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The abbreviation "space" is used to denote "completely regular space". 

A well-known theorem of Hewitt and Shirota [1] states that a 

realcompact completely regular space is homeomorphic with a closed 

subspace of a product of real lines. Many proofs of this fundamental 

theorem have appeared, among which are those applying general real­

compactification methods and methods using embedding in complete 

uniform structures. The present note has the goal of giving an element­

ary self-contained proof of this theorem invoking only basic set 

theoretical properties of realcompactness. 

Recall that a space is realcompact provided that each maximal 

centered family of zerosets with the countable intersection property 

has non empty intersection. 

If Xis a space, then it is well-known (see [1] page 17) that 

each two disjoint zerosets of X have disjoint cozeroset neighbourhoods. 

Moreover, each finite cover of X by cozerosets has a finite refinement 

consisting of zerosets. The proof of the last remark is similar to the 

proof of the statement that each finite open cover of a normal space 

has a finite closed refinement. 

I.f X is a space and aX an extension of X in which X is dense, 

then we shall say that a.X has property (Z) in case that for each 

countable collection of zerosets of X with empty intersection, the 

closures in a.X have empty intersection. 

LEMMA 1. Let a.X be an extension of X which contains X as a dense 

subspace and such that each continuous function on X has a continuous 

extension over a.X. Then a.X has property (Z). 

PROOF. If z1 and z2 are disjoint zerosets of X, then by the complete 

regularity of X there exists f E C(X) satisfying f(Z 1) = O, f(Z2 ) = 1. 

Let f be the continuous extension off over a.X. It follows that 
-a.X -a.X --1 ( ) n --1 ( ) r1. • { } z1 n z2 C f O f 1 = VJ• Moreover, if z1 , ••• ,Zn is a finite 

collection of zerosets of X with empty intersection, then according to 

the remark above there exists a finite collection of zerosets {T1, ••• ,Tm} 

which is a cover of X and which refines {~z1 , ••• ,x\znl• 
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The fact that each two disjoint zerosets of X have disjoint closures 

in aX implies that {T~Xli=1,2, •• ,m} is a cover of ax which refines 
i 

{ax\z~xli=1,2, •• ,n}. Hence n{z:xli=1,2, ••• ,n} = ¢. 
Now, let { Z - I i=1 ,2, ••• } be a countable cdlection of zerosets of 

i 

X with empty intersection. If there exists PE O {z~XI i=1 ,2, ••• }, then 

for i=1,2, ••• let f. E C(X) be such that 0 < f. < 1 and 
i - i -

z. = {x E: Xlf.(x) = o}. 
i i 

The result proved in the last few lines above implies that an 

arbitrary (zeroset) neighbourhood U of pin aX intersects 

z1 n z2 () ••• (\ Zk for each k, so the function f on X defined by 

00 

f (x) - I 
i=1 

takes arbitrarily small values on un X. It follows that the function 

1/f cannot be extended continuously over aX, which contradicts our 

hypothesis. 

LEMMA 2. If Xis a realcompact space and if ax is an extension of X 

with propery (Z), then ax= X. 

PROOF. Denote the collection of zerosets of X byl. Assume that there 

exists p € ai\x, and let l, 1 be the subcollection of~ defined by~, = 

{z ea.IP€ zax}. Condition (Z) implies that:;:L, is a maximal centered 

family of zerosets of X with the countable intersection property; thus 

by realcompactness of X there exists q En l, 1• Let G be a zeroset 

neighbourhood of pin ax which contains p and does not meet q. Then 

p ~ G n XaX, so G n X is a member of :11 which does not meet q. This 

is a contradiction. 

We are now in a position to prove Hewitt-Shirota's theorem. We 

state it in the following way. 

THEOREM. Let X be a realcompact space. The mapping e: X • IR C(X) 

defined by e(x)f = f(x) for f <:. C(X) is a homeomorphism of X onto 

a closed subspace of IRC(X) 
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PROOF. By the complete regularity of X, e is a homeomorphism. By lemma 

1 the closure e(X) of e(X) in IRC(X) is an extension of X with property 

(Z) and by lemma 2, e(X) = e(X). Thus e is a closed embedding. 
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