
stichting 

mathematisch 

centrum 

AFDELING ZUIVERE WISKUNDE 

J.M. AARTS 
DI MENS I ON MODUU J A CLASS OF SPACES 
I 

~ 
MC 

zw 11/71 NOVEMBER 

2e boerhaavestraat 49 amsterdam 

BiBUOTHEEK MATHEMAT!S(:H Ci;l".H~Ud 

- AMSTERDAM '""'""·-



P,unted a.t .the Ma.thema.tlc.a.l Cent/Le, 49, 2e Boe/Lhaavu.tlr.aa.t, Aml,teJu:lam. 

The Ma.thema.tlc.a.t Cent/Le, 6ou.nded the 11-.th 06 FebJtLUVLy 1946, .l6 a. non­
P'W6.U .ln.6-ti.:tu.:ti.on a.imlng a.t .the pJWmo:tlon 06 puJLe. ma.thema.tlc.6 a.nd .lt6 
a.ppUc.a.tlont>. I.t .l6 .6pon.1>01Led by .the NetheJr.ia.nc:u GoveMmen.t .th.Mu.gh .the 
NetheJtlo.nc:u O)[ga.n.iza.tlon 6oJL .the Adva.nc.ement 06 PU/Le Re&eaJtc.h (Z.W.O), 
by .the Munlclpa.llty 06 Nn/).teJLda.m, by .the Unlve/L.6.U:y 06 Amt,teJu:lam, by 
.the FJLee Un.lve/L&Uy a.t Nn/).teJLdam, a.nd by -lndul,ruu. 



-1-

1. INTRODUCTION 

We start our discussion with a problem which has been posed by 

de Groot in 1942. 

A space is said to be semicompact if each point of the space has 

arbitrarily small neighborhoods with compact boundaries (the notion of 

semicompactness was first introduced by Zippin [26]). 

In [15], de Groot proved that a separable metrizable space is semi­

compact if and only if it can be compactified by adding a set of dimension 

not exceeding zero. 

The notions of compactness degree and deficiency of a space come up 

naturally. The compactness degree of a separable space X - cmp X - is de­

fined in a similar way as the small inductive dimension, ind, but starting 

with the definition that cmp X = -1 if and only if Xis compact. The 

compactness deficiency of a separable space X - def X - is defined by 

def X = min {ind Y\XIY is a metrizable compactification of X}. Now the 

above characterization of semicompactness can be rephrased as follows: 

Theorem. Let n = 0 or-1. For every separable metrizable space X, 

cmp X < n if and only if def X < n. 

De Groot (1.c.) has pos~d the following problem: 

Can the above theorem (or some modification of it) be proved for all 

n > -1? 

An affirmative answer to this question will give a nice and elegant 

"internal" characterization of the "external" property def X .:_ n. 

The following questions are related to the problem above. 

1. Wat are internal necessary and sufficient conditions on a separable 

metrizable space X so that def X < n? 

2, Is it possible to obtain a fruitful generalization of dimension theory 

by replacing the empty set in the definition of inductive dimension 

by members of some class of spaces? 

3, What is the special role of the empty set in the theory of inductive 

dimension? 
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Since the original problem of de Groot is still unresolved in spite 

of considerable efforts ( [ 16 J, [ 17 J), the questions 1 , 2 and 3 are of in­

terest. 

The internal characterizations of def X given so far (question 1) 

are quite complicated ( [ 5 J, [24 J). 

The answer to question 2 is yes. In these notes an account will be 

given of what has been done so far in establishing the theory of dimension 

modulo a class of spaces. 

From the results which have been obtained, the answer to question 3 

will be clear. The role of the empty set is a minor one. Analogues of 

fundamental theorems like the sum and decomposition theorem can be proved 

for dimension modulo a class P under mild assumptions on P. 

All new results discussed in these notes are due to joint research of 

Professor~:. Nishiura and the author ([8], [9] and [10]). 

CONVENTIONEl AND NOTATIONS 

If A is a subset of X, then BX (A) (clX(A)) denotes the boundary (closure) 

of A in X. If the space X need not be emphasized the subscripts will be 

dropped. 

All spaces under discussion are assumed to be heriditarily normal 

(and T1.L._j3eginning with section 6, all spaces are to be metrizable. 

2. INDUCTIVE INVARIANTS 

The most important dimension functions are the weak inductive 

dimension Jnd, the strong inductive dimension Ind and the covering 

dimension !lim. We start with the generalization of the inductive dimension 

functions. We shall chiefly discuss the generalizations of the strong 

inductive dimension. 

A class P of spaces is topologically closed if for every XE P 
the class P contains all spaces homeomorphic to X. 

Definitions 1. Let P be a topologically closed class of spaces. The 

strong (weak) inductive dimension modulo P, denoted by P - Ind (P - ind), 
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is defined for every space X as follows: 

1 • P - Ind X = P - ind X = -1 if and only X € P. 

2. For each integer n .::_ 0, P - Ind .:_ n ( P - ind X ,:_ n) provided that 

each non-empty closed subset (each point) of X has arbitrarily small 

open neighborhoods U such that its boundary B(U) has 

P - Ind B(U) ~ n-1 (P - ind B(U) ,:_ n-1). 

For each integer n ,::_0, P - Ind X = n if P - Ind X < n and 

P - Ind X 1_n-1. If P - Ind X 1_n for each n, then P - Ind X = 00 • 

Similarly, P ind X = n, n = 0,1,2, .•• , 00 are defined. 

Clearly P Ind and P - ind are topological invariants, since Pis 

required to be topologically closed. Lelek, who first introduced the 

notion of inductive dimension modulo P, used the name "inductive invariant" 

for invariants of this type [19], 

By an easy inductive proof it is verified that P - ind< P - Ind. 

Examples. 

1. {¢} Ind= Ind, the strong inductive dimension. 

{¢} ind= ind, the weak inductive dimension. 

2. If X # 0 and Q - Ind X .:_ 0, then Q # ¢. 
It follows that 0 - Ind X .::_ 1, whenever X # ¢. 
So¢ - Ind X = Ind X+1 for every space X. 

Similarly 0 - ind X = ind X+1 for.every space X. 

3, Let K = {xix is compact}. 

For every separable metrizable space X, K - ind X = cmp X (section 1). 

In section 5 we shall show K - Ind En =-n, whe~e En is the 

n-dimensional Euclidean space. From this it is clear that the con­

dition K - Ind X < n is not a necessary condition for def X < n. 

4. P = {x all components of X are metric continua}. 

Theorem ([20]). Let X be a compact Hausdorff space. If Xis the con­

tinuous image of an ordered compactum, then P - Ind X < 0. 
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5. Let V ={XI Ind X < m}, m = -1,0,1,2, ... 
m -

V - Ind X = sup{Ind X - (m+1), -1} as can be shown by a simple 
m 

inductive proof. 

The easy proofs of the following propositions are omitted. 

Proposition 1. If Pc Q, then P - Ind,:::_ Q - Ind and P - ind,:::_ Q - ind. 

Proposition 2. For every space X and every class P we have 

P - Ind X < Ind X + 1 and P - ind X < ind X + 1. 

Moreover, if <PEP, thenrP :- Ind X < Ind X and P - ind X < ind X. 

FURTHER CONVENTIONS. 

All classes of spaces are assumed to be topologically closed. 

In view of example 2 we shall assume that every class Pis non-empty. 

We shall also assume <PEP. This assumption is made in order to avoid 

certain pathologies like the following: 

If <Pi P, then P - Ind X = 0 if and only if X = q,. Observe that 

<PE P follows from every monotonicity condition on P (section 4). 

3, DEFICIENCY AND SURPLUS 

First we formulate the extension problem. Let P be a class of 

spaces. We say that Y is a P-hull of X if X c Y and YEP. The (strong) 

P-deficiency of Xis the infimum of the set of numbers 

{Ind Y \ 'X Y is a P-hull of X}. This infimum will be denot~d by 

P - Def X. 

EXTENSION PROBLEM. For what classes of spaces Pis P - Ind= P - Def? 

Dually, we can formulate the excision problem. If Pis a class of 

spaces, we say that Y is a P-kernel of X if Y c X and YEP. The 

(strong) P-surplus of Xis the minimum of the set of numbers 

{Ind X \ Y I Y is a P-kernel of X}. This minimum will be denoted by 

P - Sur X. 
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EXCISION PROBLEM. For what classes of spaces P is P - Ind = P - Sur? 

From the viewpoint of the theory of the inductive dimension modulo a 

class of spaces a theory of kernels and surplus is more natural than a 

theory of hulls and deficiency. As a matter of fact the theory of 

kernels is related to the theory of normal families (section 6). 

Examples 

1. {¢} 

{¢} 

def X = -1 if and only if X = ¢. 

def X = 00 if and only if X ~ ¢. 

{ ¢} Sur = Ind. 

2. Let S 

Let Z 

={XI Xis a-compact}. 
n =Bx I , where I is the unit interval and Bis the space of 

the irrational numbers. Then 

S Sur Z = S - Ind= n. 

S Sur= n is proved as follows. If K is any S-kernel of Z, then 

the natural projection of K into Bis a-compact. Since Bis not 

a-compact, there is a point q EB such that {q} x Inn K = ¢. So 

z \ K ~ {q} X In and Ind z \ K = n. 

From the results in section 8 it follows that S - Ind Z = S - Sur Z. 

3. Let K ={XI Xis compact}. 

R denotes the real line (with the usual topology). 

K ind R = K Def R = o. 
K Ind R = K Sur R = 1. 

As for K - Ind R = 1 ' observe 

F = {n n = 2,3, ... } and G = 

separated by a compact set. 

that the disjoint closed sets 

{n + l I n = 2,3, ... } cannot be n 

Note that by using other dimension functions, we can obtain several 

types of deficiency and surplus (see [9]). 
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4. DIMENSION MODULO A CLOSED MONOTONE CLASS 

In our discussions we have to assume certain monotonicity condi­

tions. A class Pis said to be monotone if XE P, whenever YEP and 

X c Y. The other monotonicity conditions have the following form: If 

Xis a certain type of subset of Y and YEP, then XE P. The types 

we shall consider are closed, open, F0 and G0. We will use these modi­

fiers to express the type of monotonicity we wish to use. For example, 

closed monotone class P. 
In this section several properties of dimension functions modulo 

a closed monotone class are presented 

Theorem 1. A class P of spaces if closed monotone if and only if for 

every space X for every closed subset F of X we have 

P - Ind F < P - Ind X. 

Proof. Since the "if" part is obvious, we prove the "only if" part. 

The proof is by induction on P - Ind X. 

Suppose Fis a closed subset of X. If P - Ind X = -1, then XE P, which 

implies FE P; hence P - Ind F = -1. 

Assume the theorem for X with P - Ind X < n - 1. 

Let G be a non-empty closed subset of F and U an open neighborhood of 

Gin F. Then X \ (F\U) is an open neighborhood of Gin X. 

Since G is also closed in X and P - Ind X .::_ n, there is a neighborhood 

V of Gin X such that G c V c X \ (F\U) and P - Ind B(V) .::_ n - 1. Then 

W = V n Fis a neighborhood of Gin F, which satisfies G c W c U and 

BF(W) c BX(V). 

Since BF(W) is a closed subset of BX(V), by the induction hypothesis 

P - Ind BF(W) .::_ n - 1. Thus we get P - Ind F < n. 

Proposition 1. Let n ,:_ O. Suppose Pis closed monotone. Let A be a 

subset of X with P - Ind A< n. 

Then for any disjoint closed subsets F and G of X there exists an open 

set U such that Fe Uc X \ G and P - Ind(B(U)nA) < n - 1. 
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Proof. Since 0 E P, we may assume that F and Gare disjoint non-empty 

closed subsets of X. By virtue of the normality of X there exist open 

sets V and W satisfying F c V, G c W and cl(V) n cl(W) = 0. Because P 

P - Ind A~ n, there exists a neighborhood D of cl(V) n A in A satis­

fying cl(V) n Ac D c A\ cl(W) and P - Ind BA(D) ~ n - 1. 

Observe that BA(D) = clA(D) n clA(A\D),, 

Let F1 =Fu (A\ clA(A \ D)) and G1 =Gu (A\ clA(D)). 

Neither of the disjoint sets F1 and G1 contains a cluster point of the 

other. By virtue of the heriditary normality there exists an open set 

u such that F1 c U and clx Un G1 = 0. 
BX(U) = clX(U) \ U and BX(U) n A= BA(D). The proposition follows. 

By applying proposition 1 repeatedly we get 

Pro;eisition 2. Suppose Pis closed monotone. Let p - Ind X ~ n. 

Then for every open collection {U. I i = 1 , ... , n + 1} and closed 
J. 

collection {F. I J. = 1 , ... , n + 1} with F. CU. there exists an open 
J. J. J. 

collection {V. T J. = 1 , ... , n + 1} such that F. CV. c cl(V.) CU, and 
J. J. J. J. J. 

n {B(V. ) I i = 1 , ... , n + 1} E P. 
J. 

Pro;eosition 3, Suppose Pis closed monotone. Let A and B be subsets of 

a space X such that X =Au B. 

If P - Ind A~ n and Ind B ~ O, then P - Ind X ~ n + 1. 

Proof. Let F be a non-empty closed subset of X and let V be a neighbor­

hood of Fin X. By virtue of proposition 1 there exists an open set U 

satisfying F c Uc V and Ind (B(U)nB) ~ -1. 

Hence B(U) c A. By virtue of theorem 1 we have P - Ind B(U) ~ n. 

Pro;eosition 4. Suppose Pis closed monotone. Then P - Ind~ P - Sur. 

The proof of proposition 4 is similar to that of proposition 3, using 

induction on P - Sur. The theorem below can also be proved in a similar 

wa:y, using double induction (cf. [ 1~, p.28). 

A class Pis said to be additive if Z E P whenever Z =Xu Y, XE P 
and Y E P. 
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Theorem 2. A closed monotone class P :s additive if and only if 

P - Ind (Yu Z) ~ P - Ind Y + P - Ind Z + 1 

for any subsets Y and Z of a space. 

In particular, P - Ind X cannot be raised by adding a member of P to X 

provided that Pis additive. 

Proposition 5. Suppose Pis closed monotone and open monotone. 

Then P - Ind~ P - Def. 

The proof is by induction on P - Def (see [SJ for more"details). 

Counterexample. 

The analogue of theorem 2 fails for P - ind as the following example 

shows. 

Let X be the union of an open disc A in the plane and a boundary point 

b of A. Let K be the class of compact spaces. 

K - ind A = 0 , K - ind {b} = -1 and K - :ind X = 1 . 

5. THE EILENBERG - BORSUK DUALITY THEOREM. 

In this section we give an outline of the proof of the following theorem 

on extension of maps (i.e. continuous functions), which was first proved 

by Eilenberg in the compact case· [ 13]. 

Theorem 1. Let O ~ k ~ n. Suppose A is a closed set of a space X with 

Ind X \A~ n. Then for each map f: A+ Sk, from A to the k-dimensional 

sphere, there exists a set E c X \ A, E closed in X with Ind E < n - k 

such that f can be extended over X \ E. 

The result of Eilenberg was first improved by Borsuk [12] (separable 

metrizable case) and later by Akasa.k.i[11] (general metrizable case). 

We shall indicate a simple and elegant proof for theorem 1 in the case 

that all spaces are heriditarily normal, employing inductive dimension 

modulo a class. For more details see [8]. 

Observe that the only information of theorem 1 is the upper bound for 

the dimension of E ( since Sk is an absolute neighborhood retract!). 

Usually (cf.[1] ,[3] and [4]), the special case k = n of theorem 
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is presented as a corollary of the following well-known result about 

mappings in spheres: 

For every closed subset C of a heriditarily normal space X with 

Ind X < n and for every map f : C + Sn there exists an extension of f 

over X. 

It is surprising that this property remains valid and can be pro­

ved similarly if we pass from Ind to P ~ Ind. 

Theorem 2. Suppose Pis closed monotone. Let P - Ind X ~ n, (n~O). 

Then for every closed set C of X and every map f of C into Sn there 

exists a closed P - kernel E of X with E c X \ C such that f can be 

extended over X \ E. 

Outline of the proof of theorem 
n+1 n+1 . dary of I , where I is the 

In+1 = {(x1 , .•• , xn+1) I lxil ~ 
(o, ... ,o) is denoted by q. 

n 2. We shall regard S to be the boun-
( 1) . . . En+1 n+ -dimensional cube in ; 

1, i = 1, ... , n + 1}. The point 

The proof has the same pattern as that of the above mentioned 

theorem about mappings in sphere (see[4], III 1.A and 2.A). 
n . s· n+1 . Let f: C + S be as mentioned. ince I is an absolute retract, 

. . In+1 . . f - considered as mapping into - has an extension over X, which 

we denote again by f. 

Let f( p) have the coordinates f 1 ( p) , 

Put E = 1 and F. = {p I f.(p) ~ 
6 ✓n+1' i i 

... , fn+1(p). 

E}, G. = {p I 
i 

i = 1, ... , n+1. 

By virtue of proposition 4.2 there exist open sets V., i = 1, ... , n + 1, 
i 

such that F. c V. c cl(V.) c X \ G. and E = n {B(V.) I i = 1, ... , n + 1} i i i i i 
is a closed P - kernel of X. It is clear that 

EC X \ u {F. u G. Ii 
i i 

= 1, ... , n + 1} c X \ f- 1 (Sn) c X \ C. 

Also n {B ( V. ) \ E I i = 1 , •.. , 
i 

n + 1} =~-Since X \Eis normal, in 

the subspace X \ E there exists open sets W. with 
i 

clx(V.) \ E c W. c X \ G. and i i i 
(*) n {W. \ V. i = 1, •.. , n + 1} = ~­

i i 

We construct maps$. 
. i 

X \ E • [-E,E] such that 
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-1 -1 -1 cj>. ( O) c W. \ V. , cj>. ( £) = F. and cj>. (-e) = G .• i i i i i i i 

Defining gi by gi(p) = fi(p), p E Fi u Gi 

gi (p) = cj>i (p), P E X \ (Fi u Gi u E) 

we obtain maps of X \ E into I. 

Now g: X \ E • In+ 1 defines by g(p) = (g 1(p), , .. , gn+ 1(p)) 

is continuous and p(f(p) , g(p)) <½for every p EX\ E (p denotes the 

metric of In+ 1). In view of(*) we have qi g(X \ E). 

In a standard way it can be proved that g can be required to be equal 

to f on f-\sn). 

The compositon of g and the projection of In+ 1 

origin.is the desired extension off. 

n \ {q} onto S from the 

Proof of theorem 1. Let P = {X I Ind X ~ n - k - 1}. 

Then P - Ind X \A~ k (example 2,5). 

Let f: A • Skas mentioned in the theorem. Since Skis an absolute 

neighborhood .retract, there is an open set U of X containing A and an 

extension g off over U. We consider an open set V such that 

Ac V c cl(V) c U. X \Vis a closed subset of X \A.By theorem 4.1, 
k P - Ind X \ V ~ k. By virtue of theorem 2 the map g I BX(V) : BX(V) • S 

k has an extension k: (X \ V) \ E • S , where Eis a closed P - kernel 

of X with E c X \ clx(V). 

Letting f 1(p) = g(p) for x E clx(V) 

h(p) for XE (X \ V) \ E 

we obtain the deserved extension off over X \ E. 

Ind E ~ n - k - < n - k. 

Example. Let K = {X I Xis compact}. 

We shall show K Ind En= n, where En is then-dimensional LUclidean 

space. In view of proposition 2.2. it is sufficient to prove 

K - Ind En~ n. We shall derive a contradiction from the assumption 

K - Ind En~ n - 1. Let Cm= {x I p (x,pm) = 1} where pm is a point the 

distance of which to the origin q is 3m, m = 1 , 2, . . . . 
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Let C = u {C m = 1, 2, ... }. A map of the closed set C onto the 
m n-1 . . 

standard sphere S is defined by sending each C isometrically onto 
m n-1 . K n . S . From the assumption - Ind E ::,; n - 1 , by virtue of theorem 2, 

it follows that there exists a compact set Fin En with F c En\ C 

such that f has a continuous extension over X \ F. Since a compact set 

is bounded, this results in retractions of then - cell to its boundery. 

6. NORMAL FAMILIES 

FURTHER CONVENTION. From now on all spaces are assumed to be metrizable. 

The theory of normal families is due to Hurewicz [18]. 

It greatly simplifies the deduction of the fundamental theorems of the 

inductive theory for separable spaces. The theory of normal families 

has been adapted for general metrizable spaces by-Morita [21] in order 

to establish the theory of strong inductive dimension for (general) 

metrizable spaces. 

In this section we give an outline of this theory (without proofs) and 

indicate its relation to the notion of surplus. In sections 7 and 8 

this theory will be generalized (with proofs). 

Let P be a class of spaces. We shall say that Pis countably 

(locally finitely) closed additive if X € P whenever there is a coun­

table (locally finite) closed cover F of X with F c P. 

Definition 1. We shall say that a topologically closed class M of 

metrizable spaces is a normal family if the following conditions 

are satisfied: 

N1. Mis monotone, 

N2. Mis countably closed additive, 

N3, Mis locally finitely closed additive. 

Examples of normal families. 

l.!. {0}, 

E..:. A space is said to be locally countable if each point has a coun­

table neighborhoud. Let 



-12-

R ={XI X has a countable closed cover of locally countable sets}. 

R - Ind+ 1 is known as the rational dimension. 

R is a normal family. 

Definition 2. For any topologically closed class of metrizable spaces 

P we define a new class P' of metrizable spaces as follows: 

XE P' if each non-empty closed subset F of X has arbitrarily small 

open neighborhoods U such that B(U) E P. 
We agree that P(n+ 1) = (P(n)), for n = o, 1 , 2, ••• 

Example. Let P be a class of spaces. Let n ~ -1. 

XE p(n+ 1) if and only if P - Ind X = n. 

and P(O) = P. 

(This is the reason why all dimension·numbers should be·raised by one). 

Here we list the fundamental theorems of the theory of normal families. 

Theorem 1. The class V0 ={XI Ind X ~ O} is a normal family. 

Theorem 2. If Mis a normal family, then M' is also a normal family. 

Theorem 3, Let M be a normal family. 

A space X belongs to M' if and only if there exist two subspaces Y and 

Z such that X =Yu Z, YEM and Ind Z = 0, 

Observe that theorem 1 is a special case of theorem 2. However in the 

theory of normal families the proofs of theorems 1 and 2 are totally 

different and theorem 1 in combination with theorem 3 is used to prove 

theorem 2. In section 7 we shall show that the theorems can be re­

arranged in such a way that theorems similar to theorems 1 and 2 can 

be proved simultaneously. 

Let us collect some consequences of theorems 1, 2 and 3, 

Vk = {X I Ind X ~ k} is a normal family by virtue of theorems and 2, 

k = -1, O, 1, 2, .... From this we get the following theorems. 

The subset theorem~ If Y is a subset of a space X and Ind X ~ n, then 

Ind Y ~ n. 

The countable sum theorem. Let {F. 
J. 

i = 1, 2, ... } be a countable 

closed cover of X such that Ind F. ~ n for i = 1, 2, .... Then Ind X .::_ n. 
J. 
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The locally finite sum theorem. Let {F I y E f} be a locally finite y 
closed covering of X such that Ind F ~ n for each y Er. y 
Then Ind X ~ n. 

By applying theorem 3 repeatedly we get the following theorems. 

The decomposition theorem •. !~~ X ~ n if and only if Xis the union of 

n + 1 subspaces of dimension~ O. 

The addition theorem. Let X =Yu Z. Then Ind X ~ Ind Y + Ind Z + 1. 

The ~•.:-,:cision theorem. Let M be a normal family. Then M - Ind = M - Sur. 

Remarks 1! _A generalization of the addition theorem has already been 

given in theorem 4.2. 

£:. Except for [10], the theory of normal families has never been em­

ployed for the study of dimension modulo a class. Normal families have 

been designed for a systematic deduction of the fundamental theorems 

of dimension theory. In view of the special role of zero-dimensional 

spaces (theorem 1 above) and because of the strength of condition N1, 

other applications of normal families can hardly· be expected. 

In sections 7 and 8 we shall show that by rearranging the theorems 

and by relaxing condition N1 (as has been done in [10]), a new theory 

with applications to dimension modulo a class can be obtained. 

7. THE SUM THEOREMS 

Definition 1. We shall s~ that a class N of metrizable spaces is a 

regular family if the following conditions are satisfied; 

R1. N is closed monotone, 

R2. N is countably closed additive. 

Examples of regular families. 

l.=_ Every normal family is regular. 

2. The class of all countable spaces is a regular family. 

3, The class of all a-compact spaces·is a regular family. 

Theorem 1. If N is a regular family, then N' is also a regular family. 
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Proof. Suppose N is a regular family. We shall show that N1 is also 

regular in three steps. 

fu_ N1 is closed monotone. 

This is proved in theorem 4.1. 

~ N' is open monotone. 

Proof (cf.[3] 11.3). Let X € N' and let V be an open subset of X. 

Let F be a closed subset of V and let u0 be an open neighborhood of 

Fin V. Write V = u {F. I i = 1, 2, ••• } with F. closed in X and 
1 1 

Fi c Int Fi+1 (Int denotes the interior in X). Let Wi, 1 = 1, 2, •.• , 

be open subsets of X such that 

F c clv W. 1 c W. c U and n {W. I i = 1 , 2 , .•• } = F. 1+ 1 0 1 
For each i, F n Fi c Win Int Fi+ 1 c Fi+ 1• 

By virtue of!:_ we have Fi+ 1 € N', i = 1, 2, 

From the definition of N' it follows that there exists an open set 

ui with F n Fi c ui c win Int Fi+ 1 and Bv(Ui) € N (i = 1, 2, •.. ). 

Let U = u {U. Ii= 1, 2, ..• }. Since the collection {U. i 1 = 1, 2, ... } 
1 1 

is locally finite on V \ F, we have BV(U) c u BV(Ui) I 1 = 1, 2, ..• }. 

Since N is regular, BV(U) € IJ. The inclusions F c Uc u0 are evident. 

Thus V € N'. 

Remark. For later use we make the observation that {Bv( ui) 1 = 1 ' 
is a locally finite cover of u {BV(Ui) I i = 1 , 2, ... } . 

c. N' 1S countable closed additive. 

2, 

Proof (cf. [3] 10.4). Let X = u {X. I 1 = 1 , 2, . .. } where X. 1S closed 

in X and X. € N'. . 1 

Define F1 = x1 and 

Then X = u {F. I i 
1 

1 1 

F. = x. \ u {X. I j = 1 , •.• , i - 1} , i 2:: 2. 
1 1 J 

= 1, 2, .' .. } and the F. are pairwise disjoint. 
1 

Moreover (1) F. € N' (by virtue of B), 
1 

( 2) u {F. I j = 1 , ..• , i} is closed in X for each i. 
J 

Now, let K1 be a non-empty closed subset of X and U an open neighborhood 

of K1 in X. Let 1 1 = X \ U. 

Let G 1 = K 1 n F 1 and H 1 = L 1 n F 1 • 

... } 
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Since F 1 e: N' , there are a closed subset C 1 and open subsets U 1, V 1 of 

F 1 such that ~ 1 c U 1, H 1 c V 1 and C 1 e: N. 

Now K1 u u1 and L1 u v1 are disjoint closed subsets of X \ c1. 

Let K2 and L2 be disjoint closed neighborhoods of K1 u u1 and L1 u v1 
in X \ c1 • 

It is to be observed that clX(K2 ) n c1X(L2 ) c c1• 

Now let G2 = K2 n F2 and H2 = L2 n F2 • 

Since F2 e: N', there is a closed subset c2 of F2 and open subsets 

u2 , v2 of F2 such that G2 c u2 , H2 c v2 and c2 e: N. 
Observe that c1 u c2 is closed in X (If p e: F1 is an accumulation point 

of c2 , then p e: c1). Also c1 u c2 e: N, because c2 is an F0 subset of 

c1 u c2 and N satisfies the conditions R1 and R2. 

Inductively we define K, L and a set C e: N. n n n 
Finally, we let K = u {K In= 1, 2, ..• }, L = u {L I n = 1, 2, ••. } 

n n 
and C = u { C I n = 1 , 2 , •.. } . 

n 
K1 c Kc U, K is open in X, and B(K) c C. 

By virtue of conditions R1 and R2, B(K) e: N. Thus X e: N'. 

A first consequence of theorem 1 is 

The countable sum theorem. Suppose N is a regular family. 

Let·{F. I i = 1, 2, •.. } be a countable closed covering of X such that 
J. 

N - Ind F. :s; n for i = 1 , 2 , ••• , Then N - Ind X < n. 
J. 

Definition 2. A regular family is said to be semi-normal if it is lo­

cally finitely closed additive. 

Examples of semi-normal families • 

..1..:. The class A(1) of all a-locally compact spaces is a semi-normal family. 

It is sufficient to check that this class is locally finitely closed 

additive. Let {X I ye: f} be a locally finite closed cover of X with 
y 

X e: A(1) for eve,..., ye: r. Let E = u {E 1 I i y •J y . y 
is locally compact. For every i, E 1 is open in 

i i y 
cl(E ) and consequently E is an F in X. 

y y 0 

J. = 1, 2, •.• }, where E . y 
cl(E 1 ), hence an F in 

y 0 

Thus we may assume that E = u {E 1 I i = 1, 2, .•. with y y 
J. E locally y . 

compact and closed in X. Then, for each i, the set F. = u 
J. 

is locally compact. Hence Xe: A(1). 

{E/ I r e: f} 
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As has been shown by Stone [25] the class A(1) can be described 

as the class of all absolute F spaces; a space Xis said to be an 
0 

absolute F -space if, whenever Xis a subspace of a metrizable space 
0 

Y, Xis an F0 subset of Y (or, equivalently, Xis a member of the 

additive Borel class 1 in Y). 

R:_ The class A(a) of all absolute Borel sets of additive class a, 

where 2:;;; a<~ is a semi-normal family (see [2] for definitions). 

An elegant proof of the locally finite closed additivity is given in 

[ 14]. 

3. Every normal family is semi-normal. 

Theorem 2. If N is a semi-normal family, then N' is also a semi-nor­

mal family. 

Proof. Suppose N is semi-normal. Since any semi-normal family is 

regular, in view of theorem 1 we need only show that N1 is locally fi­

nitely closed additive. 

Let X = u {X I y EI'} be a locally finite closed covering of X such 
. y ' 

that X EN' for every y Er. In a standard fashion we can find a la-
y 

cally finite open cover {U0 I 5 EA} and a closed cover {F0 I o EA} 

of X such that for each 5 , F 0 c LO and cl ( U O) meets at most finitely 

many members of the collection {X I y Er}. Since N' is a regular y 
family, cl U EN' for each o. 

y 
Let A be a closed subset of X and Wand open neighborhood of A. 

U0 n Wis a neighborhood of Ft n A in the subspace cl U0. 

Hence there exists an open subset V0 of X such that 

F O n A• c VO c U O n W and B (VO ) E N. 

Since {B(V0 ) I o E A} is a locally finite closed cover of 

u {B(Vo) I o EA}, we have u {B(Vs) I 6 EA} EN. 

Let V = u {V0 Io E A}.Then Ac V c X \Band, by theorem 1, B(V) EN. 

Hence X E N'. 

As a consequence of theorem 2 we get 

The locally finite sum theorem. Suppose N is a semi-normal family. 

Let {F I y E r} be a locally finite closed covering of X such that 
y 

N - Ind F ~ n for each y E T. Then N - Ind X :;;; n. 
y: 
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Remark. The above theorem holds under weaker assumptions. o~ N 

(see [10]). 

8. THE EXCISION THEOREM. 

Theorem 1 . Let N be a semi-normal family. 

A space X belongs to N' if and only if there exist two subspaces Y and 

Z such that X =Yu Z, Y € N and Ind Z = O. 

Proof. In view of proposition 4.2 it is sufficient to prove the 

" only if" part. Suppose X € N' • In a standard fashion we can get 

a framework of a q,-locally finite basis of X i.e. an open collection 

{Uy I y Er} and a closed collection {FY I y € r} such that 

1. 0 + FY c UY for every y Er, and 

2. if {V y Er} is an open collection such that F c V c U, y E ~, y y y y 
then it is a a,-locally finite basis of X. 

For each y Er there is an open W satisfying 
y 

F c W c U and B(W) € N. 
y y y y 

Let Y = u {B(W) I y Er} and z = x \ Y. 
y 

Then Y €Nin view of the condition R2 and the locally finite closed 

additivity of N. The subspace Z has a a-locally finite open base B 
such that B(V) = 0 for every V € B. 

It remains to show Ind Z ~ 0. Let B = u {B. I i = 1, 2, ... } 
1 

for locally finite open collections B .• Let F be a non-empty closed 
1 

subset of Zand U a neighborhood of Fin Z. 

For every i let 

U. = Z \ u {V 
1 

V n F = 0, V E u {B. I j = 1, ... , i}}, and 
J 

v. = u {V I V Cu, V € u {B. 
1 J 

j = 1, . . . ' i}} . 

Both U. and V. are open as well as closed. 
1 1 

Let W. = U. n V .. Then {W. I i = 1, 2, •.• } is locally finite on Z \ F. 
1 1 1 1 

It follows that W = u {W. I i = 1, 2, ... } satisfies 
1 

F c W c U and B(W) = 0 . Hence Ind Z ~ O. 
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Corollary. Suppose M is a semi-normal family. Let n .:: 0. 

M-Ind X ~ n if and only if there exists a cr -locally finite open base 

B for X such that M-Ind B(V) ~ n - 1 for every VE B. 

From the special case n = 0, M = Hfl of this corollary it is 

easily deduced that V0 ={XI Ind X ~ O}is monotone. Combined with 

theorem 1, this result gives a proof of theorem 6.2. NOW, ALL THEOREMS 

OF SECTION 6 HAVE BEEN PROVED·.· 

By applying theorem 1 repeatedly we get 

THE EXCISION THEOREM. Suppose Mis a semi-normal family. Then 

M-Ind = M'-Sur. 

An important consequence of the excision theorem is the following: 

If Mis a semi-normal family, then a theorem for M-Ind gives a 

theorem for M-Sur, and conversily. Thus the corollary above holds also 

for M-Sur. The theorems for P-Sur below, which easily follow from the 

definition of P-Sur and the theorems of dimension theory in section 6, 

yield corresponding theorems for P-Ind, whenever P is a semi-normal 

family. 

Subset theorem. If Pis monotone, then P-Sur Y ~ n, whenever Y c X 

and P-Sur X ~ n. 

Decomposition theorem. Suppose P is additive. T::en P-Sur X ~ n if 

and only if X = u {X. I i = 1, •.. , n + 1} with P-Su.r X ~ O, 1 = 
J. 

=1, ... ,n+1. 

The following proposition will give a partial answer to the extension 

problem. 

Proposition 1. Suppose Pis an additive family which contains the 

class of topologically complete spaces. Then P-Def ~ P-Sur. 

Proof. Suppose P - Sur X ~ n. Let X c Y and Y topologically complete 

(so YEP). There exists a P - kernel A of X such that Ind X \A~ n. 

By virtue of a theorem of Tumarkin ([4], theorem II.1O) there exists 

a G0 subset B of Y such that X \Ac Band Ind B < n. 

Bis topologically complete, so BE P. The additivity of P gives 

Z =Au BE P. Ind Z \ X ~ Ind B ~ n. Hence P - Def X ~ n. 



-19-

Theorem 2. Let 2 :,; ct < n. Let ~.(c:) be the class of all absolute Borel 

sets of additive class ct. Then 

A(ct) - Ind= A(ct) - Sur= ,\(ct) - Def. 

The following example shows that for the class A(1) of all 

ct-locally compact spaces the exquality A(1) - Ind= A(1) - Def does 

not hold (thus resolving a conjecture of Nagata in the negative [22]). 

Example. Here we present an example of a separable space X with 

A(1) - Ind X = 0 and A(1) - Def X = 1. 

Let I denote the unit interval, Q = {t I t e: I and tis rational} 

and B =I\ Q. 

Xis the subspace of Ix Ix I given by 

X =(IX IX Q) u (BX BX B). 

As is easily seen A(1) - Ind X = A(1) - Sur X = 0. 

The proof of A(1) - Def X = 1 makes use of the Baire category theorem 

(Bx Bx Bis topologically complete) and of the fact that Xis not 

rimcompact (theorem in section 1) (see [9] for more details). 

9. COVERING DIMENSION MODULO A CLASS 

The most satisfactory answer to the extension problem is given 

through covering dimension modulo a class [10]. 

Let Y be a P - hull of a space X. Covering dimension applied to 

the remainder Y \ X leads naturally to the concept of a P - border 

cover and the order of a P - border cover (cf.[24] and [6]). In this 

section we shall define the covering dimensions modulo a class P and 

summarize the main results on the relations between P - Sur, P - Ind 

and the covering dimensions. 

We adopt the sntadard conventions for collections (e.g. [4] I.1). 

Let Ube a collection in a topological space X and pa point of X. 

The order of U at pis the number of distinct members of U which con­

tain p, and we denote it by ord U. The order of U is the supremum of p 
{ord U Ip e: X}. 

p 

Definition 1. Let P be a class of spaces. AP - border cover of a 

space Xis an open collection V such that (X \ u V) e: P 
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The closed P - kernel X \ u Vis called the enclosure of V. 

(Recall the convention 0 E P). 

Definition 2. Let P be a class of spaces and X be a space. 

P - dim X s n if for any finite P - border cover U of X there exists 

a P - border cover V such that V < U and order V s n + 1 . 

P - Dim X s n if for any P - border cover U of X there exists 

a P - border cover V such that V < U and order V s n + 1 . 

_P __ d_im_ and P - Dim are called the small and large covering dimension 

modulo P respectively. 

It will be agreed that P - dim X = P - Dim X = 1 if and only if X € P. 

When P = {r/J}, we drop the prefix P and simply write dim. 

As is well-known Dim= dim on the class of metrizable spaces. 

An elementary proof of this equality for paracompact spaces, which is 

due to de Vries, is given in [4]. It is surprising that this proof can 

be adapted for dimensions modulo P under mild assumptions on P (theorem 

1 below). 

Proposition 1. P - dim and P - Dim are topological invariants. 

Proposition 2. P - dim s P - Dim s dim. 

Problem. Recall that if Pc Q, then Q - Inds P - Ind (proposition 2.1). 

A smilar result holds for Sur and Def. We conjecture that Pc Q does 

B2!, imply Q - dim s P - dim in general ( a Q - border cover need not 

be a P - border cover!). 

Example. Let C be the class of topologically complete spaces. 

Let Z = Q x In, when I denotes the unit interval and Q = {t I t EI 

and tis rational}. 

We shall show C - dim Z = C - Dim Z = n. In view of proposition 2 above 

we need only prove C - dim Z ~ n. 

Since dim In= n, there is a finite open cover U = {U I y Er} of In 
n y 

such that for every open cover V of I with V < U we have order 

V ~ n + 1. u* = Q x U I y Er} is a cover of z. 
y * 

Let W be a border cover of Z with enclosure C such that W < U. 
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Since Q is not topologically complete, there is a q E Q with 

{q} x Inn C = 0 (the natural projection of Q x In onto Q is a perfect 

map). It follows that the restruction of W to {q} x In has order 

~ n + 1. Hence order W ~ n + 1 and C - dim Z ~ n. 

A class of spaces Pis said to be weakly additive if Z E P, 
whenever Z = X u Y with X closed, XE P· and·Y E P~-

Definition 3, We shall say that a topologically closed class M of 

metrizable spaces is a cosmic family if the following conditions are 

satisfied: 

C1. Mis closed monotone, 

C2. Mis weakly additive, 

C3, M·is·locally finitely closed additive. 

Any semi-normal family is a cosmic family, and any cosmic family which 

is countably closed additive, is semi-normal. Every regular family 

satisfies con,:, ti0.•1s C 1 and C2. · 

It should be observed that a cosmic family is open monotone. 

This is clear since any open set Vin X can be written as 

V = u {~ I k = O, 1, .•. },where~= {x I k: 1 ~ p(x, X \ V) ~ ~}. 

By virtue of C1 and C3 we have VE M, whenever XE Mand Mis cosmic. 

Further examples of cosmic families. 

The classes M(a) of all absolute Borel sets of multiplicative class a, 

where 1 ~a<~, are cosmic families. 

Observe that M( 1) is the class C of topologically complete· spaces. 

Now we mention without proofs some important results from [10] 

(or small modifications of them). 

Theorem 1 • Suppose M is a cosmic family. Then 

A. M' is also a cosmic family (remark in the proof of theorem 7,1); = 
B. M - dim, M - Dim and M - Ind satisfy the locally finite sum theorem; = 
C. M - dim = M - Dim ~ M - Ind; 

D. M - dim X ~ n if and only if for every closed M - kernel F of X 
=-= 

and every closed subset C of X \ F and every (continuous) map 

f: C + Sn, there exists a closed M - kernel G of X \ F such that 
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G c X \ C and f can be extended over X \(Fu G); 

E. Let F be a closed M - kernel of X. Then M - Dim X \ F = 

M - Dim X (Note the equality). 

Theorem 2. Suppose Risa regular family. Then R - Dim= R - Sur. 

10. DUALITY THEOREMS. 

The duality of kernels and hulls (surplus and deficiency) becomes 

clear through covering dimension (cf. [10] section 7). 

Definition 1. We shall say that two subsets X and Y of a space Z are 

complementary in Z if Z = X u Y and X n Y = Ql. 

Let P and Q be classes of spaces. A space Z is called ambiguous rela­

tive to P aad Q_ provided that X E P if and only if Y E ~ whenever X 

and Y are complementary in Z. 

Observe that in view of our convention Ql E P for every P , each space 

Z which is ambiguous with respect to P and Q, belongs to P n Q. 

Examples·. 

1. Let S and C be the classes of a-compact spaces and topologically 

complete spaces respectively. Each compact space Z is ambiguous rela­

tive to S and C 

2. Let A(a) and M(a) be the classes of all absolute Borel sets of 

additive and multiplicative class a respectively, 2 s a<~-

A(a) n M(a.) is the family of all spaces which are ambiguous t"elative 

to A(a) and M(a). Using the classical terminology [2], A(a) n M(a) is 

the family of absolute ambiguous sets of class a. 

Observe that both A(~) and M(a) are G0 monotone as well as F0 monotone 

(a 22). Moreover M( 1) c M(a) n A(.a.) for a 2 2. 

Lemma 1. Suppose Z is ambiguous relative to P and Q. 
Then Q - Def X s P - Sur Y, c~': -::never X and Y are complementary in Z. 

The proof of lemma 1 is trivial. 

Lemma 2. Suppose Pis F0 monotone. Then 

P - Sur s P - Def. 
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Proof. Let X be a space with P - Def X < 00 • Let Y be a P - hull of X 

with Ind Y \ X = P - Def X. By virtue of a theorem of Tumarkin:([4], 

theorem II.1O) there exists a G0 subset G of Y such that Y \ X c G 

and Ind G = Ind Y \ X. 

Then F = Y \ G is an F subset of Y contained in X. 
(J 

Hence, Fis a P - kernel of X. Ind X \ F ~ Ind G = P - Def X. 

So P - Sur X ~ P - Def X. 

Theorem 1. Suppose that both P and Qare F0 monotone. 

Suppose Z is ambiguous relative to P and Q • 

Then P - Def X = P - Sur X = Q - Def Y = Q - Sur Y. 

Proof. P - Def X ~ P - Sur X ~ Q - Def Y ~ Q - Sur Y ~ P - Def X. 

Theorem 2. Let 2 ~a< n. Then 

A(a) - Sur= A(a) - Def, M(a) - Sur= M(a) - Def and 

Ul(r,;) n ACa)J - Sur= [M(a) n A(a)J - Def. 

Proof. Let X € A(a). Let X c Y € M(1). Then X and Y \ X are comple­

mentary sets of Y and Y is ambiguous relative to A(a} and M(a). 

Now we are going to prove similar results for covering dimensions 

modulo a class. 

Convention. If V = {V I y € rJ is a collection in X and Y c X then 
y 

VI Y - the restruction of V to Y - is the collection {V n Y y € r}. 
y 

Lemma 3. Let Y be a subspace of Z. For every open collection U of Y 

there exists an open collection U of X such that V I Y = U and 

order U = order V. 

Proof. See [2], 15, XIII. 

Lemma 4. Suppose P and~ are closed monotone. 

Let Z be ambiguous relative P and Q and let X and Y be complementary 

in Z. Let Ube an open collection in Z. 

Then U I Xis a P - border cover of X if and only if U I Y is a 

Q - border cove-r of Y. 
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Proof. Let W = u U. If X \WE P, then Z \ (X \ W) E Q. 
But Z \ (X \ W) =Yu Wand Y \Wis a closed subset of Yu W. Hence 

Y \WE Q, whenever X \WE P. The lemma follows. 

Theorem 2. Suppose P and Qare closed monotone. Suppose Z is ambiguous 

relative to P and Q. 
Then P - Dim X = Q - Dim Y and P - dim X = Q - dim Y, whenever X and 

Y are c0:nplementar,1 in Z. 

Proof. Since the proofs for the small and large covering dimensions 

are very similar, we only prove the theorem for Dim. 

Due to symmetry we need only prove P - Dim X ~ Q - Dim Y, whenever 

X and Y are complementary in Z. 

Suppose Q - Dim Y ~ n. Let Ube a P - border cover of X. 

* * Let U be an open collection in Z with U I X = U. By virtue of lemma 

4 ' U* I y . Q b f y is a - order cover o . 

Since Q - Dim Y ~ n, this Q - border cover has a Q - border cover 

refinement V of order~ n + 1. Using lemma 3, we form an open collec-

* * * * * tior, V in Z with V I Y = V , order V = order V and V < U • Again 

by virtue of lemma 4, v* IX is a P - border cover of X. v* IX< U 
* and order V IX~ n + 1. So P - Dim X ~ n. 

n+1 Example. Let Z = I , where I denotes the unit interval. 

Let Q = {t It EI and t rational}. 

X c Z is given by X = Q x In. Let Y = Z \ X. 

Z is ambiguous relative to Sand C (the classes of all cr - ~ompact and 

topologically, complete spaces respectively). By virtue of theorem 2, 

C Dim X = .S - Dim Y ( = n ) . 

S Dim X = C - Dim Y ( = -1 ) . 

11 . EXTENSION THEOREM 

In this section we shall give sufficient conditions for 

P - Dim= P - Def (cf. [10], section 6). 

In view of proposition 4.5 (P - Ind~ P - Def) and theorem 9,1. C 

(P - Dim~ P - Ind) we have P - Dim~ P - Def for every cosmic family. 

Here we give a direct proof of this. 
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Thoerem 1. Suppose Pis a cosmic family. Then 

P - Dim~ P - Def. 

Proof. Suppose P - Def X ~ n. Let F be a P - hull of X with Ind 

F \ X ~ n. Let Ube a P - border cover of X with enclosure G (G is a 

closed P - kernel of X). Let u* be an open collection in F with 

* * U IX= U. The set W = u U is an open subset of F and hence WE P. 
Since G n W = ~, Y = G u W is a P - hull of X, because P is weakly 

additive. Also, Ind Y \ X ~ n. As in the proof of theorem 10.2 we can 

obtain an open collection Vin Y such that order V ~ n + 1, V I X < U 

and Vis a cover of Y \ X. 

Y \ u Vis a closed subset of Y contained in X. It follows that V IX 

is a P - border cover of X of order~ n + 1, which refines the given 

P - border cover U. 

The following definition is suggested by the excision theorem 

and the duality of surplus and deficiency. 

Definition 1. A class Pis said to be countably open multiplicative 

if for each YEP and each non-empty countable collection 

{X. i = 1 , 2 ••• } of P - kernels of Y the intersection i 
X = n {X. i = 1 , 2, i 

... } belongs to P, whenever x. \ X is open in 
J 

y \ X for J = 1 ' 2, ... . 

It is clear that the notion of countably open multiplicatively and 

that of countable closed additivity are dual concepts. Observe that 

open monotonicity and countable open multiplicativity of a class imply 

G0 monotonicity of the class. 

Lennna 1. Suppose Pis a cosmic family which is countably open multi­

plicative. Then P - Dim X = P - Def X provided X has a P - hull. 

Proof. In view of theorem 1 we need only prove P - Def~ P - Dim. 

Let Y be a P - hull of X and P - Dim X = n. We assume Xis dense in Y. 

Let u1 = {s 1 (x) Ix E Y \ X}, where s 1 (x) = {y I p(x,y) < 1}. 

U1 ' = u1 I X is a P - border cover of X. Let V 1 be a border cover of 

X with enclosure F1 such that V1 < U1' and order V1 ~ n + 1. Let W1 
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be an open collection 1.n Y such that [J 1 X = V 1 and order W 1 = order V 1 • 

Suppose W1, ... , Wk_ 1 have been defined. 

Let Uk = {~ (x) I x e: Y \ X}. Let Vk be a border cover of X with 

inclosure Fk which refines (½t A Wk_ 1) I X and has orders n + 1. Let 

Wk be· an open collection such that Wk IX= Vk, Wk~ Wk_ 1 and order 

Wk s n + 1. 

Weak additivity of P implies~= Fk u (u Wk) e: P. 
Denote by Z the set n {~ I k = 1, 2, ••. }. Since Fk c X c ~ for 

each K, X c Z and ~ \ Z = ( u Wk) \ Z. Consequently, countable open 

multiplicitavily of P implies Z is a P - hull of X. 

We shall show Ind Z \ X s n. 

Let W ' = W Z \ X. Then {Wk' I k = 1 , 2, ..• } is a sequence of open k k 
coverings of Z \ X such that 

1. w~+1 < w ' k ' k = 1 , 2, 

2. order wk I s n + 1 ' k = 1 , 2, 

3, mesh wk I s mesh Wk= mesh Vk s mesh ½t <_g_ 
- k' 

By [4] theorem V. 1 it follows that Ind Z \ X s n. 

Hence P - Def X s n = P - Dim X. 

Definition 2. A class Pis said to be universal if every space X 

has a P - hull. 

Proposition 1. Suppose Pis a G0 monotone class. Then Pis universal 

if and only if P contains the class C of all topologically complete 

spaces. 

Proof. Observe that a topologically complete space is an absolute G0. 

Example. {~} is not universal. 

From lemma 1, theorem 1, proposition 4,5 and theorem 9,1 we get 

the following result. 

THE EXTENSION THEOREM. Suppose P is a cosmic family which 1.s countably 

open multiplicative and universal. Then 

P - Ind= P - Dim= P - Def. 
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Examples. The conditions of the extension theorem are satisfied by 

the classes M(a) of all absolute Borel sets of multiplicative class 

a, 1 s:; a < n.Observe that M( 1) = C, the class of topologically complete 

spaces, is the smallest class which satisfies the conditions of the 

preceding theorem~ 

Many results on surplus and deficiency as well as the duality of 

these concepts can be summarized as follows ([10], theorem 7,5). 

Thoerem 2. Suppose P and Qare F monotone and weakly additive. a 
Suppose Z is ambiguous relative to P and Q. 
Then, if Pis countably open multiplicative or if Q is countably 

closed additive, 

P - Def X = P - Sur X = P - Dim X = Q - Dim Y = Q - Sur Y = Q - Def Y, 

whenever X and Y are complementary in Z. 

Application. For 2: s:; a < n, 

A(a) Dim= A(a) Sur = A(a) Def, and 

M(a) Dim= M(a) Def = M(a) Sur. 

Example. Let C denote the class of topologically complete spaces. 

Let Z "'oe the subspace of I x I given by Z = I x Q u Q x I ( I is the 

unit interval and Q is the set of rationals). 

By virtue of the extension theorem, C - Ind Z = C - Dim Z = C Def Z = 0. 

By a simple application of the Baire category theorem, it can be 

shown that C - Sur Z = 1 . So the complement of any C - kernel of Z , 

has dimension one! None the less, every C - border cover of X has a 

C - border cover refinement of order one ! 
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