible q�s� 2 Rk�s� as in Corollary 3.12. Therefore, the result
below is much stronger. The proof is given in a direct way and not via the
abstract route that was indicated in Section 3.

Theorem 4.1. Let q�s� 2 Rk�s� and M�s� 2 Rk�k�s� be given. RCP�q�s�;M�s��
has a solution if and only if there exists a r0 2 R such that LCP�q�r�;M�r�� has
a solution for all r P r0.

We would like to stress that the solvability of RCP�q�s�;M�s�� is not
completely characterized by the solvability of LCP�q�1�;M�1�� where q�1�
and M�1� denote the limits of q�r� and M�r� for j r j! 1, if they exist. 2

2 If the limits do not exist or are zero, one could perform some scaling on the equations of the

RCP. Solvability of RCP�q�s�;M�s�� is equivalent to solvability of RCP�D1�s�q�s�;D1�s�M�s�D2�s��
for diagonal rational matrices Di�s� where the diagonal elements are equal to some (negative, zero

or positive) power of s.
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Example 4.2. Take q�s� � �ÿ1ÿ 1
s 1�T and take

M�s� � 1 ÿ 1

ÿ1 1

� �
:

Then RCP�q�s�;M�s�� has no solutions, while LCP�q�1�;M�1�� has un-
countably many.

Conversely, RCP�q�s�;M�s�� with

q�s� � �ÿ1 ÿ 1�T

and

M�s� �
1� 1

s ÿ 1

ÿ1 1� 1
s

0@ 1A
admits a solution (note that M�r� is a P -matrix for all nonnegative real r),
although LCP�q�1�;M�1�� is unsolvable.

Before we prove Theorem 4.1, we introduce some auxiliary concepts and
results. Consider the equation

w � Mz; z P 0 �16�
for given vector w 2 Rk and matrix M 2 Rk�l. The solution set, de®ned as
S :� fz P 0 j w � Mzg, is a convex polyhedron (i.e., the intersection of ®nitely
many closed halfspaces).

De®nition 4.3. A solution z to (16) is said to be basic if M�supp z has full column
rank.

Remark 4.4. By convention, the matrix with no columns has full column rank.
In this way, z � 0 is a basic solution to (16) with w � 0.

Lemma 4.5. If a solution to (16) exists, then there exists a basic solution as well.

Proof. See Theorem 2.6.12 in [8]. �

De®nition 4.6. Let q 2 Rk and M 2 Rk�k be given. A solution �u; y� to
LCP�q;M� is basic, if col�u; y� is a basic solution to q � �ÿM I�z, z P 0.

Lemma 4.7. Let q 2 Rk and M 2 Rk�k be given. If a solution to LCP�q;M�
exists, then there exists a basic solution as well.
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Proof. Let �u; y� be a solution to LCP�q;M�. Consider the problem
q � �ÿM I��J z, z P 0 with J� supp (col�u; y��. Since this problem has a so-
lution, Lemma 4.5 yields that it has a basic solution as well. Since this basic
solution uses a subset of the columns used by col�u; y�, it is clear that the
complementarity conditions still hold for the basic solution. �

The last lemma before we can prove Theorem 4.1 is the following. We omit
the proof which can be based on the Smith±McMillan form of rational
matrices [20, Theorem 2.3].

Lemma 4.8. If G�s� is a rational matrix, then the set of k 2 C for which G�k� has
dependent columns coincides with the zero set of some polynomial.

Proof of Theorem 4.1. We divide the pairs �J ;K� with J ;K � �k and J \ K � ;
in two sets Lind and Ldep depending on the fact whether the columns of
CM�s��J ;K� are independent over R�s� or not. By Lemma 4.8, there exist
polynomials pJ ;K�s� satisfying for all k 2 C, pJ ;K�k� � 0 if and only if CM�k��J ;K�
has dependent columns. Then Lind and Ldep are given by

Lind :� f�J ;K� j J ;K � �k; J \ K � ;; pJ ;K�s� 6� 0g;
Ldep :� f�J ;K� j J ;K � �k; J \ K � ;; pJ ;K�s� � 0g:

We take r1 P r0 (r0 as in the formulation of Theorem 4.1) such that r1 is larger
than all real zeros of all the polynomials pJ ;K�s� that are not identically zero. As
a consequence, if there exists a r P r1 such that the real matrix CM�r��J ;K� has
(in)dependent columns, then the real matrix CM�r��J ;K� has (in)dependent
columns for all rP r1.

Note that for �J ;K� 2Lind, we have q�s� 2 CM�s��J ;K� (for all s) if and only
if the columns of the matrix �q�s� CM�s��J ;K�� are dependent over R�s�. Hence,
we can apply Lemma 4.8 to get polynomials rJ ;K�s� satisfying for �J ;K� 2Lind

and for r 2 R, r > r1, rJ ;K�r� � 0 if and only if q�r� 2 CM�r��J ;K�. Since the
rJ ;K�s� are polynomials, we can ®nd a real r2 P r1 (by taking it larger than all
real zeros of all nonzero polynomials rJ ;K�s�) with the property that if for some
�J ;K� 2Lind there holds q�r� 2 CM�r��J ;K� for certain real rP r2, then
q�r� 2 CM�r��J ;K� for all r 2 R. All pairs �J ;K� 2Lind for which rJ ;K�s� � 0
are denoted by Lcon

ind .
Finally, take r3 P r2 such that all components of the solutions of

q�s� � CM�s��J ;K�
uJ �s�
yK�s�

� �
�17�

for �J ;K� 2Lcon
ind do not change sign anymore for s P r3. Since CM�s��J ;K� has

independent columns over R�s� for �J ;K� 2Lcon
ind , this solution is unique and
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rational. Hence, r3 P r2 has to be taken larger than all real zeros and poles of
all nonzero entries of all the solutions to (17) corresponding to �J ;K� 2Lcon

ind .
Take r P r3. Since r P r3 P r0, we have by assumption that LCP

�q�r�;M�r�� has a solution �u; y� (by Lemma 4.7 we may assume that it is
basic), that results in writing

q�r� � CM�r��I ; Ic� uI

yIc

� �
�18�

for some I � �k and col�uI ; yIc�P 0. The columns corresponding to indices that
are not contained in supp col�uI ; yIc� are omitted resulting in

q�r� � CM�r��J ;K� col�uJ ; yK� �19�
with K � Ic, J � I . Moreover, CM�r��J ;K� has full column rank, because the
solution �u; y� is basic. Hence, �J ;K� 2Lind. By de®nition of r2, the fact that
(19) is true for r, and rP r2, it follows that �J ;K� 2Lcon

ind . This means that
(17) has a solution col�uJ �s�; yK�s�� for �J ;K�. Since col�uJ �r�; yK�r�� satis®es
(19) and CM�r��J ;K� has full column rank, it is clear that col�uJ �r�; yK�r�� �
col�uJ ; yK�P 0. Since col�uJ �s�; yK�s�� does not change sign for s P r3, it is clear
that col�uJ �s�; yK�s��P 0 for all s P r3. By introducing uInJ �s� � 0 and
yIcnK�s� � 0, �u�s�; y�s�� is a solution to RCP�q�s�;M�s��.

The other way around is easy. If �u�s�; y�s�� is a solution to RCP(q�s�;M�s�)
satisfying y�r�P 0, u�r�P 0 for all r P r0, then �u�r�; y�r�� is a solution to
LCP�q�r�;M�r�� for all r P r0. �

Next, the question of uniqueness of solutions to RCP�q�s�;M�s�� is con-
sidered. We shall actually prove the following fairly general version.

Theorem 4.9. Let E 2 Rl�k, q�s� 2 Rk�s� and M�s� 2 Rk�k�s� be given. The
following statements are equivalent.
1. Any pair of solutions �ui�s�; yi�s��, i � 1; 2 to RCP�q�s�;M�s�� satisfies

Eu1�s� � Eu2�s� for all s.
2. There exists a real number r0 such that for all r P r0 any pair of solutions
�ui; yi�, i � 1; 2 to LCP�q�r�;M�r�� satisfies Eu1 � Eu2.

From this it follows easily that uniqueness of the solution to
LCP�q�r�;M�r�� for all su�ciently large r is equivalent to the uniqueness of
the solution to RCP�q�s�;M�s��.

Corollary 4.10. Let q�s� 2 Rk�s� and M�s� 2 Rk�k�s� be given. RCP�q�s�;M�s��
has at most one solution if and only if there exists a real number r0 such that for
all rP r0 LCP�q�r�;M�r�� has at most one solution.
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Proof. Take E � I in Theorem 4.9 and note that u�s� determines y�s� uniquely
in the RCP and that u determines y uniquely in the LCP. �

Note that Corollary 4.10 is stronger than Corollary 3.12, because it treats
uniqueness independently of existence of solutions and moreover, it states a
uniqueness result for separate rational k-vectors instead of for all rational
k-vectors.

Also uniqueness of solutions to RCP�q�s�;M�s�� does not follow from
uniqueness properties of solutions to LCP�q�1�;M�1�� (provided the limits
exist).

Example 4.11. Take q�s� � �ÿ1ÿ 1�T and

M�s� � 1� 1
s 1

1 1

� �
:

LCP�q�1�;M�1�� has multiple solutions, while RCP�q�s�;M�s�� has only one
solution, because M�r� is a P-matrix for all r > 0 (see Theorem 3.3).

The remainder of this section is devoted to the proof of Theorem 4.9, for
which some preliminary results are needed.

De®nition 4.12. Let C be a convex set. Then z 2 C is called an extreme point of
C, if for all z1, z2 2 C and for all k 2 �0; 1�

z � kz1 � �1ÿ k�z2; z1 6� z2 ) k 2 f0; 1g:

Lemma 4.13. A solution to (16) is basic if and only if it is an extreme point of the
solution set S.

Proof. See Theorem 2.6.13 in [8]. �

The following Lemma is known as Goldman's resolution theorem (Theorem 1
in [11], Theorem 2.6.23 in [8]). The vector in Rk with all components equal to 1 is
denoted by e.

Lemma 4.14. The solution set S of (16) has a finite number of extreme points, say
fp1; . . . ; prg. Define P as the convex hull of the extreme points of S, i.e.,

P :�
Xr

i�1

aipi

����ai P 0;
Xr

i�1

ai � 1

( )

and define the cone
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C :� fx P 0 j Mx � 0g:
Then it holds that

S � P � C:

Furthermore, if Y :� fz P 0 j Mz � 0; eTz � 1g 6� ;, then Y has a finite number
of extreme points, say fy1; . . . ; ylg and C equals pos�y1; . . . ; yl�. Y � ; if and only
if C � f0g.

Lemma 4.15. Let E be a matrix in Rl�k. Suppose that (16) has (at least) two
solutions zi, i � 1; 2 with Ez1 6� Ez2, but that any pair of basic solutions zi

bas,
i � 1; 2 satisfies Ez1

bas � Ez2
bas. Then there exists an index set I such that ker M�I

is nontrivial, no vectors in ker M�I have components of opposite sign and this
kernel is spanned by a vector v P 0 with Ev 6� 0 (in particular, dim ker M�I � 1).

Proof. According to Lemma 4.14 the solution set S of (4.14) can be written as
P � C with P and C as in Lemma 4.14. Since Ep1 � � � � � Epr and Ez1 6� Ez2,
it is obvious that one of the extreme points of Y, as de®ned in Lemma 4.14,
must be outside the kernel of E, say y1. Take I :� supp y1. Note
that 0 6� y1 2 ker M�I and that Ey1 6� 0. Since y1 is an extreme point of Y
(or equivalently, y1 is a basic solution to Mz � 0, eTz � 1, z P 0),
ker M�I \ ker eT

I � f0g implying that dim ker M�I 6 1. Hence, ker M�I is
spanned by y1 which has no components of opposite sign, because it is con-
tained in Y. �

Remark 4.16. If no vectors in a nontrivial subspace V have components of
opposite sign, then its dimension must be equal to one. Indeed, take two
nonzero vectors z1 P 0 and z2 P 0 contained in V. Consider z1 ÿ az2. When a
increases from zero, all components must change from nonnegative to non-
positive at the same time, i.e. we must have z1 � az2 for some a.

Lemma 4.17. Let E be a matrix in Rl�k. Suppose that LCP�q;M� has (at least)
two solutions �ui; yi�, i � 1; 2 with Eu1 6� Eu2, but that any pair of basic solutions
�ui

bas; y
i
bas�, i � 1; 2 satisfies Eu1

bas � Eu2
bas. Then there exist a particular basic

solution �ubas; ybas� and disjoint index sets J, K such that
· supp ubas � J , supp ybas � K;
· no vectors in ker CM�J ;K� have components of opposite sign; and
· there is a vector col �z;w�P 0 with wKc � 0 and zJ c � 0 such that col�zJ ;wK�

spans kerCM�J ;K� and Ez 6� 0.

Proof. The set of all solutions of LCP�q;M� can be written as the union of the
solution sets of q � �ÿM I�col�u; y�, uJ c � 0, yJ � 0, u P 0 and y P 0 for all
index sets J � �k. Consider an index set J whose corresponding system of
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equalities and inequalities allows at least two solutions col�u1; y1�, col�u2; y2�
with Eu1 6� Eu2 and proceed as in the proof of Lemma 4.15. Note that such
index sets must exist, because otherwise the hypothesis, that multiple solutions
�ui; yi�, i � 1; 2 to LCP�q;M� satisfy Eu1 6� Eu2, is contradicted. �

Proof of Theorem 4.9. Suppose multiple solutions �ui�s�; yi�s��, i � 1; 2 to
RCP�q�s�;M�s�� exist satisfying Eu1�s� 6�Eu2�s�. Then �ui�r�; yi�r��, i � 1; 2
form di�erent solutions to LCP�q�r�;M�r�� with Eu1�r� 6� Eu2�r� for all r 2 R

su�ciently large.
To prove the converse, we consider the collection of �J ;K�-pairs with

J \ K � ; satisfying

dimR�s� kerR�s�CM�s��J ;K� � 1:

We denote this set by L1. Let gJ ;K�s� be a polynomial vector spanning
ker CM�s��J ;K� for �J ;K� 2L1. We de®ne r4 2 R� such that the components
of gJ ;K�r� for �J ;K� 2L1 do not change sign anymore for r 2 R, r P r4.

Take r5 2 R� such that for all �J ;K�-pairs with J, K � �k and J \ K � ; the
following is true:

dim ker CM�r��J ;K� � dimR�s� kerR�s� CM�s��J ;K� for all rP r5:

We de®ne r6 :� maxi2�5 ri with r1, r2 and r3 as de®ned in the proof of
Theorem 4.1.

We claim that if there exists a real number r > r6 with the property that
LCP�q�r�;M�r�� has multiple solutions �ui; yi�, i � 1; 2 with Eu1 6� Eu2, then
there exist also multiple solutions �ui�s�; yi�s��, i � 1; 2 to RCP�q�s�;M�s�� with
the property Eu1�r� 6� Eu2�r�.

According to Lemma 4.7 there exists at least one basic solution to
LCP�q�r�;M�r��. If there exist two (or more) basic solutions �ui

bas; y
i
bas�,

i � 1; 2 with Eu1
bas 6� Eu2

bas the construction of the proof of Theorem 4.7 can be
used to ®nd two di�erent solutions to RCP(q�s�;M�s�). Note that the con-
structed solutions di�er at s � r.

If any pair of basic solutions �ui
bas; y

i
bas�, i � 1; 2 satis®es Eu1

bas � Eu2
bas, then

Lemma 4.17 guarantees the existence of disjoint index sets J, K and a basic
solution �ubas; ybas� with supp ubas � J , supp ybas � K such that ker CM�r��J ;K�
is nontrivial and no vectors in ker CM�r��J ;K� have components of opposite
sign. Remark 4.16 states that dim ker CM�r��J ;K� � 1. The de®nition of r5

implies that dimR�s� kerR�s�CM�s��J ;K� � 1 and the de®nition of r4 implies that
the corresponding null vector gJ ;K�s�, as de®ned above, does not change sign
anymore beyond r4. Since gJ ;K�r� spans ker CM�r��J ;K�, it has no components
of opposite sign. Without loss of generality we may assume that all compo-
nents are nonnegative resulting in gJ ;K�s� having only nonnegative components
for s P r4. The vector polynomial gJ ;K�s� can be split in its J-part and K-part as
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col�~z�s�; ~w�s��. We de®ne col�z�s�;w�s�� by setting zJ �s� :� ~z�s�, zJ c�s� � 0,
wK�s� � ~w�s� and wKc�s� � 0. Moreover, according to Lemma 4.17 we have
Ez�r� � E�Jg

J ;K
J �r� 6� 0.

The construction as in the proof of Theorem 4.7 can be applied to the basic
solution �ubas; ybas� of LCP�q�r�;M�r�� to ®nd a solution �u�s�; y�s�� to
RCP(q�s�;M�s�) with yi�s� � 0 if i 62 supp ybas and ui�s� � 0 if i 62 supp ubas.
Looking at the support of col�z�s�;w�s��, it is observed that we can add a
nonnegative multiple of �z�s�;w�s�� to the solution �u�s�; y�s�� without de-
stroying the complementarity conditions. Furthermore, since col�z�s�;w�s�� has
only nonnegative components for s P r4 the inequality conditions (9) remain
valid for �ua�s�; ya�s�� :� �u�s�; y�s�� � a�z�s�;w�s��, aP 0. Hence, in this way
we constructed an in®nite number of solutions to the RCP(q�s�;M�s�). Note
that Ez�r� 6� 0 implies that the constructed RCP-solutions satisfy Eua1�r� 6�
Eua2�r� if a1 6� a2: �

The importance of the previously presented theorems is that the existence
and uniqueness of solutions to RCP is related to existence and uniqueness of
solutions to LCPs. A wealth of existence and uniqueness results concerning
solutions to LCPs is already available in the literature (see [8]). These results
can be applied to prove existence and uniqueness results for RCPs as is dem-
onstrated by three classes of RCPs having a relation to dynamical systems. The
relationship between RCP and a class of dynamical systems with discontinuous
dynamics and impulsive motions is treated in the next section.

5. Relation between RCP and linear complementarity systems

In this section the relation of the RCP to linear complementarity systems [14]
will be discussed.

5.1. Linear complementarity systems

An LCS is governed by the simultaneous equations

_x�t� � Ax�t� � Bu�t�; �20a�
y�t� � Cx�t� � Du�t�; �20b�
06 y�t� ? u�t�P 0: �20c�

The functions u�t�; x�t�; y�t� take values in Rk;Rn and Rk, respectively; A, B, C
and D are constant matrices of appropriate dimensions. Eq. (20c) implies that
for all t and for every component i � 1; . . . ; k at least one of ui�t� � 0 and
yi�t� � 0 must be satis®ed. This results in a multimodal system with 2k modes,
where each mode is characterized by a subset I of �k, indicating that yi�t� � 0 if
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i 2 I and ui�t� � 0 if i 2 Ic with I c � �k n I . For each such mode the laws of
motion are given by Di�erential and Algebraic Equations (DAEs). Speci®cally,
in mode I they are given by

_x � Ax � Bu; �21a�
y � Cx� Du; �21b�
yi � 0; i 2 I ; �21c�
ui � 0; i 2 Ic: �21d�

The mode will vary during the time evolution of the system. The system evolves
in a certain mode as long as the inequality conditions in (20c) are satis®ed. At
the event of a mode transition, the system may display jumps (re-initialization)
of the state variable. In the next subsection these phenomena will be formal-
ized, which will result in a mathematically exact solution concept.

5.2. Solution concept of LCS

The solution concept of linear complementarity systems is based on a dis-
tributional framework as in [12]. This distributional framework is needed,
because we have to be able to consider ``impulsive motions''. To make this
plausible, consider a mechanical systems subject to some unilateral constraint,
e.g. a particle moving around in a space which contains a wall. If the particle
hits the wall with a nonzero velocity, a jump (a very fast motion) occurs in the
velocity that can be modelled as the result of a Dirac pulse appearing in the
reaction force exerted by the wall. Since such mechanical systems can be
modelled as LCS, the previous motivates the choice for a distributional set-up
as in [12] from which we recall some concepts below.

The set of distributions de®ned on R with support on �0;1� is denoted by
D0� (see e.g. [32]). Particular examples of elements of D0� are the delta distri-
bution (or ``Dirac pulse'') and its derivatives. We denote the delta distribution
by d and its rth derivative by d�r�. Linear combinations of these particular
distributions will be called impulsive distributions, that is, a distribution u 2 D0�
is an impulsive distribution, if it can be written as u �Pl

i�0 uÿid�i� for scalars
uÿi, i � 0; . . . ; l. A special subclass of D0� is the set of regular distributions in
D0�. These are distributions that are smooth on �0;1�. Formally, a distribution
u 2 D0� is smooth on �0;1�, if a function v�t� 2 C1�R; R� exists such that

u�t� � 0 �t < 0�;
v�t� �t P 0�:

�
Note that we use a di�erent font for distributions to distinguish between
the distribution u, vectors u 2 Rk, (time-)functions u�t� and rational functions
u�s�.
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De®nition 5.1 [12]. An impulsive-smooth distribution is a distribution u 2 D0� of
the form u � uimp � ureg, where uimp is impulsive and ureg is smooth on �0;1�.
The class of these distributions is denoted by Cimp. If the regular part of an
impulsive-smooth distribution is of the form

ureg�t� �
0 �t < 0�;
F eGtH �t P 0�

�
�22�

for constant real matrices F, G and vector H of appropriate dimensions, we call
the distribution of Bohl type or a Bohl distribution.

Given an impulsive-smooth distribution u � uimp � ureg 2 Cimp, we de®ne
the leading coe�cient of its impulsive part by

lead�u� :� 0 if uimp � 0;

uÿl if uimp �
Pl

i�0 uÿid�i� with uÿl 6� 0:

(
�23�

De®nition 5.2 [14]. We call a scalar-valued impulsive-smooth distribution
v 2 Cimp initially nonnegative, if

lead�v� > 0 in case vimp 6� 0;

vreg�t�P 0 for all t 2 �0; e� for certain e > 0 otherwise:

�
A scalar-valued impulsive-smooth distribution v is called initially positive, if v
is initially nonnegative and additionally, if the impulsive part vimp is equal to
zero, it is required that vreg�t� > 0, for all t 2 �0; e� for some e > 0 (note that the
interval is open from the left). An impulsive-smooth distribution in Ck

imp is
called initially nonnegative (positive), if each of its components is initially
nonnegative (positive).

The initial nonnegativity or positiveness of a Bohl distribution can com-
pletely be characterized by its Laplace transform. This is not the case for
general impulsive-smooth distributions. The simple proof of the following
lemma is omitted.

Lemma 5.3.

1. Suppose that the Laplace transform of u 2 Ck
imp, denoted by û�s�, exists. 3 If u

is initially positive, then there exists a r0 2 R such that the Laplace transform
satisfies û�r� > 0 for all real rP r0. For a Bohl distribution the reverse state-
ment holds as well.

3 We say that the Laplace transform exists, if the Laplace transform can be de®ned on a nontrivial

half space of the complex plane.
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2. Suppose that u 2 Cimp is of Bohl type and denote its Laplace transform by
û�s�. There exists a r0 2 R such that the Laplace transform û�s� satisfies
û�r�P 0 for all r P r0 if and only if u is initially nonnegative.

3. Suppose u�t� is a piecewise continuous function with u�t� � 0; t < 0 such that
the Laplace transform, denoted by û�s�, exists. Furthermore, assume the exis-
tence of a constant � > 0 such that u�t�P 0 for all t 2 �0; �� and u�t� > 0 for all
t 2 �tb; tf � � �0; d� with tb < tf . Then there exists a r0 2 R such that û�r� > 0
for all rP r0.

To show that the reverse of statement 1 and statement 2 is not true for general
impulsive-smooth functions, we consider the following counterexamples.

Example 5.4. We de®ne for s 2 R the functions fs�t� 2 C1�R; R� as

fs�t� �
0 t6 s;

eÿ1=�tÿs� t > s:

�
�24�

It can be veri®ed that this de®nes indeed a class of C1-functions with deriv-
atives equal to zero in t � s. A counterexample for the reverse of statement 1 is
f1�t�. The function ÿf1�t� shows also that statement 2 cannot be generalized to
Cimp:

Next, we de®ne the concept of a distributional solution to an input/state/
output system of the form _x � Kx� Lu; y � Mx� Nu with K, L, M and N
constant matrices of appropriate dimensions. Let an initial condition x0 (at time
instant 0) be given. We replace the system by its distributional equivalent [12]:

_x � Kx� Lu� x0d; �25a�
y � Mx� Nu; �25b�

where _x denotes the distributional derivative of x.

De®nition 5.5 [12]. A triple �u;x;y� 2 D0�m�n�r�
� is a (distributional) solution to

_x � Kx� Lu, y � Mx� Nu with initial condition x�0� � x0, if �u;x;y� satis®es
(25a) and (25b) as an equality of distributions.

In [12], it is shown that for equations of the form (25a) and (25b) there is for
every u 2 Cm

imp a unique pair �x;y� 2 D0�n�r�
� such that �u;x;y� is a solution to

(25a) and (25b) for given x0; moreover �x;y� 2 Cn�r
imp . Hence, given an initial

state x0, u can be seen as an input, because it uniquely determines �x;y�. An
important observation is that a nontrivial impulsive part of u may result in a
re-initialization (also called ``jump'' or ``impulsive motion'') of the state. If
uimp �

Pl
i�0 uÿid�i� for vectors uÿi 2 Rm, then a jump will take place according

to
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xreg�0�� :� lim
t#0

xreg�t� � x0 �
Xl

i�0

AiBuÿi: �26�

Next we will consider equations of the form (25a) and (25b) with the additional
requirement that y � 0.

De®nition 5.6. A state x0 is said to be consistent for �K; L;M ;N�, if there exists a
regular input u such that

_x � Kx� Lu� x0d; �27�
0 � Mx� Nu

is satis®ed. V �K; L;M ;N� denotes the set of all consistent states for the system
�K; L;M ;N� and is called the consistent subspace.

The next lemma speci®es a particular form of the regular inputs satisfying
Eq. (27).

Lemma 5.7. Consider (27) with K, L, M, N constant matrices of appropriate
dimensions and write V � V �K; L;M ;N�. There exists a matrix F of appropriate
dimensions such that �K � LF �V � V and �M � NF �V � f0g.

Proof. See Theorem (3.10) in [12]. �

The previous lemma shows that V � V �K; L;M ;N� can be made invariant by
applying a feedback law u�t� � Fx�t�. By this we mean, that if x0 2 V , then the
solution of the closed-loop dynamics (i.e. after applying the feedback law)
_x�t� � Kx�t� � Lu�t� � �K � LF �x�t� with x�0� � x0 satis®es x�t� 2 V for all
t 2 R�. This is a consequence of �K � LF �V � V . Furthermore, since
�M � NF �V � f0g, it even holds that Mx�t� � Nu�t� � �M � NF �x�t� � 0. Note
that the corresponding open-loop control function u�t� � Fx�t� � F e�A�BF �tx0 is
a Bohl function.

After these preliminaries we can de®ne an initial solution to (20a),(20b) and
(20c) given an initial state.

De®nition 5.8 [14]. We call �u;x;y� 2 Ck�n�k
imp an initial solution to (20a)±(20c)

with initial state x0, if there exists an I � �k such that

1. �u;x;y� is a solution to (21a) and (21b) with initial state x0 in the distribu-
tional sense;

2. u and y satisfy (21c) and (21d) as equalities of distributions; and
3. u;y are initially nonnegative.
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Obviously, an initial solution only satis®es (20a)±(20c) ``temporarily.'' In
case an initial solution has a nontrivial impulsive part, only the re-initialization
as given in (26) forms a piece of the global solution. If the initial solution
�u;x;y� is smooth, the restriction �u;x;y� j�0;e� satis®es Eqs. (20a)±(20c) on the
interval �0; e�, where e is given by

e :� infft > 0 j ureg;i�t� < 0 or yreg;i�t� < 0 for some i 2 �kg: �28�

Only if e � 1 �u;x;y� forms a global solution to the LCS (20b). If e <1, the
global solution is continued with a part of a di�erent initial solution corre-
sponding to initial state xreg�e�. Such a de®nition of a (global) solution to
(20a)±(20c) based on concatenation of initial solutions is formalized below.

Given a state x0, we de®ne S�x0� by

S�x0� :� fI � �k j there exists an initial solution �u;x;y� to �20� �29�
that satisfies �21� for mode Ig:

The set S�x0� denotes the set of possible modes that can be selected from x0. In
[14] it has been shown that several other mode selection methods yield the same
set of continuation modes (under some mild assumptions). One of them is the
RCP.

De®nition 5.9. A solution to (20) on �0; Te�; Te > 0 with initial state x0 consists
of a 6-tuple �D; s; xe; uc�t�; xc�t�; yc�t�� where D is either f0; . . . ;Ng for some
N P 0 or N,

s : D! �0; Te�;
xe : D! Rn;

xc�t� : �0; Te� n s�D� ! Rn;

uc�t� : �0; Te� n s�D� ! Rk;

yc�t� : �0; Te� n s�D� ! Rk;

that satis®es the following.
1. There exists a function I : D! 2

�k :� fJ j J � �kg with I�i� 2S�xe�i��.
2. On an interval �a; b� � �0; Te� with a � s�i� < b for certain i 2 D and
�a; b� \ s�D� � ;, �uc�t�; xc�t�; yc�t�� is smooth and is equal to a smooth
initial solution �u;x;y� in mode I�i� with initial state xe�i� (i.e.
�uc�t�; xc�t�; yc�t�� � �u�t ÿ a�;x�t ÿ a�;y�t ÿ a�� for all t 2 �a; b�). Further-
more, uc�t�P 0 and yc�t�P 0 hold for all t 2 �a; b�.

3. (a) s�0� � 0.
(b) If D � N then supi2Ds�i� � Te:

4. xe�0� � x0.

W.P.M.H. Heemels et al. / Linear Algebra and its Applications 294 (1999) 93±135 115



5. If s�i� 1� > s�i�, then xe�i� 1� � limt"s�i�1� xc�t�. If s�i� 1� � s�i�, then
there must exist an initial solution �u;x;y� in mode I�i� with initial state
xe�i� such that xe�i� 1� � limt#0 xreg�t� for all i with i 2 D, i� 1 2 D.

The interpretation of these notions and requirements will brie¯y be given.
The function s speci®es the event times: the times at which the active mode
changes. The set I�i� denotes the active mode between s�i� and s�i� 1�. The
triple �xc�t�; uc�t�; yc�t�� denotes the trajectories in the continuous phases of the
complementarity system (as imposed by item 2) and xe�i� denotes the event
state at time s�i�. Items 3(a) and 4 specify the initial conditions. Item 3(b) re-
quires that the 6-tuple de®nes a solution on �0; Te� in case that Te is an accu-
mulation point of event times. The relation between two successive event states
is described in 5: in case of smooth continuation and in case of re-initialization.
In this de®nition there is some redundancy allowed in the number of events
(size of D) and the event times. Given a solution �D; s; xe; uc�t�; xc�t�; yc�t��, one
could add ± without violating the requirements ± between any two event
times s�i� and s�i� 1� with s�i� < s�i� 1� an additional event time ~s by in-
troducing xe�~s� � xc�~s�. Similarly, one could also add a void re-initialization,
when a regular initial solution exists from a certain state.

In [14] a more general solution concept is given. The extensions are twofold.
The solution as in De®nition 5.9 allows only ®nitely many re-initializations at
one time instant, while the solution concept in [14] may have in®nitely many re-
initializations as long as the event states converge. However, su�cient condi-
tions are known that guarantee that at most one re-initialization is required
before smooth continuation is possible, see [14]. These conditions are formu-
lated in terms of leading column and row coefficient matrices being P-matrices.
The second extension is concerned with possibly continuing a solution after an
accumulation point of events (i.e. the existence of a s� <1 such that
limi!1 s�i� � s��. Using the solution concept above the largest interval on
which a solution can be de®ned is �0; s��. However, in [14] the solution concept
includes continuation from an accumulation point, if the state trajectory xc�t�
has a left limit at s�.

In [14] a method has been proposed to construct analytical solutions to a
LCS (20a)±(20c). This method can be used as a ®rst set-up for simulation tools.
The method can brie¯y be summarized as follows. Starting from an initial state
x0 one constructs an initial solution (see also the next subsection for the rela-
tion to RCP). If the initial solution is smooth, there exists an interval �0; e� with
e > 0 as in (28) such that all the equations in (20a)±(20c) are satis®ed. To de-
termine e one has to detect when the inequalities u�t�P 0 and y�t�P 0 are
violated. In this way a smooth piece �uc�t�; xc�t�; yc�t�� is constructed on �0; e�.
From xc�e� one must ®nd a new initial solution.

If the initial solution corresponding to x0 has a nontrivial impulsive part, the
re-initialized state according to (26) must be computed. Next one determines a
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new initial solution with the re-initialized state as new initial condition and one
considers the two possibilities (impulsive or smooth initial solution) again. This
cycle is repeated till a solution is constructed on the desired interval �0; Te�.

Currently numerical simulation techniques based on time-stepping methods
as in [16] (electrical circuits) and [33] (mechanical systems with impacts and
friction) are under study.

5.3. Relation between existence and uniqueness of solutions to RCP and LCS

A special form of RCP�q�s�;M�s�� arises when

q�s� :� C�sIÿA�ÿ1x0 and M�s� :� C�sIÿA�ÿ1B� D �30�
for A 2 Rn�n, B 2 Rn�k, C 2 Rk�n, D 2 Rk�k and x0 2 Rn. We denote this case of
RCP by RCP(x0) assuming that A;B;C;D are clear from the context.

We generalize a result presented in [14]. In [14] the following theorem was
proven under an additional constraint on the separate mode dynamics
(21a)±(21d) implying that all initial solutions are automatically Bohl distri-
butions. The theorem below expresses that solvability of the RCP is related to
existence of initial solution. Note that this is a local result, since it does not
claim existence of a global solution as in De®nition 5.9.

Theorem 5.10. The following statements are equivalent.
1. Eqs. (20a)±(20c) have an initial solution for initial state x0.
2. Eqs. (20a)±(20c) have an initial solution for initial state x0 of Bohl type.
3. RCP(x0) has a solution.
Furthermore, there is a one-to-one correspondence between initial solutions to
(20a)±(20c) of Bohl type and solutions to RCP(x0). More specifically, �u;x;y� is
an initial solution to (20) of Bohl type if and only if its Laplace transform
�û�s�; x̂�s�; ŷ�s�� is such that�û�s�; ŷ�s�� is a solution to RCP�x0� and

x̂�s� � �sIÿA�ÿ1x0 � �sIÿA�ÿ1Bû�s�: �31�
The initial Bohl solution is smooth if and only if the corresponding solution to
RCP(x0) is strictly proper.

The equivalence between 2 and 3 is proven in [14, Theorem 5.3] together
with the one-to-one correspondence between initial solutions of Bohl type with
initial state x0 and solutions to RCP(x0) as described above. Evidently, state-
ment 2 implies statement 1. The converse implication is far from trivial and will
be a consequence of the proof of Theorem 5.14.

Of course, one may wonder whether a similar statement as in Theorem 5.10
can be made about uniqueness. The next example shows that this is not the
case.
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Example 5.11. Consider the complementarity system (20a)±(20c) with

A � 0 0

0 0

� �
; B � 1 1

1 1

� �
; C � 1 0

0 1

� �
; D � 0 0

0 0

� �
:

The corresponding RCP(x0) with x0 � �0; 0�T has a unique solution

u�s� � y�s� � �0; 0�T for all s. However, we can construct uncountably many
di�erent initial solutions (note that these cannot be Bohl due to the one-to-one
correspondence between initial solutions of Bohl type and solutions to the
RCP). For all s > 0 the functions u1�t� � fs�t�, u2�t� � ÿfs�t� and
y1�t� � y2�t� � 0 constitute an initial solution to (20a) and (20c) with initial

state �0; 0�T, where fs�t� are the functions introduced in Example 5.4.

This example demonstrates that multiple initial solutions may exist in cer-
tain situations, although there is only one Bohl initial solution (or equivalently,
only one solution to the corresponding RCP). However, we can introduce an
equivalence relation on the space of impulsive-smooth distributions such that
all initial solutions belong to the same equivalence class, in case there is only
one initial solution of Bohl type.

We introduce the following notation. Consider the distributions g �
gimp � greg 2 D0k�, h � himp � hreg 2 D0k� with gimp, himp impulsive and greg, hreg

piecewise continuous. These distributions could be called impulsive-piecewise
continuous. For an e > 0 we write

g j�0;e�� h j�0;e� if greg j�0;e�� hreg j�0;e�:
Similarly, we write

g j�0;e�� h j�0;e� if greg j�0;e�� hreg j�0;e� and gimp � himp:

De®nition 5.12. Let g, h be two Ck
imp-functions. We shall say that g is equivalent

to h, g � h, if and only if there exists an e > 0 such that g j�0;e�� h j�0;e�. This is
an equivalence relation and the equivalence classes are called germs. We say
that two initial solutions �u1;x1;y1�, �u2;x2;y2� are in the same germ or are
unique up to germ equivalence if col�u1;x1;y1� � col�u2;x2;y2�.

This de®nition extends an equivalence relation on C1-functions and the
corresponding equivalence classes (also called germs) as used in di�erential
geometry, see e.g. [5]. The following lemma states that the Bohl distributions
can be embedded in the space of germs.

Lemma 5.13. Each germ contains at most one Bohl distribution.

Proof. Bohl functions are real-analytic. Hence, g j�0;e�� h j�0;e� implies g � h for
two Bohl distributions g, h. �
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The set of Bohl distributions can be embedded (using the above lemma) in the
set of germs in Cimp. However, not all germs contain a Bohl distribution as can
be seen from the equivalence class containing f0�t� (de®ned in Example 5.4).

The uniqueness result that we are after is formulated as follows. The proof is
given later in this section.

Theorem 5.14. Let E 2 Rl�k be given. The following statements are equivalent.
1. The relation Eu1 � Eu2 holds for any pair of initial solutions �uj;xj;yj�,

j � 1; 2 to (20a)±(20c) with initial state x0.
2. The relation Eu1�s� � Eu2�s� holds for any pair of solutions �uj�s�; yj�s��,

j � 1; 2 to RCP�x0�.

Remark 5.15. Consider a linear complementarity system (20a)±(20c) with pa-
rameters �A;B;C;D�. Suppose that ker E � ker B. Then it is evident, that
statement 1 in Theorem 5.14 implies that for any pair of initial solutions
�uj;xj;yj�, j � 1; 2 to (20a)±(20c) with initial state x0, also x1 � x2 is true. If in
addition, ker E � ker D, then also y1 � y2 holds.

An immediate corollary is the following (take E equal to the identity ma-
trix).

Theorem 5.16. All initial solutions to (20a)±(20c) with initial state x0 are unique
up to germ equivalence if and only if RCP(x0) has a unique solution.

Remark 5.17. Returning to Example 5.11, it is obvious that all the indicated
initial solutions are contained in one germ with as a representative the initial
solution of Bohl type (as stated in Theorem 5.16).

One may wonder if each germ of initial solutions contains a Bohl initial
solution. The above theorem implies that this is true (due to the one-to-one
correspondence between Bohl initial solutions and solutions to RCP), when
there is only one Bohl initial solution. However, the following counterexample
shows that the collection of germs of initial solutions can not be identi®ed by
the Bohl initial solutions in general.

Example 5.18. Consider the complementarity system (20a)±(20c) with

A � 0 0

0 0

� �
; B � 1 ÿ 1

1 ÿ 1

� �
; C � 1 0

0 1

� �
; D � 0 0

0 0

� �
:

For initial state x0 � �0; 0�T the function u1�t� � u2�t� � f0�t� (see Example
5.4), y1�t� � y2�t� � 0 is an initial solution. However, this function is not
equivalent to a Bohl distribution as noted before.
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To prove Theorem 5.14 one technical result is needed. It is possible that the
Laplace transform of an initial solution does not exist. The next lemma shows
that the initial solution can be modi®ed for large time-values such that the
Laplace transform exists and satis®es the conditions of RCP except the ra-
tionality.

Lemma 5.19. If there exists an initial solution �u;x;y� to (20a)±(20c) with initial
state x0, then there exists an impulsive-piecewise continuous distribution �~u; ~x; ~y�
and an � > 0 such that
1. �~u; ~x; ~y� is Laplace transformable with Laplace transform �û�s�; x̂�s�; ŷ�s��;
2. �~u; ~x; ~y� j�0;��� �u;x;y� j�0;��;
3. The relations (with q�s� and M�s� as in (30))

ŷ�s� � q�s� �M�s�û�s� and ŷ�s� ? û�s� �32�
hold for all s 2 C and there exists a r0 2 R such that for all r P r0 we have
ŷ�r�P 0; û�r�P 0.

Proof. Let �u;x;y� be an initial solution to (20). For i such that uimp;i � 0
de®ne sui � infft > 0 j ureg;i�t� < 0g and de®ne syi similarly if yimp;i � 0. Note
that the de®ned sui and syi are strictly positive due to initial nonnegativity of
u and y. Take � > 0 such that � is smaller than all de®ned sui and syi .

We introduce the index sets J, K by

J :� fi 2 �k j ui j�0;��� 0g; K :� fi 2 �k j yi j�0;��� 0g:
We de®ne V :� V �A;B�J c ;CK�;DK;J c� (see De®nition 5.6). It is clear that
xreg�t� 2 V for t 2 �0; �� and hence xreg��� � limt"� xreg�t� 2 V . We now take a
feedback law F as in 2 of Lemma 5.7 making the subspace V invariant under
the closed-loop dynamics _n � �A� B�J c F �n (note the discussion after Lemma
5.7). We introduce a new distribution ~u by ~u � uimp � ~ureg (note that the im-
pulsive part is unchanged) with

~ureg;j�t� �
ureg;j�t� t 2 �0; ��;
0 t > � and j 2 J ;

Fj�n t > � and j 2 J c;

8><>:
where n�t� is the solution to _n�t� � �A� B�J c F �n�t� with initial condition
n��� � x���. Note that n�t� is a Bohl function.

The existence of the Laplace transforms denoted by �û�s�; x̂�s�; ŷ�s�� is
easily established, because ~u is at most exponentially increasing. Furthermore,
the second statement in the formulation of the lemma follows by construction.

Taking ~y as the corresponding output of (20a) and (20b) with initial state
x0, it is obvious that the ®rst part of (32) is satis®ed for all s. That the second
part of (32) holds for all s follows from the construction which is such that
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~uJ � 0 and ~yK � 0. Note that the union of the index sets J and K is equal to �k
because of the complementarity satis®ed by the initial solution �u;x;y�. It is
clear that for all i with ~uimp;i 6� 0 the Laplace transform satis®es ûi�r� > 0 for
su�ciently large r 2 R. Indeed, the impulsive part ~uimp;i is equal to uimp;i, which
has a positive leading coe�cient. In case ~uimp;i � 0 the de®nitions of � and J
imply that for all i 2 J c ureg;i�t�P 0 for all t 2 �0; �� and there exists a nonempty
interval �tb; tf � � �0; �� such that ureg;i�t� > 0 for t 2 �tb; tf �. Applying statement 3
of Lemma 5.3 yields û�r�P 0 for all r su�ciently large. Similar remarks can be
made for ŷ�s�: �
Proof of Theorem 5.14. If RCP(x0) has multiple solutions �uj�s�; yj�s��, j � 1; 2
with Eu1�s� 6�Eu2�s�, the inverse Laplace transforms result in initial solutions
�uj;xj;yj�, j � 1; 2 of Bohl type such that Eu1 and Eu2 are di�erent. According
to Lemma 5.13 this implies that Eu1 and Eu2 are contained in di�erent germs.

Suppose there exist initial solutions �u1;x1;y1�, �u2;x2;y2� with Eu1 and
Eu2 in di�erent germs. According to the previous lemma there exist an � > 0
and impulsive-piecewise continuous distributions �~uj; ~xj; ~yj�, j � 1; 2 satisfying
the conditions (1)±(3) of Lemma 5.19 with respect to �uj;xj;yj�.

Two cases can be distinguished: either Eu1
imp 6� Eu2

imp or Eu1
imp � Eu2

imp and
Eu1

reg�t� 6� Eu2
reg�t� for some t 2 �0; ��. In the latter case the continuity of both

functions implies that Eu1
reg�t� 6� Eu2

reg�t� for all t 2 �tb; tf � � �0; �� for certain
tb 6� tf . Hence, the same holds for the related impulsive-piecewise continuous
distributions ~u1 and ~u2. It is clear that the Laplace transforms of these im-
pulsive-piecewise continuous distributions, denoted by �ûj�s�; x̂j�s�; ŷj�s��,
j � 1; 2 are not rational in general and thus �ûj�s�; ŷj�s�� do not form solutions
to RCP�x0�. However, since �ûj�s�; ŷj�s��, j � 1; 2 satisfy (8) for all s and (9)
for all r P r0, �ûj�r�; ŷj�r��, j � 1; 2 satisfy LCP�q�r�;M�r�� with q�s� and
M�s� as in (30).

We intend to invoke Theorem 4.9 to ®nd multiple solutions �uj�s�; yj�s��,
j � 1; 2 to RCP�x0�. Suppose that the conditions of this theorem are not sat-
is®ed, i.e. assume that there exists an r0 2 R such that for all r P r0

Eû1�r� ÿ Eû2�r� � 0: �33�
We reconsider the two cases above. In the ®rst case we have E~u1

imp 6� E~u2
imp.

It is clear that this contradicts (33). Similarly, in the second case (i.e.
E~u1

imp � E~u2
imp) (33) becomesZ 1

0

�E~u1
reg�t� ÿ E~u2

reg�t��eÿrt dt � 0

for all rP r0. Since in the second case the regular parts di�er on the interval
�tb; tf �, the above equation cannot hold for all r P r0. Hence, the conditions of
Theorem 4.9 are satis®ed and multiple solutions �uj�s�; yj�s��, j � 1; 2 to
RCP�x0� with Eu1�s� 6�Eu2�s� do exist. �
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Remark 5.20. The proof of Theorem 5.10 can easily be derived from the proof
above. Similarly, we can construct a solution to LCP�q�r�;M�r�� for all suf-
®ciently large r by taking the Laplace transform of the corresponding impul-
sive-piecewise continuous distribution satisfying the conditions of Lemma 5.19.
Instead of invoking Theorem 4.9, one has to use Theorem 4.1 to prove the
relation between existence of initial solutions and the existence of solutions to
the corresponding RCP.

The following corollary shows how the equivalence relation for initial so-
lutions can be used to establish `global' uniqueness of the global solution. The
proof is based on the fact that only the `nonnegative part' of the initial solution
returns in the global solution.

Theorem 5.21. Let Te > 0 and E 2 Rl�k be such that ker E � ker B with B as in
(20a)±(20c). Suppose that Eu1�s� � Eu2�s� for all initial states x0 and any pair of
solutions �uj�s�; yj�s��, j � 1; 2 to RCP(x0). Then each pair of global solutions
�Dj; sj; xj

e; u
j
c�t�; xj

c�t�; yj
c�t��, j � 1; 2 on �0; Te� to (20a)±(20c) for equal initial

state satisfies Eu1
c�t� � Eu2

c�t� and x1
c�t� � x2

c�t� for all t 2 �0; Te� with t 62
s1�D1� [ s2�D2�. If in addition, ker E � ker D with D as in (20a)±(20c), then
y1

c �t� � y2
c �t� for all t 2 �0; Te� with t 62 s1�D1� [ s2�D2�.

The relevance of the assumption ker E � ker B is mentioned in Remark 5.15
and will also become clear in the proof. Situations in which ker B is nontrivial
occur for instance in the mechanical systems treated in the next section.

Proof. The proof is based on the following observations. According to the
hypothesis of the theorem, Theorem 5.14 and Remark 5.15, we must have that
any pair of initial solutions �uj;xj;yj�, j � 1; 2 with the same initial state,
satis®es Eu1 � Eu2 and x1 � x2. This will be called the similarity property in
the proof. Secondly, note that for a global solution as in De®nition 5.9,
�uc�t � ~t�; xc�t � ~t�; yc�t � ~t�� for some ~t 62 s�D� is equal to a smooth initial so-
lution with initial state xc�~t� on a closed interval of positive length with left end-
point zero.

De®ne

t� :� infft 2 �0; Te� n �s1�D1� [ s2�D2�� j Eu1
c�t� 6� Eu2

c�t�
or x1

c�t� 6� x2
c�t�g

with the convention inf ; � 1. In case t� � 1, we are ®nished, because then
the claim of the theorem is true. Hence, suppose t� <1. Without loss of
generality we may assume that no void re-initializations occur meaning that
s�i� � s�i� 1� and xe�i� � xe�i� 1�. It is clear that in these cases s�i� 1� can be
removed from the set of event times without essentially changing the global
solution.

122 W.P.M.H. Heemels et al. / Linear Algebra and its Applications 294 (1999) 93±135



We can distinguish three cases.
1. t� 2 s1�D1� \ s2�D2�. Let ji

min and ji
max be the minimal and maximal integer j

in Di, respectively, such that si�j� � t� for i � 1; 2. In case t� � 0, it is clear
that x1

e�j1
min� � x2

e�j2
min�. If t� > 0, De®nition 5.9 (item 5) and the de®nition of

t� imply that x1
e�j1

min� � limt"t� x1
c�t� � limt"t� x2

c�t� � x2
e�j2

min�. The de®nition of
re-initializations (item 5) and the similarity property yield by induction that
x1

e�j1
min � r� � x2

e�j2
min � r� for all 06 r6 min�j1

max ÿ j1
min; j

2
max ÿ j2

min�. Since
no void re-initializations occur, the similarity property implies that
j1

max ÿ j1
min � j2

max ÿ j2
min. Hence, for both global solutions we have that

si�ji
max � 1� > si�ji

max� � t� with the same initial state x1
e�j1

max� � x2
e�j2

max�. Re-
call the way that �ui

c�t�; xi
c�t�; yi

c�t�� is de®ned on �si�ji
max�; si�ji

max � 1�� as a
piece of an initial solution (see item 2 of De®nition 5.9). According to the
similarity property, it is then clear that

Eu1
c�t� � Eu2

c�t� and x1
c�t� � x2

c�t�
for all t 2 �t�; t� � e� for some e > 0. This contradicts the de®nition of t�.

2. t� 2 s1�D1� n s2�D2� (or t� 2 s2�D2� n s1�D1�). Note that t� > 0, because 0 is
always an event time. Let j be the smallest integer in D1 such that s1�j� � t�.
According to De®nition 5.9, x1

e�j� � limt"s1�j� x1
c�t� � limt"t� x2

c�t� � x2
c�t��.

Since t� 62 s2�D2�, �u2
c�t � t��; x2

c�t � t��; y2
c �t � t��� is equal to a smooth initial

solution with initial state x1
e�j� on an closed interval of positive length with

left end-point equal to zero. The similarity property implies that the state of
any other initial solution from x1

e�j� must be equivalent to the state of this
smooth one. This implies that s1�j� 1� > s1�j�, because otherwise a void
re-initialization would take place. Due to (again) the similarity property,

Eu1
c�t� � Eu2

c�t� and x1
c�t� � x2

c�t�
for all t 2 �t�; t� � e� for some e > 0. This contradicts the de®nition of t�.

3. t� 62 s1�D1� [ s2�D2�. Note that t� > 0. Both �uj
c�t � t��; xj

c�t � t��; yj
c�t � t���,

j � 1; 2 are equal to smooth initial solutions with the same initial state
x1

c�t�� � x2
c�t�� on a closed interval with positive length and left end-point ze-

ro. The similarity property guarantees

Eu1
c�t� � Eu2

c�t� and x1
c�t� � x2

c�t�
for all t 2 �t�; t� � e� for some e > 0. This contradicts the de®nition of t�.
Hence, t� � 1 and thus the proof is complete.
The case in which additionally ker E � ker D holds can be proven

analogously. The similarity property includes then also y1 � y2 as in Remark
5.15. �

Particular choices of E lead to uniqueness of the complete global solution or
the state trajectory of the global solution.
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De®nition 5.22. We say that (20a)±(20c) has the unique flow part property, if
for all initial states x0 and all end times Te > 0 every pair of global solutions
�Dj; sj; xj

e; u
j
c�t�; xj

c�t�; yj
c�t��, j � 1; 2 to (20a)±(20c) on the interval �0; Te� with

initial state x0 satis®es u1
c�t� � u2

c�t�, x1
c�t� � x2

c�t� and y1
c �t� � y2

c �t� for all
t 2 �0; Te� with t 62 s1�D1� [ s2�D2�. We say that (20a)±(20c) has the unique
state part property, if for all x0 and all Te > 0 any pair of global solutions
�Dj; sj; xj

e; u
j
c�t�; xj

c�t�; yj
c�t��, j � 1; 2 to (20a)±(20c) on the interval �0; Te� with

the initial state x0 satisfy x1
c�t� � x2

c�t� for all t 2 �0; Te� with t 62 s1�D1� [ s2�D2�.

Corollary 5.23. Consider a linear complementarity system (20a)±(20c) with data
�A;B;C;D�.
· Suppose that Bu1�s� � Bu2�s� is true for any pair of solutions �uj�s�; yj�s��,

j � 1; 2 to RCP(x0) for all initial states x0. Then the LCS (20a)±(20c) has
the unique state part property.

· Suppose that u1�s� � u2�s� is true for any pair of solutions �uj�s�; yj�s��,
j � 1; 2 to RCP(x0) for all initial states x0. Then the LCS (20a)±(20c) has
the unique flow part property.

6. Well-posedness results

By combining the results of Sections 4 and 5, existence and uniqueness of
initial solutions can be related to solvability properties of parameterized sets of
LCPs. This will now be exploited to obtain well-posedness results for linear
mechanical systems subject to unilateral constraints, linear relay systems and
electrical networks containing ideal diodes. Establishing (unique) solvability of
the LCPs can be a nontrivial task in certain situations, as we will see.

6.1. Well-posedness results of linear mechanical systems

We consider linear mechanical systems given by

M �q� D _q� Kq � 0; �34�
where q denotes the vector of generalized coordinates. Moreover, M denotes
the generalized mass matrix (or inertia matrix), which is assumed to be positive
de®nite, D denotes the damping matrix and K the sti�ness matrix. Suppose
now that the system is subject to frictionless unilateral constraints given by

Fq P 0 �35�
with F some matrix of appropriate dimensions. Furthermore, we assume that
impacts are purely inelastic. Then (34) is replaced by

M �q� D _q� Kq � F Tu �36�
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together with complementarity conditions on u and Fq. F Tu are the constraint
forces and u are the multipliers corresponding to the unilateral constraints.
This formulation can be cast into a linear complementarity system by intro-
ducing the state vector x � col�q; _q� resulting in

_x � 0 I

ÿMÿ1K ÿMÿ1D

� �
|��������������������{z��������������������}

A

x� 0

Mÿ1F T

� �
|��������{z��������}

B

u; �37a�

y � �F 0�|��{z��}
C

x; �37b�

together with the complementarity conditions (20c) on the reaction force u and
the displacement y. Note that the B-matrix has full column rank if and only if F
has full row rank; hence, if the unilateral constraints are dependent, ker B is
nontrivial. This is for instance the case if an equality constraint is described by
two inequalities in (35). Note that such a dependence was taken into account in
Theorem 5.21.

Of course, the linear setting chosen here is quite restrictive in comparison
with recent advances in the ®eld of nonlinear mechanical systems with in-
equality constraints [10,19,33]. In fact, results as in Theorem 6.6 below were
proven already in [18,23] for nonlinar mechanical systems by di�erentiation of
the relevant system's variables. The purpose of this section is merely an illus-
tration of the general theory developed in this paper. We will show that The-
orem 6.6 can be obtained quite easily by using the RCP.

RCP(x0) for a linear mechanical system as above is equal to RCP(q�s�;M�s�)
with

M�s� :� C�sIÿA�ÿ1B � F �s2M � sD� K�ÿ1F T; �38a�
q�s� :� C�sIÿA�ÿ1x0 � F �s2M � sD� K�ÿ1��sM � D�q0 �M _q0�; �38b�

with col�q0; _q0� � x0. To prove solvability of the corresponding LCP(q�r�;
M�r�) for su�ciently large r 2 R, we use the following lemma from [7].

Lemma 6.1 [7]. If G � NPNT for some positive definite (not necessarily sym-
metric) matrix P and some matrix N and c 2 im G, then the problem

y � c� Gu; 06 y ? u P 0

has solutions. If �u1; y1� and �u2; y2� are two solutions, then y1 � y2 and
Gu1 � Gu2.

We also need the following.

Lemma 6.2. Let P 2 Rk�k and N 2 Rl�k be matrices with P positive definite (but
not necessarily symmetric). Then the following holds:
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ker NPN T � ker NT;

im NPN T � im N � im NP :

Proof. If NPN Tv � 0, then vTNPN Tv � 0 is true implying that N Tv � 0. This
proves the ®rst identity above, because the converse is trivial. The second
statement follows by duality. �

Remark 6.3. Note that all matrices G � NPNT for some matrix N and some
positive de®nite matrix P are nonnegative de®nite (but not necessarily sym-
metric). However, the converse statement that all nonnegative matrices can be
written in the above form, is not true. A counterexample is provided by

G � 1 ÿ 2

0 1

� �
:

Indeed, if G � NPN T, then Lemma 6.2 implies that ker N T � ker G � f0g.
However, for v � col�1; 1�we have vTGv � 0 and hence (see proof of Lemma 6.2)
NTv is equal to 0, which contradicts the triviality of the kernel of N T.

Theorem 6.4. RCP�q�s�;M�s�� with q�s� and M�s� as in (38a) and (38b) (or
equivalently RCP(x0) with the matrices A;B;C as in (37a) and (37b) has for each
x0 a solution.

Proof. Obviously, we have for su�ciently large r that �r2M � rD� K�ÿ1
is

positive de®nite, because M is positive de®nite. According to Lemma 6.1 and
Theorem 4.1, left to prove is that for su�ciently large r, q�r� as in (38b) be-
longs to im M�r�. However, this is immediate from Lemma 6.2, because

q�r� 2 im F �r2M � rD� K�ÿ1 � im F �r2M � rD� K�ÿ1F T � im M�r�
�39�

for su�ciently large r: �

Theorem 6.5. Consider a linear mechanical system of the form (37a) and (37b)
with initial state x0. The corresponding RCP(x0) may have multiple solutions, say
�u1�s�; y1�s�� and �u2�s�; y2�s��. However, these solutions satisfy Bu1�s� � Bu2�s�.

Proof. Take r0 such that R�r� :� �r2M � rD� K�ÿ1
is positive de®nite for all

rP r0. Suppose that there exist two solutions �ui; yi�, i � 1; 2 to
LCP�q�r�;M�r�� for some r P r0. According to Lemma 6.1, we have

M�r�u1 � M�r�u2�s�: �40�
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Lemma 6.2 states that ker M�r� � ker FR�r�F T � ker F T holds for all rP r0.
Hence, F T�u1 ÿ u2� � 0. The form of the matrix B as in (37a) and (37b) now
implies that Bu1 � Bu2. Invoking Theorem 4.9 completes the proof. �

For linear mechanical systems the following well-posedness result follows
from Theorem 6.4, Theorem 6.5, Theorem 5.10 and Corollary 5.23.

Theorem 6.6. Consider a constrained mechanical system given by (37a), (37b)
and (20c). For each initial state x0 there exists an initial solution. Furthermore,
the constrained mechanical system has the unique state part property (as defined
in Definition 5.22).

For the case of independent unilateral constraints (i.e. F has full row rank), it
has already been proven in [14], that after at most one nonsmooth initial so-
lution, a smooth initial solution occurs, i.e. for each initial state there exists an
e > 0 such that a solution in the sense of De®nition 5.9 exists on �0; e� with
s�1� > s�0� or s�2� > s�1� � s�0�. It is also shown that the initial solutions with
possible jumps agree with the jump rules as proposed by Moreau in the case of
inelastic collisions [22,24].

6.2. Well-posedness of linear relay systems

In this subsection, we consider a system given by

_x�t� � Ax�t� � Bu�t�; �41a�
y�t� � Cx�t� � Du�t�; �41b�

with u�t� 2 Rk, x�t� 2 Rn, y�t� 2 Rk and A;B;C;D are matrices of appropriate
dimensions. Each pair �ui; yi� is connected by an ideal relay (or Coulomb
friction characteristic) with a relation as given in Fig. 1 (note the minus sign in
front of ui). The vectors d1 and d2 2 Rk in this ®gure are constant vectors with

d1 P 0; d2 P 0; d1 � d2 > 0: �42�
Several approaches are known that cast the relay/Coulomb friction char-

acteristic into a complementarity description by introducing several auxiliary
variables, see e.g. [15,17,26]. In [17] a corresponding rational complementarity
problem RCP(q�s�;M�s�) has been formulated with

M�s� � Gÿ1�s� ÿ Gÿ1�s�
ÿGÿ1�s� Gÿ1�s�

 !
; �43a�

q�s� � ÿGÿ1�s�T �s�x0 � 1
s d1

Gÿ1�s�T �s�x0 � 1
s d2

 !
; �43b�
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where x0 is the initial condition of (41a) and (41b) and

T �s� :� C�sIÿA�ÿ1
;

G�s� :� C�sIÿA�ÿ1B� D:

We assume that G�s� is invertible as a rational matrix. Similarly as for a
standard LCS, the RCP(q�s�;M�s�) has a solution if and only if the system
(41a) and (41b) with initial condition x0 has an initial solution. All initial so-
lutions corresponding to the same initial state are unique up to germ equiva-
lence if and only if this RCP admits at most one solution.

We consider an LCP(q;M) with M and q of the following structure.

M � Gÿ1 ÿ Gÿ1

ÿGÿ1 Gÿ1

 !
; �44a�

q � ÿGÿ1v� d1

Gÿ1v� d2

 !
; �44b�

where G is an invertible matrix, v is some vector and d1 and d2 are vectors
satisfying (42).

The assumptions in the following theorem do not require M to be a P-
matrix. According to Theorem 3.3 this implies that LCP(q;M) does not have a
unique solution for all arbitrary vectors q. In [17] the special structure of q and
M in (44a) and (44b) is exploited to prove the following result.

Fig. 1. The ith relay characteristic.
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Theorem 6.7 [17]. If G is a P-matrix, then the LCP(q;M) with q and M as
in (44a) and (44b) has a unique solution for each x0 and each d1, d2 satisfying
(42).

As a corollary of Theorems 4.1 and 4.9, we get the following statement.

Lemma 6.8. If G�r� is a P-matrix for all r P r0 for some r0 2 R, then
RCP�q�s�;M�s�� with q�s� and M�s� as in (43a) and (43b) has a unique solution
for all x0.

As a consequence of Theorem 5.10, Theorem 5.16, and Corollary 5.23, we
get the main result of this subsection.

Theorem 6.9. Consider the linear relay system given by (41a) and (41b) and k
ideal relay characteristics. If G�r� :� C�rIÿA�ÿ1B� D of (41a) and (41b) is a
P-matrix for all r P r0 for some r0 2 R, then for all x0 there exist initial solu-
tions of the relay system (41a) and (41b) with initial state x0, and all these initial
solutions are unique up to germ equivalence. Furthermore, the linear relay system
has the unique flow part property (as defined in Definition 5.22).

In [17], it has been shown that all initial solutions are regular distributions
and hence the state trajectory xc�t� of the global solution as in De®nition 5.9 is
continuous in the sense that limt"s�i� xc�t� � limt#s�i� xc�t�. Between event times
xc�t� is even smooth.

6.3. Well-posedness of dissipative systems with complementarity conditions

Let us consider a linear complementarity system (20a)±(20c), in which
the dynamical system given by (20a) and (20b) is dissipative in the following
sense.

De®nition 6.10 [34]. The system �A;B;C;D� given by (20a) and (20b) with
supply rate uTy is said to be dissipative, if there exists a nonnegative function
S : Rn ! R� such that for all t06 t1, and all locally square integrable functions
�u�t�; x�t�; y�t�� from R to Rk�n�k satisfying (20a) and (20b) the inequality

S�x�t0�� �
Z t1

t0

uT�t�y�t� dt P S�x�t1��

holds. A function S satisfying the conditions above is called a storage function.

The above inequality is called the dissipation inequality. We shall also use the
assumption of minimality of the system description, which is standard in the
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literature on dissipative dynamical systems, see e.g. [34]. The triple �A;B;C� in
(20a) and (20b) is called minimal, if it is controllable and observable. In alge-
braic terms this means that

rank�B AB . . . Anÿ1B� � n and

rank�CT CTAT . . . CT�AT�nÿ1� � n: �45�
We state the following results from [34].

Theorem 6.11 [34]. Consider the system �A;B;C;D� as in (20a) and (20b) and
assume that �A;B;C� is minimal. Then �A;B;C;D� is dissipative with respect to
the supply rate uTy if and only if the transfer matrix M�s� :� C�sIÿA�ÿ1B� D is
positive real, i.e. the poles of the entries of M�s� have nonpositive real parts and
M�s� �M��s�P 0 for all s with Re s > 0.

Theorem 6.12 [34]. Consider the system �A;B;C;D� as in (20a) and (20b) and
assume that �A;B;C� is minimal. The system is dissipative with respect to the
supply rate uTy if and only if there exists a symmetric positive definite matrix K
such that S�x� � xTKx defines a storage function.

Now we are in a position to prove the main result of this subsection.

Theorem 6.13. If the linear complementarity system given by (20a)±(20c) is
such that �A;B;C;D� is dissipative with respect to the supply rate uTy and the
triple �A;B;C� is minimal, then the corresponding RCP(x0) has for each x0 a
solution. RCP(x0) may have multiple solutions. However, we have
Bu1�s� � Bu2�s� for all pairs of solutions �uj�s�; yj�s��, j � 1; 2 to RCP(x0).

Proof. Since M�s� is positive real, M�r� is positive semi-de®nite for each
nonnegative real r. According to [8, Theorem 3.1.2] this implies that if the
LCP�C�rIÿA�ÿ1x0;M�r�� is feasible (see section 3 for a de®nition), then it is
solvable. So, if we can show that for all r > 0 LCP�C�rIÿA�ÿ1x0;M�r�� is
feasible, then we proved according to Theorem 4.1 that RCP(x0) has a solution.

Suppose that there exists a r > 0 such that LCP�C�rIÿA�ÿ1x0;M�r�� is not
feasible. This means that the set of inequalities

y � C�rIÿA�ÿ1x0 �M�r�u P 0; u P 0

does not have a solution y 2 Rk, u 2 Rk. Rewriting this in the standard form
used in Farkas' lemma [21] yields that
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�ÿM�r� I� u

y

� �
� C�rIÿA�ÿ1x0;

u

y

� �
P 0

does not have a solution. Then, Farkas' lemma [21] implies that there exists a
vector u0 such that

06 u0; �46�
0 P uT

0 M�r�; �47�
0 > uT

0 C�rIÿA�ÿ1x0: �48�
Observe that the following trajectories

u�t� � u0ert; �49�
x�t� � �rIÿAT�ÿ1CTu0ert; �50�
y�t� � MT�r�u0ert; �51�

form a solution of

_x�t� � ATx�t� � CTu�t�;
y�t� � BTx�t� � DTu�t�:

Note that the system with parameters �AT;CT;BT;DT� results in the transfer
matrix MT�s�. Furthermore, note that �AT;CT;BT� is minimal, because �A;B;C�
is minimal and that MT�s� is positive real, because M�s� is positive real. Hence,
the system �AT;CT;BT;DT� is dissipative according to Theorem 6.11.

Substituting (49)±(51) in the dissipation inequality for the system
�AT;CT;BT;DT�, we get for t0 < t1

S�x�t0�� �
Z t1

t0

uT
0 MT�r�u0e2rt dt P S�x�t1��; �52�

where we take S�x� � xTKx as a storage function for �AT;CT;BT;DT� with K
symmetric and positive de®nite as in Theorem 6.12. Note that uT

0 MT�r�u0 � 0
due to the fact that MT�r� is positive semi-de®nite and (46) and (47). Hence,
the integral in (52) is zero resulting in 06 S�x�t1��6 S�x�t0��. Since
limt0!ÿ1 x�t0� � 0 (see (50) and recall that r > 0), we get
xT�t1�Kx�t1� � S�x�t1�� � 0 for all t1 2 R. But this means that x�t1� � 0 for all
t1 2 R, because K is positive de®nite. Since �rIÿAT� is invertible for every
r > 0, (50) implies CTu0 � 0 which contradicts (48). This proves the existence
part of the theorem.

To prove the uniqueness part, we use similar reasoning as for the existence
part. Suppose LCP�C�rIÿA�ÿ1x0;M�r�� has for some r > 0 multiple solutions
�u1; y1� and �u2; y2�. According to [8, Theorem 3.1.7], then we must have that

W.P.M.H. Heemels et al. / Linear Algebra and its Applications 294 (1999) 93±135 131



�MT�r� �M�r���u1 ÿ u2� � 0. Observing that u�t� � ert�u1 ÿ u2�, x�t� �
�rIÿA�ÿ1B�u1 ÿ u2�ert, y�t� � M�r��u1 ÿ u2�ert are trajectories of the system
�A;B;C;D�, we can conclude analogously as above by using the dissipation
inequality for �A;B;C;D� that B�u1 ÿ u2� � 0. According to Theorem 4.9 this
implies that any pair of solutions to RCP(x0) �uj�s�; yj�s��, j � 1; 2 satis®es
Bu1�s� � Bu2�s�. �

The main theorem of this subsection is now a consequence of Theorem 5.10
and Theorem 5.23.

Theorem 6.14. A linear complementarity system given by (20a)±(20c) with
�A;B;C;D� dissipative with respect to the supply rate uTy and �A;B;C� minimal,
has for each initial state x0 an initial solution. Moreover the corresponding LCS
has the unique state part property (as defined in Definition 5.22).

An example of a linear complementarity system with �A;B;C;D� dissipative
with respect to the supply rate uTy is a linear electrical network consisting of
resistors, capacitors, inductors, gyrators, transformers and k ideal diodes. To
model such a network as a complementarity system, we ®rst extract the diodes
and replace them by ports with two terminals. Associated with these two ter-
minals are two variables: the current entering one terminal and leaving the
other and the voltage across these terminals. The resulting multiport network
can be described by a state space representation �A;B;C;D� [1] with input/
output (u=y) variables representing the port variables. For the i-th port, we
have that either ui is the current entering the port and yi the voltage across the
port or vice versa. To include the ideal diodes in the electrical network, we add
the ideal diode characteristics to the port variables. These are (with a sign
change with respect to the usual conventions in circuit theory)

06 y�t� ? u�t�P 0: �53�
Together with the �A;B;C;D�-system this constitutes an example of the

systems considered in this subsection.

7. Conclusions

The main results in this paper can be split in two categories. The ®rst cat-
egory deals with the existence and uniqueness of solutions to the RCP. Both
existence and uniqueness are completely characterized in terms of properties of
corresponding parameterized LCPs for large parameter values. The proofs rely
on convexity theory and properties of rational functions. Since a wealth of
theoretical and numerical results is known for LCPs, this provides many
methods to answer solvability issues of RCPs.
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The second part of the paper has shown the relation of the RCP to a
class of hybrid dynamical systems: the linear complementarity class. A re-
lation has been established between the existence of initial solutions to a
linear complementarity system and the existence of solutions to the RCP. It
appears that a similar relation for uniqueness is less trivial, because an
example shows that it is possible that multiple initial solutions exist for a
®xed initial state, although there is only one solution to the corresponding
RCP. This has led to the introduction of an equivalence relation among the
initial solutions. In terms of this equivalence relation, a uniqueness relation
between solutions of RCP and initial solutions has been stated. The results
on initial solutions have been translated to the global solution of a com-
plementarity system.

The obtained results have been exploited to prove existence and uniqueness
results of physical processes like mechanical systems subject to unilateral
constraints, dissipative systems with complementarity conditions like electrical
networks with diodes, and systems with relays and/or Coulomb friction. The
set of examples presented here gives a ¯avour of the systems that can be
modelled as complementarity systems and indicates the relevance of the
complementarity class and the results presented here.

The proofs of the well-posedness results that we have obtained are con-
structive in nature, in the sense that they present speci®c algorithms which
determine the status (``active'' or ``inactive'') of all complementarity conditions
given an initial condition. In other words, these algorithms solve the ``mode
selection problem''. Algorithms of this type are important in the simulation of
hybrid systems. In this paper we have not considered the numerical issues re-
lated to mode selection problems; this is an important subject for further re-
search.
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