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The abbreviation "space" is used to denote '"completely regular space'.

A well-known theorem of Hewitt and Shirota [1] states that a
realcompact completely regular space is homeomorphic with a closed
subspace of a product of real lines, Many proofs of this fundamental
theorem have appeared, among which are those applying general real-
compactification methods and methods using embedding in complete
uniform structures. The present note has the goal of giving an element-
ary self-contained proof of this theorem invoking only basic set

theoretical properties of realcompactness.

Recall that a space is realcompact provided that each maximal
centered family of zerosets with the countable intersection property
has non empty intersection.

If X is a space, then it is well-known (see [1] page 17) that
each two disjoint zerosets of X have disjoint cozeroset neighbourhoods.
Moreover, each finite cover of X by cozerosets has a finite refinement
consisting of zerosets. The proof of the last remark is similar to the
proof of the statement that each finite open cover of a normal space
has a finite closed refinement.

If X is a space and oX an extension of X in which X is dense,
then we shall say that oX has property (Z) in case that for each
countable collection of zerosets of X with empty intersection, the

closures in aX have empty intersection.

LEMMA 1. Let oX be an extension of X which contains X as a dense

subspace and such that each continuous function on X has a continuous

extension over oX. Then oX has property (Z).

PROOF. If Z1 and Z2 are disjoint zerosets of X, then by the complete

regularity of X there exists f € C(X) satisfying f(Z1) =0, £(2

2) =1,
Let £ be the continuous extension of f over oX. It follows that

i?X(1 ngc: F1(0) rx§‘1(1) = ¢. Moreover, if {Z1,...,Zn} is a finite
collection of zerosets of X with empty intersection, then according to
the remark above there exists a finite collection of zerosets {T1""’Tm}

which is a cover of X and which refines {k\z1,...,X\\Zn}.



The fact that each two disjoint zerosets of X have disjoint closures
in oX implies that {‘Taixliﬂ »2,..,m} is a cover of aX which refines
{ocX\'Z'§X|i=1 »2,..,n}. Hence nfiaixliﬂ 22seeesnt = 0.

Now, let {Zi[i=1 ,2,...} be a countable cdlection of zerosets of
X with empty intersection. If there exists p€f) {'Z?X\iﬁ ,2,...}, then
for i=1,2,... let f; € C(X) be such that 0 < f. < 1 and
z, = {x € x]r,(x) = o}.

The result proved in the last few lines above implies that an

arbitrary (zeroset) neighbourhood U of p in aX intersects

z, N Zgﬁ... N 7 for each k, so the function f on X defined by

k

takes arbitrarily small values on U() X. It follows that the function
1/f cannot be extended continuously over aX, which contradicts our

hypothesis.,

LEMMA 2, If X is a realcompact space and if oX is an extension of X

with propery (Z), then aX = X.

PROOF. Denote the collection of zerosets of X byi. Assume that there
exists p € aN, and le’c:,l,1 be the subcollection of o defined by ZL1 =
Iz Ellpe ZOLX}. Condition (Z) implies that:l_1 is a maximal centered
family of zerosets of X with the countable intersection property; thus
by realcompactness of X there exists qEﬂ'&1 . Let G be a zeroset
neighbourhood of p in aX which contains p and does not meet q. Then
€& mocX’ so GN X is a member of ',:11 which does not meet g. This

is a contradiction.

We are now in a position to prove Hewitt-Shirota's theorem. We

state it in the following way.

THEOREM, Let X be a realcompact space. The mapping e: X > R c(x)

defined by e(x)_, = f(x) for £ & C(X) is a homeomorphism of X onto
- (X)

a closed subspace of IRC .




w

PROOF. By the complete regularity of X, e is a homeomorphism. By lemma
1 the closure e(X) of e(X) in BC(X) is an extension of X with property
(z) and by lemma 2, e(X) = e(X). Thus e is a closed embedding.
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