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Universal topological properties

Until explicitly stated, all spaces in consideration are completely re=-
gular. Thus the abbreviation "space" means always "completely regular

space" .

Introduction. Let€? be a property of topological spaces. We call Pa

universal property if every space X is homeomorphic with a dense subset
of a space yX with propertySD, such that each continuous map of X into
any space Y satisfying{?, can be extended continuously to the whole of
vXo

It turns out that the universal properties are precisely those pro=-
perties, which are possessed by all compact spaces and which are inhe-

rited by closed subsets and (arbitrary) topological products.

1, Almost-fitting properties, maximal embedding

Conventions. LetQ’ be a property of topological spaces.
f?is called productive or sometimes arbitrary productive,if the product

G% has property{PD

of an arbitrary collection of spaces enjoying

P is called countably productive (respectively finitely productive), if

the product of a countable (respectively finite) collection of spaces

enjoying §° has property &,

Pis called hereditary (respectively closed-hereditary) if every sub-

space (respectively closed subspace) of a space satisfyingfyﬁ has pro-

pertySPo
1)

Dis called almost-fitting property, if whenever f is a perfect ' map

of a space X onto a space Y, then X has propertyf? if Y has propertny@

1) A mapping f of a space X into a space Y will be called perfect if

f is continuous, closed (the images of closed sets are closed) and

the inverses of points are compact.
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QBis called a fitting property, if whenever f is a perfect map of a
space X onto a space Y, then X has property O if and only if Y has
propertyép0

Compactness and realcompactness 1) are examples of properties which are
closed-hereditary and productive. Both are also almost=fitting proper=
ties,

Local compactness, O=-compactness, countable compactness, paracompact=
ness, countable paracompactness, éech-completeness are examples of pro-
perties which are closed-hereditary. (but not productive). Each of the-

se listed properties is an almost=fitting property.

If a topological space X is densely embedded in a space YX with proper=
tyfp then we call vX a‘ﬁDmfication of X,

Sometimes yX is of the type that to each continuous mapping f of X into
any space Y with proPertij)9 we can find a continuous extension f of f
which carries yX into Y. yX is then said to be a maximal P-fication

of X. It is easy to see that in the latter case yX is uniquely deter=-
mined to X, and we have yX = X if and only if X has propertnyo

We call §’ & universal property if every space has a maximal 6)-fi-

cation.

Compactness and realcompactness are indisputably the most interesting
universal properties. The maximal.ﬁb-fications are here respectively
the ech-Stone compactification and the Hewitt realcompactification.
The following theorem which is the main result of this section shows

that universal properties are most familiar to us.

Main result of §1,

If §>is a property of topological spaces, then the following statements

are equivalent.,

1)

For the definition of realcompactness cf. [1] .




(a){?:is a universal property.
(b)(? is closed=hereditary, productive, and each compact space has pro=-

perty{)) o

Before we attack the proof, we give some preliminary results which are

of interest in itself.

(1.1) Lemma. Let Y ve a topological property which is productive and
closed=hereditary.

If Z is a space and {XalaéEA} is a collection of subspaces with proper=-
tyﬁ? then X =r\{Xa|aé§A} satisfies propertyfpa

An analogous result is obtained for properties that are only countably

or even finitely productive.

Proof. Let Y =7T{Xa]a€;A}9 and ACY given by A = {x = (xa)eiY|xa = x,

Va o EiA}e ! 2
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It is not hard to see that X is homeonmorphic with the subspace A.

Thus it remains to show that A has property'sz

Y has property*gbsince each Xu has propertyf? and Y is productive.

A is a closed subset of Y because each Xa is a Hausdorffspace. Hence A

has property(? since P is closed-hereditary.

P

(1.2) Theorem. If a property J° of topological spaces is closed=heredi-

tary, productive and an invariant for the taking of open subsets, then

i?is a hereditary property.

Indeed, if Y is a space havingg:' and XCY then X =ﬂ{Y\{p}]p&Y\X} i.eo
X is intersection of open subsets of Y. By assumption each open subset

of Y has property:P and the preceding lemma yields that every intersec-

tion of spaces enjoyingf? has)Y. Consequently X has propertyfpa

This theorem can serve as a test to decide whether some property is
inherited by open subsets, closed subsets or (arbitrary) topological

products.
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For instance, it 1s easy to see that the property k is an invariant
for the taking of open and closed subsets. Since the property k is not

hereditary the above result shows that the property k is not productive.

(1.3) Lemma. Let f be a continuous mapping of a space X into a space
Y and suppose that ZCY. Then fm1(Z) is homeomorphic with a closed sub=
space of X x Z,

Proof. We shall proof that the graph of g = flf_qu) (which is homeomorpic
with f’ﬁ(z)) is closed in X x Z. Let (x, z) be any point of X X Z which
is not in the graph of g, We propose that f(x) + z, Indeed the asser=-
tion f(x) = z implies that xé&fﬂ1(z)C:f~1(Z) i.e. f{x) = glx) = z)which
is impossible since we have supposed that (x, z) is not a point of the
graph of g

We can choose disjoint neighborhoods U(f(x)) and U(z) of f(x) and z in
Y respectively. The continuity of f ¢ X + Y insures us the existence

of an neighborhood V(x) of x in X which is mapped inside U(f(x)) by f.
Now V(x)X (U(z)n Z) is a neighborhood of (x, z) in X x Z which is
disjoint from the graph of g. Since (x, z) was arbitrarily chosen,

we conclude that the graph of g is closed in X x Z.

From (1.3) we derive the following two general results.

(1.4) Theorem. LetY be a property of topological spaces which is fini-

tehproductive and closed-hereditary. If f is a continuous mapping from
a space X with property(? into a space Y, then the total preimage of
each subset of Y with property'j)satisfies again property .

(1.5) Theorem. Let Y be a property of topological spaces which is closed-

hereditary. If for any space Y with property:}% the product of Y with
any compact space 7 has property<?, then(? is an almost-fitting property.

i . N s .
') A space X has property k provided that a subset 1s closed if it has

a compact intersection with each compact subspace of X.




Proof. Let Y be a space with property 539 and suppose that f is a perfect
map of a space X onto Yj; we must show that X has property 630

Let T be the extension of f which carries X into BY. (8X and BY deno-
ting the Cech-Stone compactifications of X and Y respectively).

A well known theorem of Henriksen and Isbell states that ’f‘;l(Y) = X (ef,
[7]). Hence by (1.3) ?{_1(3{) = X is homemorphic with a closed subspace
of BX x Y, The theorem now follows from the assumptions we made on the

property (J)o

(1.6) Lemma. If ¢ is a continuous map of a space Y into a space Z, whose
restriction to a dense set X is a homeomorfism, then ¢ carries Y\X into

Z\cb(X)o
Proof. See for instance [2] blz. 92,

Proof of the main result.

(a) => (b). Let P be a universal property; for each space X set yX the
maximal W-fication of X.

If X is compact then obviously X is closed in yX i.e. X = vyX has proper=-
ty@o So it remains to show that?is productive and closed-hereditary.
Let {XGIaGA} be a collection of spaces enjoying Y and X =T‘:LXOL[@€A}O
Each projection map L X » Xa has a continuous extensiop L YX =+ Xaa
Let i ¢ yX + X be defined by the conditions (J'.%(x))m= ’n':(x) (a€n).

i” is the identity on X, so we have by (1.6) that YX\X = ¢ i.e. YX = X,
Consequently X has property f\)o

Let X be a closed subset of a space Y satisfying . The inclusion map
of X into Y has a continuous extension i of YX into Y. By (1.6) the
preimage of the closed set X under i%is X; hence X is closed in ¥X i.e.

vX = X, It follows that X has property 6)9

(p) => (a). Let 9possess the already cited invariances; let X be a space
and RX its dech-Stone compactification.

Consider for each continuous mapping f which sends X onto adense subset of
a space Y satisfying ?3 the extension T of f which carries BX onto BY,
and set X(Y, £) = £ (Y).




It follows from theorem (1.4) that X(Y, f) has property(?o

Now let yX = N{x(Y, £)|Y satisfies{P; £:X + Y continuous; fX dense in Y}.
X is clearly densely embedded in YX moreover it follows from (1.1) that
¥X has property 6)@

We shall prove that yX is a maximal‘jlficationo If g is any continuous
mapping from X into a space Z satisfying(\PS then let Z' be the closure
of gX in Z. Z" satisfies gPsincef? is closed~hereditary.

Now we have YXCX(2Z', g) (g considered a mapping of X into Z') and

ElyX : yX » Z'C Z is a continucus extension of g which carries ¥X into Z.

§2, Examples of universal properties

We will show that there are "enough" universal properties (the theory
above would obviously be not succesful if compactness and realcompact-

ness were the only candidates).

Definition. A family of subsets of a topological space X has the m-in=-

tersection property (m finite or infinite cardinal number) provided
that every subcollection of cardinal < m has a nonempty intersection.
An ultrafilter &% in X is said to be an m-ultrafilter if the closed sets
of X that are members of ¥, satisfy the m-intersection property.

A space X is called m-ultracompact provided that every m-ultrafilter

in X is covergent,

Obviously compact implies m-ultracompact for every m; if n < m then
n=ultracompact implies m=ultracompact.

It is also easy to see that if X has the Lindel&fproperty then X is
fiuultracompactc The connection between fﬁ;ultracompactness and real-~
compactness is considered on an other occasion.

(We can prove that_S;multracompactness is equivalent to realcompactness

for normal spaces).
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(2,1) Lemma. Letf}l' be an m-ultrafilter in a space X and f : X + Y a
continuous mapping. The collection %= {£(F)|FE9g?} constitutes a base

for an m=ultrafilter in Y.

Proof. A well known argument shows that % is base for an ultrafilter %"
in X. Let {Sa[aéA} be a family of closed sets of %ﬁ with cardinal < m.
Clearly every S intersects every f(F) (FE&F). Consequently every
fgj(Sa) (a€A) is a closed subset of X and meets every member of .
Hence, since T is an m-ultrafilter, {f"‘g(sa)laEA} is a subcollection
of F and n{fﬂ(sa)iaéA} # ¢. It follows that {SGIQGA} has non-empty

intersection.

{2.2) Theorem. The property m=ultracompactness is closed=hereditary and

productive for every m. Hence since every compact space is m=-ultracom=

pact, m-ultracompactness is a universal property.

Proof. Let {Xaiae A} be a collection of m=ultracompact spaces and

X = w{Xa[aéA} . Take an m-ultrafilter & in X and let for a€A

{Fa = {naFIFE}}'}Q By the previous lemma, each 3‘5“ is base for an m-ultra=-
filter in Xa which is convergent to a point P, in Xa@

Let p be the point of X whose a'th coordinate is P, A well known ar=-
gument shows that p is limitpoint of &, i.e. F is convergent (since F is
an ultrafilter).

Now let X be an m~ultracompact space and Y a closed subspace of X.

We will show that Y is m-ultracompact.

Take an m-ultrafilter F in Y. The preceding lemma shows that F is base
for an m-ultrafilter &' on X which is convergent, say to peX. Clearly
ren{Flreylcn{Flrey | = ﬂ{?Y|FEy}O Hence & is a convergent filter

in Y.

(2.3) Theorem. Every space Y which is the perfect f-image of some m-ultra=-

compact space X, is m-ultracompact.Hence together with (1.5) we conclude

that m-ultracompactness is a fitting property-
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Proof. Letl]:' be an arbitrary m-ultrafilter in Y and S an ultrafilter
in X which contains the family f’u?((}') = {f_‘i(F)lFES\*'}Q
We shall first prove that (3 is an m-ultrafilter in X. Let us suppose
that there exists a countable family g of closed members of%) with
empty intersection. Without lost of generality we may suppose that g
is closed under finite intersections. The members of £(8) = {r(s)|se§}
are closed subsets of Y and they intersect each member of F. Consequent=
1y f(S)CF and we are able to choose peﬂf(%) since & is an m-ultra-
filter in Y. Now {fwj(p)ﬂSIseg} is a centered system in X and compact-
ness of f-’](p) yields {f‘1(p)ﬂSlS€S} # ¢. Hence ng # ¢, which is a
contradiction,

The space X being m-ultracompact, we have n_%—X # ¢, and in conse=-

Y 4.

quence ﬁ§

(2.3) Lemma. If X is an m-ultracompact space and if every open cover of X

of cardinal < m has a finite subcover, then X is compact.

Proof. Let % be an arbitrary ultrafilter in X. Clearly the family of
closed subsets of X that are members of & satisfy the un_l-intersection
property (otherwise their complements would constitute at least one open
cover with cardinal < m that has no finite subcover).
m-ultracompactness of X now yields that F is convergent. Consequently

each ultrafilter in X is convergent i.e. X is compact.
In particular it follows that a topological space X is compact iff X is
5"°~ultracompact and countably compact. Actually a stronger result is

true: X is compact <=> X is pseudocompact and realcompact.

(2.4) Theorem. For each (infinite) cardinal number m there exists a

normal space X which is m=ultracompact but not n-ultracompact for n < m.
Proof. We may suppose m > S‘oe

Let o be the smallest ordinal number of potency m. Let W = {g ordinal

lg < a} and W= {5{& < a} be supplied with the usual order topology.




W is m-ultracompact. For, since BW is homeomorphic to W*E and ultra-
filter ¥ in W that has no limit point in W must contain the m sets FB =
= {eew|e > 8} (B < a). Sinceﬂ{FslB <al = ¢J§ cannot be an m-ultra-
filter,

If n <m, then W is not n-ultracompact. Indeed n-ultracompactness would
together with the fact that every open cover of W of cardinal < n has a

finite subcover, disprove (2.3).
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