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§1. Introduction 

Consider the real line with its usual (Euclidian) topology, and a 

subbase 6for this topology consisting of open half-lines; 

so ~={(a, 00 )JaEAL}u{(-00 , b)lb€~}-

It is easy to prove that for ~to be a subbase, the sets AL and ~ 

must be dense subsets of the real lineo From this fact it follows that 

for each aE AL respo ~: 

(a, 00 ) =V{(b, 00 )lbEAL' b > a} respo (-00 , a) =U{(-00 , b)lbE:~, b < a}. 

Hence, if we remove an arbitrary set (a, 00 ) or (-00 , b) from the subbase 

5!>, then the resulting collection of open sets remains a subbase for 

the topology. 

If we consider the subspace fl, of the integers, then the situation is 

different. Let 5 be the following sub base~ 

If we remove some set (-00 , k) from.:$, then the resulting collection is 

a subbase for a new topology in which any open set containing k-1 also 

contains k. In fact the subbase .3 is a minimal subbase in the 

following sense: 

There exists no proper subcollection of 3that is a subbase for the 

topology generated by 5, 

As we have seen the discrete space Z possesses a minimal subbaseo 

It seems that the real line does not possess such a subbase, but in 

fact we only have shown that there exists no minimal subbase for the 

real line consisting of open half-lines. 

In this report it will be shown that an arbitrary metric space possesses 

a subbase which is minimal in the sense defined above. 

In the proof we shall construct a minimal subbase starting from a 

a-discrete base for the topology. Furthermor~we shall use the notion 

of a minimal neighborhood subbase for a point p; this we define to be 
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a collectionQof neighborhoods of that point p with the property that 

the family of finite intersections ofQis a neighborhood base for p, 

and that no proper subcollection of Q generates a neighborhood base of 

p. 

In this report the characters ft 0.,9:>, lJ: etc. will denote collections 

of subsets of a given topological space X. The collection of all finite 

intersections of sets taken from Q.will be denoted by(/;, their 
. . b /"\V arbitrary union yv..,. 

By definition y(O} = ((X')v. 

The expression "A is generated by (A_ will express the fact that AE. y (Q). 

In a metric space we denote the open e-neighborhood of the point p by 

u (p). 
e 

Except for the general properties of section 2 and the example in section 

4 all spaces considered are metric. 

A subminispace is a topological space that possesses a minimal subbaseo 

In section 2 we state some elementary properties on minimal subbases, 

the proofs of which appear in a separate report [1]. Section 3 contains 

the proof that each metric space is a subminispaceo Section 4 gives the 

construction of a completely regular space that possesses no minimal 

subbase. 

§2. Some elementary properties on minimal subbases. 

The proofs of the propositions stated in this section appear in a 

separate report; see [1 J. 
prop. 1: A subbase !Sis minimal if and only if for each S€S, 8$,y(5 \ { s}) o 

A space that possesses a minimal subbase will be called a subminispaceo 

prop. 2: The topological product of subminispacesis a subminispace. 

prop. 3~ The disjoint topological union of subminispaces is a submini-

space. 

From propo ~ and propo 3 it follows directly (given the fact that each 

finite space is a subminispace) that each Cantorspace, each discrete 



3 

space, and each product of discrete spaces (for example the space of 

the irrational numbers) is a subminispaceo 

propo 4: Any topological space (not necessarily metric) can be embedded 

in a subminispace a) as a clopen subset where the complem~nt 

consists of isolated points, b) as an open dense subset. 

From propo 4 it follows that the property "subminimality" is not inherited 

by open, closed or dense subsets. We depend here on the existence of 

a space that is not a subminispace, which will indeed be provided in 

section 4. 

§3. Minimal neighborhood subbases 

Definition: A collection 0. of subsets of a topological space X is 

called a neighborhood subbase for the point p E:X if Cf'- is a neighbor­

hood base for po 

A neighborhood subbase 0..for pis called a minimal neighborhood subbase 

for p if there exists no proper subcollection a_ of Q. such that Q.' is 

a neighborhood subbase for p. 

With this notion it is possible to "localize" the notion of a minimal 

subbase. We have the following proposition: 

prop. 5: A sub base -3 of a topological space is a minimal sub base, if 

and only if for each SE:~ there exists a point p E:S, such 

that the collection5'(p,S) = {ua$lpE.U, U :/ s} is not a 

neighborhood subbase for p. 

proof:9Let ~be a minimal subbase; then Sci=> S¢,y(!\{s}). 

Now we have that (3\{s} )" is a base for the topology y(g\{s}); hence 

~y{&\ {s}) means that there exists a point p e:s such that there is no 

set U€ {!$\{s} )"- with pe:ucs. 
A 

This implies that there exists no open set in (g, (p,S)) 

tained in S. 

that is con-

This proves the fact that 8 1 (p,S) is not a neighborhood subbase for p. 
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~ 
Let SE.Bo Then there exists a point p€S, such that ~, (p,S) is not a 

neighborhood subbase of p. This means that there exists an open set 

containing p which is not a neighborhood of p in the topology y (.3\{ s}) o 

This proves the fact that y ~\ { s}) #- y (~) o 

Since S was taken arbitrarily from .g, this means that ~ is a minimal 

subbaseo 

Lemma: Let p be a point of a metric space Mand let O be an open set 

containing po Then there exists a minimal neighborhood subbase~ 

consisting of open subsets of Oo If pis not an isolated point we may 

assume that O =U{uluea.p}o 

proof: Suppose first that pis an isolated pointo Then we take 

Q = {{p}} and the proof is trivial. Therefore, we suppose in the fol-
p -

lowing that pE o\{p}. 

Choose a sequence {xi}:=1 of points from Osuch that: 

with converges to zero. 

2) U (p) is contained in O. 
a 1 

Let Vk be U (p), and put v0 = o. 
a2k 

is a monotone descending sequence 

Now O\V1 #-¢and for each k Vk\Vk+ 1 #-¢,since x 1E. o\v1 and 

x2k+1 E:.Vk\ vk+1 • 

It is easy to see that {vi}:=1 is a neighborhood base for p. 

Now we take w1 = v1, and Wk= VkU(o\i\_ 1 ) fork.::_ 2o 

Then {wi}:=1 =Qp is a minimal neighborhood subbase for p. 

This can be proved the following wayo 

k 
In the first place Vk = n W. for each k, hence Q is a neighborhood 

j=1 J p 
base for p. 

From the construction of the W. 'sit follows that each set in 
i 

({wi}:=1\{wk})'' contains the non empty set Vk_ 1\'\, hence no proper 

subcollection ofC\ is a neighborhood subbase for p, Thus~ is minimal. 



It is easy to see that 0 = Q Wk. 
k=1 
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It is useful to remark that for each point q_ E0, q_ ':/- p, the intersection 

of all Ue.O with q_£U is an open set. 
p 

Theorem: Each metric space possesses a minimal subbase. 

proof: Let {x, p} be a metric space. From the metrization theorem of 

Bing ( see [2] ) it follows that there exists a a-discrete open base 

~ = U ~ for the topology such that....:1k is discrete for each k. 
k=1K 

From the base.J?>we construct by induction, for each natural number k, 

a collection of open setsJ'k and a discrete closed subset Dk of X, 

such that the following conditions are satisfied: 

1) Dk.::)Dk-l; Dk is a discrete and closed subset of x. 

Put xk = X \ Dk, XO = X. 

2) 8 k :)3k_ 1 ; for each S£. -Sk, S €l 3k_ 1 implies that S is an open subset 

of xk_ 1• 

3) Each S€5k is either a set consisting of one isolated point, or 

else there exists a point p E:: Dk such that ::S'k is a neighborhood 

subbase for p, and 3k\ fs} is not a neighborhood subbase for po 

4) OJ>ncy(Bk). 
n=1 

5) For each yE.Xk the intersection Xk n ( n {SI S E:.B'k, y E.S}) is an open 

set. 

construction: Fork= 0 we take Dk=¢ andEk =¢;then 1), 2), 3), 4) 
and 5) are fulfilled. 

Now we suppose that the construction is performed fork< n. 

We construct 3n+1 and Dn+ 1 in the following way: 

Let 0 be an open set of._3n+ 1o Then there are two possibilities: 

I. 0 nx only consists of isolated points. In this case we put n 

8n+ 1(o) = {{x}lxE:onxn}' and Dn+ 1(o) = ¢. 

II. There exists a non-isolated point x0e: 0 nxn. Then we take 

Dn+1(o) = {xo}. 
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Let V be the intersection V = xnn on (f\ {S€.~nlx0e.s}), then V is an 

open neighborhood of x 0 by 5). As in the proof of the Lemma we construct 

a neighborhood base {uj} j=1 of x0 such that TI1E. V' and V \u1 ,j:. ~, 

U ·+1C U. and U. \ U. 1 ,j:. ¢ for each J. 
J J J J+ 

We now define 5'n+1(o) = {u1}U{((xnno)\uj)UUj+1}j=,• 

Now we see thatgn+1(o) is a minimal neighborhood- subbase for x 0 con­

sisting of open sets contained in X () 0 such that their union equals n 
X n O, and that for each point yEX () O, y -:/- x0- , the intersection of n n 
all U€g n+1 ( 0) containing y is open. 

Since(l)n+1 is a discrete collection of open sets, we can perform this 

construction for each 0€(bn+1 simultaneously. Now we define: 

Dn+ 1 = DnU(U{Dn+1(o)loe(bn+1}) and Bn+1 =J'nv(u{Sn+1(o)joECbn+l}). 

It is easy to check that with this construction the conditions 1), 2) 

3), 4) and 5) are fulfilled. 

Now let q;- be the union kY1 gk• It is clear that 

<:b = Q1 Q,kc y(kQ1 S k) = y(gj; hence I!:,* is a subbase. 

Each set in fl{'" is either a singleton consisting of an isolated point 

or an element which is contained in a-minimal neighborhood subbase for 

some point x in some Dk. 
fl* . . . fl_* (2~ ~ \f2* Let :>1 be the collection of all singletons in-:::, and?2 = ::> -;;)1• 

If SE$; there exists a k such that S~~ but S EtSk_1• 

Then there exists a point x-EiDk such that·!sk\{s} is not a neighborhood 

subbase for x. But for each ue~*\Sk we have x E:U; hence ~\ {s} 
again is not a neighborhood subbase for x. 

Lets; be the set of all singletons {x}e.~1 such that {x} (£. y(~;). 

Then it is clear that {x}Ey(~*\{x}), hence S\{x} is not a neighbor­

hood subbase· for x. Now we form the union ~ = s; V~;. 
It is clear that 5 is a subbase for the space·X and by prop. 5 we have 

that Sis a minimal subbase, which completes the proof of the theorem. 
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§4. An example of a non-subminimal space. 

By adjoining one non-isolated point to a discrete space 

we construct an example of a space which has not a minimal subbase. 

It is clear that the resulting space is a normal space. 

Let A be a set with card(A) = ~ 1 and let < be a well ordering for A, 

such that each proper <-section is countableo Now we form the product 

Ax A. Let 00 be a point not contained in Ax A; then we define the set 

X by X = A x AV{ oo}. 
We define a topology on X by means of the following open subbase0: 

£s = {{ x} Ix€. A x A}v\Y( 00 ), where 

ti{ 00) = { u I 00 E. u and Va£ A 3t ( a) E. A vb €.A [t ( a) < b => ( a, b ) E; u J } . 
So a neighborhood of 00 is a set U that contains from each set {a} x A a 

tailpieceo 

In this topology the intersection of a countable collection of neigbor­

hoods of 00 is again a neighborhood of 00 • 

The weight of this space is greater then .,&1, as can be concluded from 

a "diagonal construction" in a "neighborhood base of 0011 with cardinality 

.&10 

Now let ~ be a sub base for the topology. Then card(~) > .f,-\1• 

Dor each x 6A x A there exists a finite subset 3(x) of~ such that 

n{s1se.~(x)} = {x}. 
LetS1 =S\U{S(x)}xE.A x A}. Then card(fS 1 ) >.&1• 

If ~ is a minimal sub base then we may conclude: 

For each sej1, 3\{s} is not a neighborhood subbase for 00 • 

Hence if s1f'Lo.()SkCS, SE.!s1 , and s1 , ••a, SkE.~ then S = Sj for some 

j = 1 , • o • , k. 

Now we take a :ountable collection {sj}j=1 from g1• 

We have that .n1 S. is a neighborhood of 00 ; hence there exists a finite 
J= J 00 

collection u1 , •• o, Uk such that 00 EU1 () ••• ()UkC ))1 Sj, 

From this we conclude that S. = U for 1 < n. < k which gives a 
J nj - J -

contradiction. 



8 

REFERENCES 

[1] P. van Emde Boas, Minimality of subbases and bases of topological 

spaces, report ZW 1967-006 mathematisch Centrum, 

Amsterdam. 

[2] J.L. Kelley, General Topology, New York 1955. 


